
Neurocomputing 275 (2018) 1–9 

Contents lists available at ScienceDirect 

Neurocomputing 

journal homepage: www.elsevier.com/locate/neucom 

3D model retrieval using constructive-learning for cross-model 

correlation 

Jianbai Yang 

a , ∗, Jian Zhao 

b , Qiang Sun 

b 

a University of Chinese Academy of Sciences, Beijing 10 0 049, China 
b Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China 

a r t i c l e i n f o 

Article history: 

Received 16 August 2016 

Revised 8 January 2017 

Accepted 12 January 2017 

Available online 14 January 2017 

Communicated by Yue Gao 

Keywords: 

3D model retrieval 

Cross-model correlation 

Constructive-learning 

a b s t r a c t 

With the advance of 3D technology and digital image processing technique, there have been a great 

number of applications of 3D models, such as virtual reality, computed aided design, and entertain- 

ment. Under such circumstance, much research attention has been spent on 3D model retrieval in recent 

decades. Although extensive research effort s have been dedicated to this task, it is a difficult task to ex- 

plore the correlation among 3D models, which is the key issue in 3D model retrieval. In this paper, we de- 

sign and implement a constructive-learning for cross-model correlation algorithm for 3D model retrieval. 

In this method, we first extract view features from multi-views of 3D models. To exploit the cross-model 

correlation, we formulate the correlation of 3D models in a hypergraph structure, where both the vertex 

correlation and the edge correlation are simultaneously learned in a constructive-learning process. Then, 

the correlation of each model to the query can be used for retrieval. To justify the performance of our 

proposed algorithm, we have implemented the method and tested on two datasets. We have compared it 

with recent state-of-the-art methods, and the results have shown superior performance of our proposed 

method. 

© 2017 Published by Elsevier B.V. 
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. Introduction 

In recent decade, 3D technology has rapid progress and the

igital image processing technique has also been developed exten-

ively. With the advance on both hardware and software, a great

umber of applications have employed 3D models, such as virtual

eality, entertainment, computed aided design [1] , molecular

iology [2] , and other applications [3] . 3D movies, tele-medicine

nd 3D games have become much popular in recent years. All

hese applications lead to a booming increase of 3D models [4–6] ,

hich make it a urgent requirement to conduct effective 3D model

etrieval from large scale dataset [7–10] . In recent decades, multi-

edia information retrieval [11–16] has attracted much attention.

n such 3D era, 3D model retrieval [17–19] becomes even more

mportant, and the importance of retrieving 3D models can be

llustrated in the example of industrial design. Previous study

hows that only 20% of designs require completely new designs,

hile other 80% of designs can be combined or revised from

xisting designs. Therefore, an accurate 3D model retrieval method

an significantly improve the industrial design performance and

educe the cost. 
∗ Corresponding author. 

E-mail address: yangjb.ucas@gmail.com (J. Yang). 
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In recent decades, much research attention has been spent on

D model retrieval, and thus it becomes a hot research topic nowa-

ays. The task of retrieving 3D models can be defined as follows:

or the query 3D model, the objective of 3D model retrieval is

easuring the similarity/distance between each model and the

uery. Therefore, how to calculate the distance/similarity between

wo 3D models is the key in the 3D model retrieval task. Regard-

ng this task, existing methods [20,21] can be mainly classified into

wo types, model-based 3D model retrieval methods [22–24] and

iew-based 3D model retrieval methods [25–30] , based on the dif-

erent 3D model representation methods. 

In model-based 3D model retrieval method, each model is

escribed by a corresponding virtual 3D model, such as point

loud data or mesh data. In this type of methods, the fea-

ures of 3D models are extracted from the 3D model and the

omparison is based on the feature matching. In model-based

ethod, typical representative features include low-level features

23,31,32,22,33,34,24] , and high-level features. In model-based 3D

odel retrieval method, each model is described by a correspond-

ng virtual 3D model, such as point cloud data or mesh data. In

his type of methods, the features of 3D models are extracted

rom the 3D model and the comparison is conducted using fea-

ure matching. In model-based method, typical representative fea-

ures include low-level features [23,31,32,22,33,34,24] , and high-

https://doi.org/10.1016/j.neucom.2017.01.030
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
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level features. Low level features mainly employ the direct descrip-

tion of 3D model information, such as the distribution of surface

[23] , the geometric moments [31] and volumetric information of

3D model. High level features represent 3D models from a con-

text level, such as skeletons [35] . The advantage of model-based

methods comes from the direct representation of 3D model infor-

mation. While, the main drawback of these methods is the manda-

tory requirement of 3D models. In many practical applications, the

3D models are not explicit available, which limits the application

of model-based methods. 

With the development of cameras and image processing meth-

ods, it has been much easier to acquire multi-views of 3D mod-

els, which leads to the progress of 3D model retrieval methods

using multiple views [25,27,36,37] . In these methods, a group of

multiple views are used for 3D model representation, captured

from different directions by real or virtual cameras. Different from

model-based methods, view-based methods do not need the vir-

tual model information, making these methods easier to be ap-

plied in various of applications. In view-based 3D model retrieval

methods, first a group of views are generated and then the visual

features are extracted on these views. The comparison between

3D models is based on the matching between two sets of multi-

views. Although there have been much work on view-based 3D

model retrieval, it is difficult to explore the correlation among 3D

models, which is the key issue in 3D model comparison. Recently,

hypergraph-based methods have been introduced into 3D model

retrieval, in which the correlation among 3D models is modeled

by a hypergraph. Although these methods have shown better per-

formance compared with existing methods, all these methods have

just build the initial level model relevance, which is not optimal to

reflect the underneath correlation among 3D models. 

Under such circumstance, it is important to jointly explore

the high-order correlation among 3D models and the relationship

among links on the hypergraph, which can bring in deeper inves-

tigation on the data modelling. Hypergraph is one type of graph.

In hypergraph, each edge is able to link two or more vertices. The

flexible structure of hypergraph makes it fit for high order relation-

ship modelling. Regarding the hypergraph based data modelling

[38–41] , it has been employed in plenty of computer vision tasks,

such as image retrieval [42–44] , model segmentation [45] , and hy-

perspectral image classification. To conduct model recognition, Xia

et al. [46] presented a class-specific hypergraph (CSHG) to jointly

employ local SIFT features and global geometric constraints. In this

work, a selected category of models with multiple appearance in-

stances was modeled by hypergraph. Huang et al. [43] proposed to

employ hypergraph structure to formulate the relationship among

images, and the transductive learning was conducted to retrieve

images. In this method, each vertex denotes one image and the vi-

sual feature-based distance is used for edge construction. Zhu et al.

[47] presented a multimodal hypergraph learning method for land-

mark analysis. In this method, the edges were generated based on

the visual features of landmark images. It is noted that the ini-

tial edges may be not optimal for data representation. We note

that the edge weights are just simple set in the learning objec-

tive function, indicating that the correlation among edges has not

been taken into consideration. 

In our task, to handle the issue of high-order correlation among

3D models, we design and implement a constructive-learning for

cross-model correlation algorithm for 3D model retrieval. In this

method, we first extract view features from multi-views of 3D

models. To exploit the cross-model correlation, we formulate the

correlation of 3D models in a hypergraph structure. More specif-

ically, the vertex on the hypergraph denotes on 3D model, and

the corresponding edges on the hypergraph are built based on

the feature-based distance among 3D models. On this hypergraph

structure, both the vertex correlation and the edge correlation are
imultaneously learned in a constructive-learning process. Then,

he correlation of each model to the query can be used for re-

rieval. To justify the performance of our proposed algorithm, we

ave conducted experiments on two datasets, including the Na-

ional Taiwan University dataset and the ETH-80 dataset. We have

ompared it with recent state-of-the-art methods, and the results

ave shown superior performance of our proposed method. 

The main contributions of our work are two-fold: 

1. We propose a constructive-learning for cross-model correlation

targeting the task of 3D model retrieval. This method is able to

take both the model correlation and the correlation of model

connections into consideration simultaneously and yet achieves

better performance on 3D model comparison. 

2. To measure the performance of the proposed constructive-

learning method, we have conducted experiments on two

datasets. The experimental results and comparison with exist-

ing methods have shown superior results of proposed method. 

The rest of this paper is organized as follows. Section 2 pro-

ides related work on 3D model retrieval. Section 3 introduces the

roposed method and Section 4 provides detailed experimental re-

ults and the comparisons with state-of-the-art methods. We fi-

ally conclude this paper in Section 5 . 

. Related work 

In this part, we first introduce the view-extraction meth-

ds, and the provide the view-based model matching method.

esides the direct view extraction using real and virtual cam-

ras for 3D models, generating synectics views for 3D models

s also important. Papadakis et al. [48] introduced a panoramic

iew method, called panoramic model representation for accu-

ate model attributing (PANORAMA). Different from PANORAMA, a

patial structure circular descriptor (SSCD) was presented in [26] ,

hich projects the original 3D model information into a circular

egion. Then, a set of circular images are used for 3D model rep-

esentation. Lighting Field Descriptor (LFD) was proposed in [49] ,

hich selects 12 groups of images to describe 3D models. Each

roup of views is composed of 10 images, captured from differ-

nt directions. In LFD, both the Zernike moments and the Fourier

escriptors were utilized as the view features, and the comparison

etween 3D models is based on the matching between these LDFs.

0 views from the bounding sphere of the 3D model were em-

loyed in [50] . In this method, the 3D model comparison is formu-

ated as a probabilistic matching task, and both a positive matching

nd a negative matching are employed. 6 depth images were em-

loyed in [51] which were generated from 6 directions of the 3D

odel bounding box. For the generated depth images, the depth

istograms were calculated as the feature for comparison. 

In [25] , a group of 320 views were employed for 3D model rep-

esentation and an Adaptive Views Clustering (AVC) method was

roposed for retrieving 3D models. In this method, about 20–40

iew were used from the initial views and the task of 3D model

etrieval is modeled as a probabilistic method to measure similar-

ty between each 3D model and the query. To achieve efficient 3D

odel retrieval, a query view selection (QVS) method [30] was pre-

ented to select a subset of views for retrieval in the original view

ool. In this method, the discriminative ability of each view can be

xplored through the information of user relevance feedback, and

he employed distance metric can be also learned to enhance the

iscriminative representation of the used query views. To reduce

he use of multi-views and save the computational cost, a Com-

act Multi-View Descriptor (CMVD) was introduced in [36] , con-

aining 18 views. Liu et al. [52] proposed an image set-based clique

imilarity measure to handle the issue of the set-to-set distance
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easure based on the graph matching method [53] , which can ef-

ectively preserves the local and global information of view-based

D model and strengthen inliers to eliminate redundant and noisy

isual information. In [54] , a Hausdorff distance learning method

as proposed. In this method, the matching of two sets of views is

btained by Hausdorff distance, where learning an optimal Maha-

anobis distance metric was also conducted based on the relevance

eedback information. 

Regarding the visual representation of multi-views, recent

orks [55–57] have employed the bag-of-words for visual features.

n [27] , the local SIFT features were extracted and the bag-of-

isual-words were generated for comparison. 

Nie et al. [58] leveraged the sparse coding to handle 3D model

etrieval problem. The reconstruction residual is utilized to com-

ute the similarity between two different 3D models, which can

ffectively reduce the interference of redundant information. In

37] , the relationship of 3D models is modeled by hypergraph, and

he learning on hypergraph is conducted to explore the correlation

mong 3D models. Recently, Zhang et al. [59] further presented a

ulti-scale hypergraph learning for 3D model retrieval. We note

hat although these methods have tried to investigate the hyper-

raph modelling on 3D model retrieval, there is still little attention

oncentrated on how to generate an optimal modelling of 3D mod-

ls. Exiting methods mainly just build a raw representation based

n the hypergraph structure. 

. Constructive-learning for cross-model correlation 

We introduce our proposed constructive-learning method for

ross-model correlation targeting the task of 3D model retrieval.

ur method comprises of three stages, i.e., pairwise 3D model

istance measurement, cross-model structure construction and

onstructive-learning for cross-model correlation, which will be

etailed introduced in this section. 

.1. Pairwise 3D model distance 

Here, we first introduce the employed pairwise 3D model

istance measure. Given two 3D models O 1 and O 2 and the

orresponding two groups of multi-views { v 11 , v 12 , . . . , v 1 n } and

 v 21 , v 22 , . . . , v 2 n } , we first conduct feature extraction for each view.

n this work, we employ the widely used shape feature, Zernike

oments, as the view feature. Zernike moments [60,61] are ro-

ustness to shape scaling and rotation. Many previous 3D model

etrieval methods [25,50] have used Zernike moments as the view

eature. Following the many-to-many matching scheme in [59] , we

lso employ the minimal distance between two sets of multi-views

s the model pairwise distance, which is calculated by 

 ( O 1 , O 2 ) = 

1 

a 

a ∑ 

i =1 

d min ( v 1 i , O 2 ) , (1) 

here v 1i is the feature of the i -th view of the first model,

 min (v 1 i , O 2 ) is the minimal distance from v 1i and all O 2 views. 

In this way, all pairwise 3D model distances can be calculated,

hich are used for the hypergraph construction in next step. 

.2. Cross-model correlation structure construction 

In this paper, we formulate the model relationship in a hyper-

raph. In the hypergraph G = (V, E ) , each vertex of G denotes one

D model, and the relationship among 3D models is modeled by

dges, which are generated based on the pairwise 3D model dis-

ance in the feature space. 

In our work, we employ the traditional star expansion method

or edge generation. For each vertex, it is selected as the center

ertex and its nearest neighbors are chosen to be connected by

ne edge. On one hand, we let K denote the number of selected
earest neighbors. In this way, each edge can connect K + 1 ver-

ices, including the center vertex and its K nearest neighbors. It

s still a difficult task to selected a proper K value, as introduced

n previous works [50,59] , we vary the K values from 5 to 50 to

enerate a large set of edges, which can represent the relationship

rom different scales. 

On the other hand, we also denote the other parameter d as

he controlling factor in the feature space. Here d is the average

airwise 3D model distance from all 3D models. We define a new

hreshold ηd as the connection distance in the feature space. Each

ertex is selected as the centroid again, and all nearest neighbors

ith a smaller distance to it than ηd are connected by a corre-

ponding edge. We vary η from 0.1, 0.5–1 to generate multi-scale

istance controls. The above two types of edges are illustrated in

ig. 1 . 

For the constructed hypergraph G = (V, E ) , there are a vertex

et V , containing all 3D models to be compared, an edge set E ,

ontaining all edges from the two types of edge generation meth-

ds. A hypergraph is described by an incidence matrix H . For H ,

ach entry is calculated as 

 (v , e ) = 

⎧ ⎨ 

⎩ 

exp 

(
−d ( v , v c ) 2 

αd 
2 

)
if v ∈ e 

0 if v / ∈ e 

(2) 

here d is the mean distance of all view pairs, v c is the center

ertex in edge e and α is a parameter, setting as 0.05 in our exper-

ments. 

In hypergraph modelling, there are degrees for vertices and

dges, which are calculated by 

 ( v ) = 

∑ 

e ∈E 
ω ( e ) h ( v , e ) . (3) 

nd 

(e ) = 

∑ 

v ∈V 
h (v , e ) . (4) 

espectively, where d(v ) and δ(e ) are the vertex degree and the

dge degree for vertex v and edge e , respectively. 

.3. Constructive-learning for cross-model correlation on retrieving 

D models 

With the hypergraph structure, semi-supervised learning (SSL)

38] has been used in recent years and applied in many tasks, such

s retrieval [43] and classification. In traditional hypergraph learn-

ng framework, Zhou et al. [38] introduced a regularization method

s follows: 

rg min 

f 
{ λR emp ( f ) + �( f ) } . (5) 

Here, f is the target correlation vector, �( f ) is a hypergraph

tructure regularizer, R emp ( f ) is an empirical loss for the training

labeled) data, and λ > 0 is a pre-set parameter to control the bal-

nce between the hypergraph regularizer and the empirical loss. 

In this framework, there are two main parts, including the reg-

larizer of hypergraph structure and the empirical loss. The hyper-

raph structure regularizer is defined as: 

( f ) = 

∑ 

e ∈E 

∑ 

u, v ∈V 

w ( e ) h ( u, e ) h ( v , e ) 
δ( e ) 

( 

f 2 ( u ) 

d ( u ) 
− f ( u ) f ( v ) √ 

d ( u ) d ( v ) 

) 

= 

∑ 

u ∈V 
f 2 ( u ) 

∑ 

e ∈E 

w ( e ) h ( u, e ) 

d ( u ) 

∑ 

v ∈V 

h ( v , e ) 
δ( e ) 

−
∑ 

e ∈E 

∑ 

u, v ∈V 

f (u ) h ( u, e ) w ( e ) h ( v , e ) f ( v ) √ 

d ( u ) d ( v ) δ( e ) 
= f T ( I − �) f (6) 
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Fig. 1. Examples of edge generation. (a) Number-based edge; (b) Distance-based edge. 
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where � = D 

− 1 
2 

v HWD 

−1 
e H 

T D 

− 1 
2 

v . IN this step, we denote � = I − �.

Now �( f ) is rewritten by 

�( f ) = f T � f . (7)

�( f ) indicates that the more connected of two vertices on the

hypergraph, the more similar of the corresponding labels, which

controls the label smooth on hypergraph. 

The empirical loss term R emp ( f ) is calculated as: 

R emp ( f ) = ‖ f − y ‖ 

2 = 

∑ 

u ∈V 
( f ( u ) − y ( u ) ) 

2 
, (8)

where y is the input labeled vector (the training data or the query

information). 

The learning objective function in Eq. (5) is rewritten by 

arg min 

f 

{
f T � f + λ‖ f − y ‖ 

2 
}
. (9)

As shown in [38] , it can be solved by 

f = 

(
I + 

1 

λ
�

)−1 

y. (10)

It is noted that the traditional hypergraph learning is fully

based on the original hypergraph structure. However, it is hard

to construct an optimal hypergraph in the beginning. To overcome

this limitation, recent work [37] introduced to learn edge weights.

It is noted that a simple weighting regularizer may be not opti-

mal towards edge selection and weighting for hypergraph. Thus, it

is important to explore the correlation among edges, not only the

correlation among vertices. 

Here, we introduce a sparse regularizer on hyperedge weight

�(w ) as �(w ) = ‖ w ‖ . The aim of the sparse regularizer is to ex-

plore the effective hyperedges from the original hyperedge pool.

Now, the objective function on learning on hypergraph contains

three components: 

arg min 

f, w 

{ λR emp ( f ) + �( f ) + μ�(w ) } . (11)

To solve the constructive-learning task on the hypergraph, we

employ an alternative optimization approach. 

First, we fix the weights for edges in G, and optimize f . The

learning task returns to Eq. (5) and it can be directly solved by Eq.

(10) . 

Then, we fix f and optimize w . Here, the learning task changes

to 

arg min 

w 

{ �( f ) + μ�(w ) } . (12)

which can be solved via quadratic programming. 
In this way, both the vertex relevance and the edge weights

re able to optimized simultaneously in the same constructive-

earning process on the hypergraph. 3D model retrieval results can

e achieved by ranking all 3D models with a descending order

ith respect to the relevance to the query model. 

. Experimental results and discussions 

.1. Experimental settings 

In our experiments, two public 3D model benchmarks are em-

loyed, including National Taiwan University 3D Model database

NTU) [49] and ETH-80 3D model dataset (ETH) [62] . The NTU

ataset contains 549 3D models from different categories, such

s aqua , boat , bed , and bomb . The 3D models in the NTU dataset

ontains model data, and the multi-views are captured from 60

qually distributed directions. And thus, for each 3D model, there

re 60 images. The ETH dataset is composed of 80 models belong-

ng to 8 categories. Each 3D model consists of 41 images in the

TH dataset. There is no model information in the ETH dataset. We

ave demonstrated example 3D models in Fig. 2 from the NTU and

TH datasets. 

To evaluate the performance of retrieving 3D models, the below

ommonly used criteria are used in our experiments. 

1. The nearest neighbor accuracy (NN). NN measures the accuracy

of the top 1 retrieval result. NN ranges from 0 to 1. 

2. F-Measure (F). F-measure calculates the overall performance of

the first 20 retrieved results. It is computed as a combination

of both recall and precision by F = 

2 ×P 20 ×R 20 
P 20 + R 20 

, where P 20 and R 20 

denote the precision and the recall, respectively. F ranges from

0 to 1. 

3. Discounted Cumulative Gain (DCG) [63] . DCG a ranking-based

performance measure, which gives a high value for good rank-

ing list and a low value for a poor ranking list. DCG ranges from

0 to 1. 

4. Average normalized modified retrieval rank (ANMRR) [64] . AN-

MRR is another performance measure for ranking quality. Dif-

ferent from DCG, a good ranking list will lead to a low ANMRR

value and a poor ranking list will lead to a high ANMRR value.

ANMRR ranges from 0 to 1. 

To justify the effectiveness of our proposed method, the follow-

ng recent state-of-the-art methods are used for comparison. 

• Elevation descriptor (ED) [51] . ED is based on 6 views for 3D

model representation. In ED, 6 images are used for matching

between 3D models. 
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Fig. 2. Example 3D models in the NTU and ETH datasets. 
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• Adaptive views clustering (AVC) [25] . AVC selects a set of rep-

resentative views from the raw image sets. A probabilistic style

matching is conducted to measure pairwise 3D model distance.

• Query view selection (QVS) [30] . QVS incrementally selects

query views for retrieval. 

• Multi-scale model graph learning (MSOGL) [59] . MSOGL formu-

lates 3D models in a multi-scale hypergraph. In this method, a

learning process is conducted to optimize the relevance of each

model to the query. 

• Constructive learning for cross-model correlation on Hyper-

graph (CLH), i.e., our proposed method. In CLH, both λ and μ
are set as 10. 
Fig. 3. Example retrieval results for o
.2. Experimental results 

To evaluate the performance of our method, experiments were

onducted on the two public datasets and all five compared meth-

ds were evaluated on the NTU dataset and four methods (except

D, which requires the model information) were evaluated on the

TH dataset. We have demonstrated the experimental results in

igs. 5 and 6 , where the performance on the four criteria, including

N, F, DCG and ANMRR, are provided. As demonstrated in these

esults, the following observations can be obtained: 
ne query from the NTU dataset. 
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Fig. 4. Example retrieval results for one query from the ETH dataset. 

Fig. 5. Experimental comparison of different methods on the NTU dataset. 
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• Our CLH method obtains the overall best performance on the

NTU dataset. It has a gain of 7.10%, 8.19%, 5.23%, and 4.35% com-

pared with the second best method MSOGL in terms of NN, F,

DCG and ANMRR, respectively. 

• Our CLH method achieves the overall best performance on the

ETH dataset. It has a gain of 1.84%, 5.80%, 1.49%, and 2.09% com-

pared with the second best method MSOGL in terms of NN, F,

DCG and ANMRR, respectively. 

• In comparison with direct multi-view matching methods, i.e.,

ED, AVC, and QVS, learning-based methods, including MSOGL

and CLH, achieve better performance. More specifically, CHL

achieves gains more than 20% compared with the state-of-the-

 

art methods, such as ED, AVC and QVS, in terms of NN on the

NTU dataset. And this value is 14% on the ETH dataset. 

Figs. 3 and 4 demonstrate two retrieval results for the queries

rom the NTU and ETH datasets, respectively. 

.3. Discussions 

Experimental results have shown superior 3D model retrieval

erformance of our CLH method. We discuss the experimental re-

ults as follows. 

• The better 3D model retrieval performance demonstrates the

effectiveness of our proposed CLH method. The better perfor-
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Fig. 6. Experimental comparison of different methods on the ETH dataset. 

Fig. 7. Experimental results with respect to different λ and μ values on the NTU dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mance compared with the state-of-the-art methods can be ben-

efited from the following two aspects. First, the hypergraph

construction method in multi-scale makes it flexible for data

representation. In this way, the constructed 3D model hyper-

graph can represent 3D model relationship from multiple as-

pects. Second, the proposed method also takes the selection of

edges into consideration, which further enhances the optimal

hypergraph structure. We note that the initial hypergraph struc-
ture may be not optimal and how to select the optimal edges

is a challenging task. In our method, the proposed constructive-

learning method can jointly learn the vertex correlation and

edge weights simultaneously. 

• Compared with the direct multi-view matching methods,

learning-based method, including MSOGL and CLH, can take the

advantage of multiple model correlation in the learning process,

which leads to better performance of MSOGL and CLH. These
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Fig. 8. Experimental results with respect to different λ and μ values on the ETH dataset. 
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methods employ the hypergraph structure to explore the high

order relationship underneath the 3D models. 

• Compared with MSOGL, the proposed CLH achieves better per-

formance, which comes from the better structure learned from

the learning processing. Different from MSOGL, CLH targets on

learning optimal hypergraph structure together with the vertex

correlation. The constructive-learning process can make the two

tasks working together and find the best solution for final ver-

tex correlation ( Figs. 5 and 6 ). 

Here we summarize the results and observations. The proposed

method has achieved the best performance in all compared meth-

ods. This satisfied performance can be dedicated to the better data

formulation using hypergraph, which is able to generate high-order

correlation among 3D models, and the learning of optimal hyper-

graph structure. 

In our method, there are two main parameters λ and μ, which

control the balance between different components of the objective

function in the constructive-learning task on hypergraph. We have

also conducted experiments to evaluate the impact of the selection

of λ and μ on the performance of 3D model retrieval task. More

specifically, we have varied both λ and μ from 0.01 to 100, and the

experimental results of 3D model retrieval on the two datasets for

our proposed CLH method are provided in Figs. 7 and 8 , respec-

tively. 

We can notice that our CLH method can obtain a sTable 3D

model retrieval performance when the two key parameters change

in a wide range, which demonstrates that this method is not sen-

sitive to the settings of λ and μ. We also notice that if λ or μ is

selected as very small value, the performance will be decreased. If

λ or μ is set as very large, the performance is also not the best

too. If either parameter is too small or too large, it indicates that

one or more components play too big or small role in the hyper-

graph learning process, which will limit the overall performance of

our proposed CLH method. 

5. Conclusion 

Retrieving 3D models has been an important task in research

society. In this paper, targeting on exploring the high order 3D

model correlation for accurate 3D model retrieval, we have pro-

posed a constructive-learning for cross-model correlation algo-

rithm. In this method, we first extract view features from multi-

views of 3D models, and then the correlation among 3D models

is formulated by hypergraph. On this hypergraph structure, both
he vertex correlation and the edge correlation are simultaneously

earned in a constructive-learning process. Then, the correlation of

ach model to the query can be used for retrieval. To justify the

erformance of our proposed algorithm, we have implemented the

ethod and tested on two datasets. We have compared it with re-

ent state-of-the-art methods, and the results have shown superior

erformance of our proposed method. 

The limitation of this work mainly lies in the computational

ost, which occurs during the learning procedure. When dealing

ith large scale data, this method may require more memory

nd running time. For future work, there are two main directions.

irst, it is important to explore effective 3D model descriptor. Al-

hough Zernike moments have shown satisfactory performance on

D model retrieval, it still has limitations on representation of

omplex models, such as sketch. Therefore, shape and visual fea-

ures are still an important topic for 3D model retrieval. Second,

n effective indexing method is required for large scale 3D model

etrieval, as directly retrieving 3D models from a large dataset is

till challenging. Therefore, it is helpful to conduct 3D model in-

exing and then process a ranking stage after the indexing. 
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