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Abstract: We propose a general method of designing phase-shifting algorithms for grating lateral shearing interferometry. The 
algorithms compensate for the zeroth-order effect error and phase-shifting error in varying degrees. We derive a general expres-
sion of the phase-shifting algorithm in grating lateral shearing interferometer and introduce the corresponding design method. 
Based on the expression and method, four phase-shifting algorithms are designed with different phase-shifting errors to obtain 
high measurement accuracy. A new 13-frame phase-shifting algorithm is designed and simulated with a large zeroth-order effect. 
Simulation results verify the general expression and the corresponding design method. 
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1  Introduction 
 

The system wavefront aberration is one of the 
important parameters for evaluating a lithography 
projection lens, and has a fundamental impact on the 
critical dimension (Wang et al., 2006). There are 
several methods to measure the system wavefront 
aberration, such as point diffraction interferometry 
(Lee et al., 2000; Goldberg et al., 2004; Gao et al., 
2010; Bai et al., 2013), lateral shearing interferometry 
(Takeda and Kobayashi, 1984; Schreiber and 
Schwider, 1997; Hasegawa M et al., 2004; Dai et al., 
2016), and the Hartmann-Shack sensor (Fujii et al., 
2003; Bueno et al., 2010; Li et al., 2015). Research 
shows that lateral shearing interferometry has great 

potential for improving the accuracy in system 
wavefront measurement (Miyakawa et al., 2009). The 
system wavefront of the projection lens is obtained by 
grating lateral shearing interferometer using the 
interferograms of the ±1st-order diffraction beams. 
However, in practice, there is still a certain percentage 
of the zeroth-order beam reaching the charge-coupled 
device (CCD) detector caused by manufacturing and 
assembly of the spatial filter (Hasegawa T et al., 
2004; Zhu et al., 2007). The zeroth-order beam and 
the ±1st-order beams generate complicated 
interferograms, which increases the difficulty of 
wavefront restoration and reduces the accuracy of 
wavefront measurement. Therefore, it is significant to 
design special algorithms to suppress the zeroth-order 
effect and to compensate for the phase-shifting error. 
Zhu et al. (2004) proposed a 9-frame phase-shifting 
algorithm to eliminate the phase-shifting error and the 
zeroth-order effect. In 2013, we proposed an 
improved 11-frame phase-shifting algorithm that 
performed better with a large phase-shifting error 
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(Fang et al., 2013). In recent years, with the devel-
opment and competition of projection lithography 
equipment, the need for accurate wavefront meas-
urement of projection lens systems is obviously in-
creasing. Based on the existing grating lateral shear-
ing interferometer, new phase-restoration algorithms 
have been designed to improve the measurement 
accuracy of the wavefront of projection lens systems, 
which is significant in developing new lithography 
equipment with narrower critical dimension. 

In this paper, we derive a general expression of a 
phase-shifting algorithm in a grating lateral shearing 
interferometer and introduce the corresponding de-
sign method. Based on the expression and method, a 
series of phase-shifting algorithms are designed to 
suppress the zeroth-order effect and phase-shifting 
error for a grating lateral shearing interferometer. 
Simulation results verify the expression and the cor-
responding method. 
 
 
2  Principle 

 
Fig. 1 shows a typical grating lateral shearing 

interferometer. The tested wavefront of W0 is divided 
into several different wavefronts, W0, W±1, W±2, …, by 
grating. With the spatial filter, only the ±1st-order and 
a certain percentage of the zeroth-order wavefronts go 
through the window and interfere with each other. 
The interferogram intensity I0 is 

 

0 1 1 2 2 3 3cos cos cos ,I Q V V V        (1) 
 

where Q is a constant, V1 is the visibility of the in-
terferogram generated by the +1st- and 1st-order 
beams, V2 is the visibility of the interferogram gen-
erated by the +1st- and zeroth-order beams, V3 is the 
visibility of interferogram generated by the zeroth- 
and 1st-order beams, 1 2 (W+1 W 1)/  is the res-
toration phase to be tested, 2 2 (W+1 W0)/  and  

3 2 (W0 W 1)/  are phases to be eliminated, W±1(x, 
y)=W0(x± , y), and  is the shearing ratio. At the 
grating in the interferometer, the designed ±1st-order 
diffraction efficiencies are 40%, so the zeroth-order 
diffraction efficiency is less than 20%. The amplitude 
of the zeroth-order beam going through a spatial filter 
is much smaller than those of the ±1st-order beams. 
So, V2 and V3 are much smaller than V1. 

 
 
 
 
 
 
 
 
 
 
 
 
 

The phase-shifting interference is achieved 
with grating and piezoelectric transducer (PZT). The 
interferogram intensity Ij for the jth frame is 
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where /2+j j j  is the amount of phase-shifting 

and  is the phase-shifting error. 
With an odd number of n frame interferograms, 

the restoration phase is derived as a general expres-
sion (Zhu and Gemma, 2001): 
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where aj is an unknown constant and we assume n=15. 
Expand the numerator part of Eq. (3) in Taylor 

expansion form for the phase-shifting error , and 
omit the small quantity with high orders. A1, con-
taining terms 1 and Q in the numerator of Eq. (3), is 
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(4) 

Fig. 1  Block diagram of a grating lateral shearing 
interferometer 
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Similarly, A2, containing term 2, can be expressed as 
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A3, containing term 3, can be expressed as 
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(6) 
Expand the denominator of Eq. (3) in Taylor expan-
sion form for the phase-shifting error , and omit the 
small quantity with high orders. B1, containing terms 

1 and Q in the denominator of Eq. (3), can be ex-
pressed as 
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(7) 
Similarly, B2, containing term 2, can be expressed as 
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B3, containing term 3, can be expressed as 
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3  Optimized algorithms focusing on the 
phase-shifting error 
 

The phase-shifting error is the primary error to 
be compensated for, and the algorithm is also required 
to compensate for the zeroth-order effect. We should 
let the constant terms in A2, A3, B2, and B3 be zero, and 
omit the higher-order terms of . The phase-shifting 
error of  is a small value. A2 is approximately zero, 
because A2 is the product of two small quantities 
(polynomial of  and V2/V1). Similarly, A3, B2, and B3 

are approximately zeros. The conditions for deter-
mining unknown constants are 

 

7 5 3 12( ) 0,a a a a                  (10) 

4 2 62(2 ) 0.a a a                     (11) 
 

3.1  Nine-frame phase-shifting algorithm 

To suppress the phase-shifting error, letting the 
constant terms in A1 equal those in B1, we obtain 

 
1 7 3 5 6 22 2 2 2 4 4 .a a a a a a          (12) 

 
When nine interferogram frames are used, we 

obtain a1=1, a5=0, a6=0, and a7=0. Letting the condi-
tions of Eqs. (10)–(12) be satisfied, a2=1, a3= 1, and 
a4= 1/2 are obtained. The 9-frame algorithm is  
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The phase-restoration error function 1 of the 

9-frame algorithm can be expressed as (Zhu et al., 
2004) 
 

2

1 1sin(2 ).
4

                       (14) 

 

3.2  Eleven-frame phase-shifting algorithm 

To optimize the 11-frame algorithm, the condi-
tions of the 9-frame algorithm are needed. Let the 
term of 2 in A1 equal that in B1. The new condition of 
unknown constants is 

 

3 1 7 5 6 4 29 49 25 36 16 4 .a a a a a a a   (15) 
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When 11 interferogram frames are used, we 
obtain a1=1, a6=0, and a7=0. Here, we let the condi-
tions of Eqs. (10)–(12) and (15) be satisfied. There-
fore, we obtain a2=1, a3= 7/8, a4= 1/2, and a5=1/8. 
The 11-frame algorithm was proposed by us earlier 
(Fang et al., 2013): 
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The phase-restoration error function 1 of the 

11-frame algorithm is expressed as 
 

4
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                       (17) 
 

3.3  Thirteen-frame phase-shifting algorithm 

For a large phase-shifting error, the conditions of 
the 11-frame algorithm are required. Let the term of 4 
in A1 equal that in B1. The new condition of unknown 
constants is 
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When 13 interferogram frames are used, we 

obtain a1=1and a7=0. Here, we let the conditions of 
Eqs. (10)–(12), (15), and (18) be satisfied. Therefore, 
we obtain a2=31/32, a3= 13/16, a4= 1/2, a5=3/16, 
and a6=1/32. The 13-frame algorithm is  
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(19) 
The phase-restoration error function 1 of the 

13-frame algorithm can be expressed as 
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3.4  Fifteen-frame phase-shifting algorithm 

For a large phase-shifting error, the conditions of 
the 13-frame algorithm are required. Let the term of 6 
in A1 equal that in B1. The new condition of unknown 

constants is 
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When 15 interferogram frames are used, we 

obtain a1=1 and a7=0. Here, the conditions of 
Eqs. (10)–(12), (15), (18), and (21) are required, and 
we obtain a2=31/32, a3= 13/16, a4= 1/2, a5=3/16, 
and a6=1/32. The 15-frame algorithm is 
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The phase-restoration error function 1 of the 

15-frame algorithm can be expressed as 
 

8
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                    (23) 

 
From Eqs. (14), (17), (20), and (23), we can find 

that the phase-restoration error achieves its maximum 
in the initial phase of /4. Phase-restoration errors for 
different phase-shifting algorithms are shown in 
Fig. 2, where the initial phase is assumed to be /4. 
With the same phase-shifting error, the phase- 
restoration error is smaller as more frames are used. 

 
 
 
 
 
 
 
 
 
 
 
 
 

4 Optimized algorithms focusing on the  
zeroth-order effect 
 

In case of priority optimization of the zeroth- 
order effect, the constant terms in A1 are set to equal 

Fig. 2  Phase-restoration error with different 
algorithms 
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those in B1 (Eq. (12)). The zeroth-order effect is 
compensated for with the phase-shifting algorithm. 
The constant terms in A2, A3, B2, and B3 are assumed 
as zeros, which are the conditions of Eqs. (10) and 
(11). The 9-frame algorithm solved from 
Eqs. (10)–(12) is the same as that solved from 
Eq. (13). 

4.1  New 13-frame phase-shifting algorithm 

For a larger zeroth-order effect error, let the 
terms of  in A2, A3, B2, and B3 be zeros. The condi-
tions are 

 

3 5 7 1
3 5 7 12 0,
2 2 2 2

a a a a          (24) 

6 26 2 0.a a                            (25) 
 
When 13 interferogram frames are used, we 

obtain a1=1 and a7=0. Here, we let the conditions of 
Eqs. (10)–(12), (24), and (25) be satisfied. Therefore, 
we obtain a2=3/4 a3= 1/2, a4= 1/2, a5=1/2, and 
a6=1/4. The new 13-frame algorithm is 
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The new 13-frame algorithm eliminates constant 

terms and the terms of  in A2, A3, B2, and B3, while the 
13-frame algorithm eliminates only constant terms. 
So, the ability to compensate for the zeroth-order 
effect error of the new 13-frame algorithm is better 
than that of the original 13-frame algorithm. 

4.2  Simulation 

The procedures of lateral shearing interference 
and phase-restoration with the zeroth-order effect are 
simulated to verify the analysis in Section 4.1. In the 
simulation, a wavefront with 0.5  spherical aberration 
is located in the unit circle. The wavefront is sheared 
in the x direction, and the shearing ratio is assumed as 
0.1. The zeroth-order effect is V2=V3=10%V1.  

The 9- and 13-frame interferograms are obtained 
with 9 and 13 phase-shifting steps, respectively. The 
phase-shifting amount is /2 and the phase-shifting 
error is /16. The phase-restoration errors with the 9- 
and 13-frame algorithms are shown in Figs. 3a and 3b, 
respectively. From these two figures, we see that the 

maximum absolute value of the restoration error of 
the 9-frame algorithm is larger than 0.04 rad with a 
large zeroth-order effect error, while that of the 
13-frame algorithm is smaller than 0.007 rad. The 
restoration accuracy of the new 13-frame algorithm is 
higher than that of the 9-frame algorithm.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

 
 
 
 
 
 
 

For different zeroth-order effect errors, the dif-
ferent interferograms are generated with 9 and 13 
phase-shifting steps, respectively. The phase- 
restoration errors are obtained with the 9-frame algo-
rithm and the new 13-frame algorithm. The restora-
tion root mean square (RMS) errors of those algo-
rithms are shown in Fig. 4. The phase-restoration 
error increases with the increasing zeroth-order effect 
error when using the 9-frame algorithm. The restora-
tion RMS error of the new 13-frame algorithm 
changes little with the increasing zeroth-order effect 
error. With the same zeroth-order effect error, the 
restoration accuracy of the new 13-frame algorithm is 
higher than that of the 9-frame algorithm. The accu-
racy difference is remarkable, especially when the 
zeroth-order effect error is large. 

Fig. 3  Phase-restoration error with the 9-frame algo-
rithm (a) and the new 13-frame algorithm (b) 
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5  Conclusions 
 

In this paper, we have derived a general expres-
sion of phase-shifting algorithms for a grating lateral 
shearing interferometer and have offered a detailed 
design method. Based on the expression and method, 
a series of phase-shifting algorithms have been de-
signed that can eliminate the phase-shifting error and 
the zeroth-order effect. The 9-, 11-, 13-, and 15-frame 
phase-shifting algorithms have been designed with 
the primary optimization of suppressing the phase- 
shifting error. The new 13-frame phase-shifting al-
gorithm has been designed with the primary optimi-
zation of suppressing the zeroth-order effect. The 
analysis and simulations showed that the designed 
phase-shifting algorithms can eliminate effectively 
the phase-shifting error and the zeroth-order effect 
error for the grating lateral shearing interferometer. 
Under the condition of n>15, the algorithms can also 
be designed with the method introduced in this paper. 
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