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Two-dimensional multibit optoelectronic memory
with broadband spectrum distinction
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A.H.Castro Neto 2,3, Lei Liu4 & Wei Chen1,2,3,6

Optoelectronic memory plays a vital role in modern semiconductor industry. The fast

emerging requirements for device miniaturization and structural flexibility have diverted

research interest to two-dimensional thin layered materials. Here, we report a multibit

nonvolatile optoelectronic memory based on a heterostructure of monolayer tungsten dis-

elenide and few-layer hexagonal boron nitride. The tungsten diselenide/boron nitride

memory exhibits a memory switching ratio approximately 1.1 × 106, which ensures over 128

(7 bit) distinct storage states. The memory demonstrates robustness with retention time over

4.5 × 104 s. Moreover, the ability of broadband spectrum distinction enables its application in

filter-free color image sensor. This concept is further validated through the realization of

integrated tungsten diselenide/boron nitride pixel matrix which captured a specific image

recording the three primary colors (red, green, and blue). The heterostructure architecture is

also applicable to other two-dimensional materials, which is confirmed by the realization of

black phosphorus/boron nitride optoelectronic memory.
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Optoelectronic memories have attracted tremendous
attention owing to its unique capability of accumulating
and releasing photo-generated carriers under electrical

stress and light irradiation1–4. This advantage enables the great
potential of optoelectronic memories in image capturing, con-
fidential information recording, and logic data processing3–5. Last
decades have witnessed the exponential advances of silicon-based
nonvolatile optoelectronic memories5–7. However, the continued
device miniaturization and the feasibility of integration into
flexible, wearable, and transparent circuits greatly restrict the
development of conventional silicon-based optoelectronic
memories8, 9.

Two-dimensional (2D) thin layered materials have been con-
sidered as promising building blocks for the next-generation
electronic and optoelectronic devices due to their extraordinary
and unique properties10, 11. The 2D thin layered structure enables
their immunity against the short channel effects9, 12, while the
mechanical strength and structural flatness allow their integration
into flexible and wearable circuits13, 14. In comparison to the
massive research of 2D materials-based photoconductors and
photodiodes15–19, the nonvolatile optoelectronic memories fab-
ricated by these materials are rarely investigated. Mechanically
exfoliated few-layer copper indium selenide (CuIn7Se11) was
firstly applied in 2D thin layered optoelectronic memory20,
however, the short retention time (approximately 50 s) and low
current switching ratio (less than 10) hindered its application in
image sensing. Monolayer molybdenum disulfide (MoS2) optoe-
lectronic memory was reported to possess long retention time
(approximately 104 s), while suffering from moderate switching
ratio (approximately 4700) and limited data storage capacity
(8 storage levels)21. Besides the memory devices fabricated by
single 2D crystals, graphene/MoS2 vertical heterostructure was
also realized with low switching ratio (less than two)22. Recently,
the 2D materials-based semifloating-gate field-effect-transistor
and metallic gold nanoparticles/crosslinked poly(4-vinylphenol)/
MoS2 heterostructure memories have been reported, demon-
strating high switching ratio, which are promising candidates for
thin layered multibit optoelectronic memory23–25. In order to
enhance the data storage capability of a single optoelectronic
memory, it is essential to increase the number of storage level,
which is typically reflected by the difference of reading currents
between a programmed state and an erased state1.

In addition to data storage capability, an optoelectronic
memory that can distinguish light wavelength is highly demanded
for color sensing in digital imaging26–28. Spectrum distinction in
the commercial color sensors is achieved by combining the
broadband inorganic semiconductor-based photodetectors with a
set of optical filters, including organic dye filters and plasmonic
color filters28–30. However, these filters not only increase the
architectural complexity and cost of the color sensors, but also
limit the pixel density in imaging system31, 32. Furthermore, the
image sharpness and color constancy would be degraded by the
interference effect of the optical filter31. In order to simplify
system structure, reduce fabrication cost, and improve image
quality, it is essential to design filter-free optoelectronic memory
in a single device with the same spectrum distinguishing cap-
ability as human eyes33.

Here, we report a multibit nonvolatile optoelectronic memory-
based on a hybrid structure of thin layered tungsten diselenide
(WSe2) and boron nitride (BN). The storage current of the WSe2/
BN optoelectronic memory can be effectively modulated by
backgate, resulting in a memory switching ratio approximately
1.1 × 106. This large switching ratio coupled with the optically
tunable characteristic ensures over 128 distinct storage levels (7
bit storage). The device is also highly reliable, as reflected by its
long retention time and large number of program-erase testing

cycles. Moreover, the wavelength distinguishing property of the
memory promises WSe2/BN heterostructure for the application in
filter-free color image sensor. This is illustrated by fabricating an
array of the heterostructure-based optoelectronic memory on
large area chemical vapor deposition (CVD) WSe2, in which a
specific image recording the three primary lights (red, green, and
blue) is created. The optoelectronic memory based on black
phosphorous (BP) and BN heterostructure is also demonstrated
with excellent data storage property.

Results
Operational mechanism of WSe2/BN optoelectronic memory.
Figure 1a shows the schematic of the hybrid WSe2/BN optoe-
lectronic memory fabricated in a field-effect-transistor (FET)
structure, in which monolayer WSe2 flake is transferred on top of
a BN flake. The crystallinity and thicknesses of both WSe2 and
BN are characterized by Raman and AFM, respectively (Supple-
mentary Figs. 1 and 2 and Supplementary Note 1). The hybrid
WSe2/BN FET demonstrates typical p-type transport behavior
(Fig. 1b), in good agreement with previous reports34.

Figure 1c shows the dynamic behavior of the WSe2/BN
optoelectronic memory in a single cycle, which includes
programming, readout, and erasing processes. The mechanism
of these three processes is illustrated in Fig. 1d–f, respectively.
Since WSe2 is intrinsically p-type, the current of the pristine
WSe2/BN FET in the positive gate regime is considerably low. In
order to program the memory, the device is illuminated by a light
pulse (duration 0.5 s, wavelength 405 nm, intensity 210 mW cm
−2) under negative gate pulse, which results in remarkable
excitation of electrons from the mid-gap donor-like states
(defects) of BN to its conduction band (Fig. 1d)35. The photon-
excited electrons in BN conduction band can transfer into WSe2
driven by the electric field, leaving the positive charges localized
in middle of the BN bandgap. It is worth noting that these
localized positive charges in BN can effectively screen the negative
gate and hence weaken the electric field exerting on WSe2 during
the programming process (Supplementary Fig. 3). The elimina-
tion of the effective electric field in BN symbolizes the
termination of the programming process. The positive charges
can be stored in BN even after removing the negative gate and
switching off the light, thereby serving as an effective local gate
and generating a stable electron-storage effect in WSe2. The
storage current Istore after programming is readout at a positive
gate under dark condition, as shown in Fig. 1e. When the gate
was switched to 50 V, a sharp rise of current was observed,
followed by stabilization at around 22 nA, which indicates the
nonvolatile property of the WSe2/BN memory (Fig. 1c).

The erasing operation is realized by applying positive gate on
WSe2/BN with light illumination (Fig. 1f). In this process, the
ionized positive defects in BN are filled by photon-excited
electrons from BN valence band, generating large quantity of
holes. Attributing to the external electric field, the generated holes
in BN move to WSe2. As a consequence, the localized positive
charges in BN are vanished and the device returns to its original
hole-domination transport behavior after erasing, as shown in
Fig. 1b. It is noted that the charge erasing is completed in 2 s,
indicating the fast switching of the WSe2/BN memory. Moreover,
the average erased current Ierase is read as 1.3 × 10−12 A (inset of
Fig. 1c), contributing to a large switching ratio with Istore/Ierase
approximately 1.7 × 104.

Programming gate controlled optoelectronic memory. Fig-
ure 2a shows the transfer characteristics evolution of the WSe2/
BN device under different programming gate (Vpro from 0 V to
−80 V). The on current in electron-domination regime gradually
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rises with increasing Vpro, which indicates a significant gate-
tunable electron-doping effect on WSe2. The dynamic behavior of
the WSe2/BN optoelectronic memory modulated by Vpro is also
investigated (Fig. 2b). When the Vpro is switched from 0 V to −80
V with −10 V step, the storage current increases stepwise, gen-
erating 9 clear storage states. The switching ratio at different Vpro

is obtained through extracting the storage current. As shown in

Fig. 2c, the switching ratio is largely enhanced from 3.8 × 103 to
1.1 × 106 when Vpro increases from 0 to −80 V. The larger
negative backgate can better stabilize the generated positive
charges in middle of the BN bandgap and facilitate the formation
of higher concentration of positive charges in BN, which can
result in more effective electron-doping and greater storage cur-
rent in WSe2.
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In order to evaluate the reliability of our optoelectronic
memory for practical application, we investigate both the
retention time and the cyclic program/erase endurance of our
device. Figure 2d shows the nonvolatile and data retention
property of the memory under different Vpro, in which highly
stabilized storage states are observed within the time range of
4.5 × 104 s. It is worth noting that the memory is kept isolated in
the absence of any external perturbation (no voltage and no light)
after programming and the storage currents in Fig. 2d were
extracted in a fixed interval of 3.1 × 103 s (Supplementary Fig. 4).
The retention curves are then extrapolated to 10 years, which is a
technical requirement for commercial nonvolatile memory
(Supplementary Fig. 5). Nearly half the stored currents are
expected to be maintained after 10 years with clearly

distinguished storage states, indicating the excellent data reten-
tion property of the WSe2/BN optoelectronic memory. Figure 2e
displays the repeatability of the program/erase process at different
Vpro (0, −20, −40, −60, and −80 V) for 200 cycles. The deviation
from the average value of the readout currents for each Vpro is less
than 10%, indicating that the programmed data is highly
reproducible. Given the ultralong retention time and robust
cyclic endurance, WSe2/BN optoelectronic memory demonstrates
potential for practical applications.

One hundred thirty current-level optoelectronic memory.
WSe2/BN optoelectronic memory demonstrates high switching
ratio, which indicates the possibility to achieve multibit memory
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with excellent storage capability. Figure 3a shows the dynamic
behavior of the memory under periodic exposures of light pulse
(130 pulses, tpro= 0.5 s, λ= 405 nm, P= 2 nW) at Vpro=−80 V,
and Fig. 3b–e are the enlarged regions I–IV, respectively. The
storage current rises progressively with increasing the pulse
number, a phenomenon represents the continual accumulation of
electrons in WSe2 as prolonging the light exposure on the
memory. One hundred thirty light pulses are employed in our
experiment, resulting in 130 effective storage states before the
current saturation (Supplementary Fig. 6 and Supplementary
Note 2). The reliability of the storage states is evaluated by
comparing the gaps of two neighboring states and their noise
(Supplementary Fig. 7 and Supplementary Note 3). The result
demonstrates that all the storage states for our WSe2/BN optoe-
lectronic memory are valid. We have repeated the program-erase
cycle for 20 times, and at least 130 valid storage levels were
achieved for all the 20 independent cycles, which suggests the
excellent repeatability of the WSe2/BN memory. The dynamic
behavior of the 1st, 10th, and 20th cycle is shown in Supple-
mentary Fig. 8 for illustration. The storage current rises pro-
gressively with increasing pulses, followed by a gradual saturation
when the pulse number goes beyond 130, which is consistent with
the result shown in Fig. 3a. The Y ratios for all the selected cycles
have also been plotted in Supplementary Fig. 8, indicating the
validity of the 130 states for each cycle by ensuring Y > 1. We
propose that the repeatability is mainly due to the similar erased
currents (in the magnitude of 10−12 A) after each cycle (Sup-
plementary Fig. 9). The same level of base current means the
same starting point for each independent cycle, which ensures the
high repeatability of the WSe2/BN memory. The weak fluctuation
of the storage currents can be attributed to the noise and the
instability of our laser pulse system. Therefore, we have suc-
cessfully fabricated a 130 current-level optoelectronic memory by
using 2D thin layered heterostructure with data storage capacity
over 7 bit (128 levels). It is worth mentioning that the number of
storage states in our memory is limited by the noise level. More
storage states could be achieved by further minimizing the noise.

Moreover, the memory device can be operated under the light
energy of 1 nJ (light power multiplies exposure time), indicating
its high light sensitivity.

Spectrum distinction of WSe2/BN optoelectronic memory.
Optoelectronic memory with the capability of wavelength dis-
crimination is particularly superior for the application of filter-
free color image sensor. Figure 4a shows the dynamic behavior of
the WSe2/BN optoelectronic memory illuminated by light with
wavelengths from 750 (1.65 eV) to 410 nm (3.02 eV). The cor-
responding readout current increases stepwise from 3 × 10−2 to
1.5 μA when the wavelength decreases from 750 to 410 nm. The
on current in the electron-domination regime after each pro-
gramming process also rises gradually when shortening the pro-
gramming wavelength (Fig. 4b), in good agreement with the
dynamic results. Moreover, the storage states at different wave-
lengths are highly distinct, indicating excellent wavelength dis-
tinguishing capability of the WSe2/BN optoelectronic memory. In
order to quantify the modulating ability of different wavelengths,
we define the programming rate (PR) as below,

PR ¼ Istore
Pdensity � S � tpro ð1Þ

Where Pdensity is the power density of light, S is the device area.
The relationship between PR and photon energy is plotted in
Fig. 4c. The monotonic increase of PR with photon energy sug-
gests that light with higher photon energy (shorter wavelength)
can induce greater amount of stable localized positive charges in
BN in a unit time. It is to note that the PR starts increasing
rapidly when the photon energy exceeds 2.6 eV. Previous works
have reported that the light absorption by the donor-like states in
BN is strongly enhanced at the photon energy around 2.6 eV,
originating from the nitrogen vacancy in BN crystal35–37. This
phenomenon is in good agreement with our experimental result.
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Integrated memory matrix for color image sensor. WSe2/BN
optoelectronic memory are capable of detecting and dis-
criminating lights with different wavelengths, indicating its
potential for the application of filter-free color image sensors.
Besides, in order to realize practical application, it is essential to
fabricate large quantity of image sensors in an integrated circuit.
The large area CVD grown WSe2 is used to fabricate the sensor
matrix, with its monolayer characteristic confirmed by the Raman
and PL spectra (Supplementary Fig. 10). Figure 5a displays a
false-colored SEM image of the integrated pixel matrix with 27
WSe2/BN image sensors arranged in a 3 × 9 array. The darker
color in the upper right part of the image is due to the slight
thickness variation of BN substrate (Supplementary Fig. 11). It is
worth noting that each pixel with channel length approximately 2
µm is able to function independently since they are isolated by e-
beam lithography (EBL) and deep reactive ion etch (RIE). In
order to investigate the color sensing property of an individual
pixel and the image capture ability of the matrix, three laser
beams (spot diameter 3 μm) with different wavelengths (red 638
nm, green 515 nm, and blue 473 nm) are used to expose the
selected pixels in sequence. Three pixel groups (group I: 11, 13,
21, 22, 23, 31, 33; group II: 14, 16, 24, 26, 34, 35, 36; and group III:
17, 19, 27, 29, 37, 39) record the three different lights, while the
other pixels are left unexposed. Figure 5b demonstrates the cor-
responding schematic of the matrix after selective exposures. The
image NUS is captured in the matrix, in which N, U, and S record
the three different lights (red, green, and blue), respectively. More
intriguingly, the three different pixel groups display three distinct
storage states with slightly fluctuated Istore 5, 12, and 31 nA,

respectively (Supplementary Fig. 12), which enables the realiza-
tion of a color image.

BP/BN optoelectronic memory. The heterostructure-based
optoelectronic memory can be applied to other 2D crystals. BP,
a 2D material, has been widely investigated recently due to its
superior optical and electrical transport properties17, 38, 39. The
BP/BN optoelectronic memory fabricated in the same config-
uration also demonstrates excellent data storage ability (Supple-
mentary Figs. 13–15 and Supplementary Note 4). The storage
states of the BP/BN memory can be effectively modulated by light
wavelength and the device possesses high reliability (Supple-
mentary Figs. 16 and 17), which are similar to the WSe2/BN
memory. However, the switching ratio of the BP/BN memory
(around 415) is lower than that of the WSe2/BN device, which is
mainly due to the large off current of our BP FET. It is possible to
further improve the switching ratio by selecting thinner BP
flakes38. Unexpectedly, the BP/BN heterostructure is particularly
sensitive to weak light. An ultrahigh photo responsivity
approximately 1.2 × 107 A W−1 is observed for the device,
making BP/BN heterostructure a promising candidate for pho-
todetector application (Supplementary Fig. 18 and Supplementary
Note 5).

Discussion
We have demonstrated a multibit nonvolatile optoelectronic
memory-based on the 2D thin layered WSe2/BN heterostructure.
The programming and erasing processes of the memory are
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controlled by tuning the polarity of the backgate. During the
programming process, the photon-generated electrons from the
mid-gap donor-like states of BN transfer into WSe2 under
negative gate, and lead to the storage of localized positive charges
in middle of the BN bandgap, which can serve as effective local
gate to modulate the transport behavior of WSe2. During the
erasing process, by applying positive gate, the localized positive
charges stored in BN recombine with the photo-excited electrons
from the BN valence band, thereby eliminating the local gating
effect and restoring the original transport behavior of WSe2. The
switching ratio of the memory can reach up to 1.1 × 106 under
Vpro=−80 V, ensuring 130 distinguishable storage states. The
memory device exhibits excellent performance for data retention
(over 4.5 × 104 s) and cyclic endurance (exceeding 200 cycles).
Moreover, the WSe2/BN device is able to discriminate wave-
lengths in the full visible spectrum, indicating its potential to be
used as filter-free color image sensor. This concept is further
supported by the realization of WSe2/BN pixel matrix which
captures a specific image recording the three primary colors. The
discovery of 2D thin layered heterostructure-based optoelectronic
memory provides a simple method to achieve multibit memory
device. The realization of pixel matrix indicates the possibility of
fabricating 2D thin layered image sensors in integrated circuit,
which paves the way for the next-generation optoelectronic
memories.

Methods
Fabrication and characterization of optoelectronic memory. The hybrid struc-
ture of WSe2 and BN was achieved by a dry transfer method40. Firstly, few-layer
BN flakes with thickness around 10 nm were mechanically exfoliated onto 300 nm
SiO2/Si substrate. In the following, the WSe2 flake exfoliated on a transparent
polydimethylsiloxane (PDMS) substrate was aligned on the BN flake using optical
microscope. After the alignment, the PDMS film was pressed on the Si substrate for
2 min followed by a slow lift up, during which the WSe2 flake was transferred onto
the BN flake. The BP/BN heterostructure was obtained by the same dry transfer
method. To avoid oxidation of the BP flakes, the experiment was carried out in a
glovebox. Standard EBL was employed to define the memory channel and the
electrodes (Ti/Au) was deposited by thermal evaporation. After lift-off, the memory
device was loaded into a vacuum chamber (pressure below 10−7 mbar) for char-
acterizations. The optoelectronic measurements were conducted by using an Agi-
lent 2912A source measure unit. Four laser beams (638, 515, 473, and 405 nm) and
an exon light source configured with a monochromator were used to program or
erase the memories. The light density was calibrated by THORLABS GmbH (PM
100A) power meter.

CVD WSe2 growth. A one-zone tube furnace was used to grow WSe241. Hundred
milligram Se powder (Sigma-Aldrich, 99.5%) was loaded at upstream, and kept at
300 °C during growth. A mixture of WO2.9 (30 mg, Alfa Aesar, 99.99%) and NaCl

(10 mg, Sigma-Aldrich, 99.5%) was loaded at the center of reaction zone. The
temperature of reaction zone gradually increased to 830 °C in 22 min, and cooled
down to room temperature after staying at 830 °C for 15 min. Pure Ar and H2 (90/
10 sccm) were used as carrying gas.

Fabrication of 2D pixel matrix. CVD WSe2 was transferred onto BN flake by a
wet transfer method42. Firstly, the as-grown WSe2 on Si substrate coated with 300
nm SiO2 was spin coated by polymethyl methacrylate (PMMA). The Si substrate
was then left in 2 M KOH solution for several hours, yielding PMMA coated WSe2
film. The WSe2/PMMA film was washed in deionized water for three times before
transferring onto exfoliated BN flake. EBL was used to pattern pixel matrix on the
large area heterostructure followed by RIE to isolate each pixel. The electrodes were
then patterned using standard EBL, thermal deposition, and lift-off.

Data availability. The data that supports the plots within this paper and other
findings of this study are available from the corresponding authors upon reason-
able request.
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