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A B S T R A C T

The improvement of productivity and soil organic matter is a central issue for the restoration of degraded land.
Belowground net primary productivity (BNPP) is a major source of soil organic matter. Therefore, understanding
BNPP dynamics is crucial to improving our knowledge of belowground C allocation and storage in grasslands.
However, how tillage and haymaking practices affect BNPP and belowground C allocation remains poorly un-
derstood. To investigate effects of tillage and haymaking practices on BNPP and root fraction (fBNPP), a field
experiment set within three fenced areas, one each for maize cultivation, artificial grassland, and natural
grassland, was carried out during 2012–2014. The treatments were: maize tillage; maize no-tillage, keeping
residues; maize no-tillage, removing residues; artificial grassland, no haymaking; artificial grassland, hay-
making; natural grassland, no haymaking; and natural grassland, haymaking. The ingrowth donuts method was
used to determine BNPP. Across the years, BNPP varied from 220 to 1331 g m−2. Tillage and haymaking
practices significantly increased BNPP and fBNPP in maize cultivation and grassland managements, respectively,
suggesting that more C is allocated to soil with BNPP in those land-use practices. On average, fBNPP ranged from
0.25 to 0.54 and was significantly higher in 2014 than in 2012 and 2013, irrespective of the practices, indicating
that precipitation is the controlling factor for determining C allocation between belowground and aboveground.
Our findings highlight that tillage and haymaking practices can enhance BNPP and belowground C allocation.
Therefore, from the perspective of the whole plant, they should be considered as feasible management practices
for restoration of degraded grassland.

1. Introduction

Net primary productivity (NPP) is composed of aboveground net
primary productivity (ANPP) and belowground net primary pro-
ductivity (BNPP). It is an important component of the global carbon
budget and is used as an indicator of ecosystem function (Scurlock
et al., 1999). In semi-arid grassland ecosystems, BNPP is greater than
ANPP (Milchunas et al., 2005; Gao et al., 2008). Since approximately
60% of annual C originates from plants, BNPP constitutes a major
source of organic matter in soil (Milchunas and Lauenroth, 2001; Chen
et al., 2006; Li et al., 2011). Therefore, understanding BNPP dynamics
is crucial to improving our knowledge of belowground C allocation and
storage in grasslands.

There is a lack of information on the responses of BNPP and root
fraction to different land-use practices due to methodology and

difficulty of root research. Previous results from various studies across
the world demonstrated that root biomass varied among grasslands. For
example, in Central and Northern American grasslands, root biomass
increased with increasing water input (Li et al., 2011; Fahnestock and
Delting, 1999), whereas the results from an alpine meadow of India
showed a decline of root biomass after a two-year application of N (Ram
et al., 1991). In Inner Mongolian grasslands, clipping and removing
aboveground biomass and leaves through grazing dramatically changed
species composition and significantly decreased ANPP (Zhou et al.,
2006) and BNPP (Gao et al., 2008) Unfortunately, knowledge of BNPP
and root fraction is still quite limited compared to ANPP, despite the
tremendous importance of belowground ecological processes
(Milchunas and Lauenroth, 2001; Wu et al., 2011; Xu et al., 2012).

In China, grasslands occupy more than 400 million ha in compar-
ison to 120 million ha of arable land, and they play an important role
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for millions of people (Chen and Wang, 2000). The Songnen grassland,
located in northeastern China, has been facing serious degradation due
to anthropogenic activities and natural phenomena (Kang et al., 2007;
Yi et al., 2012). Research has shown that over the past three decades,
more than 30% of Songnen grassland has been changed into farmland,
which may have consequences for ecosystem C processes and the cycle
of nutrients (Liu et al., 2009; Yu et al., 2014; Diabate et al., 2015).
Tillage and haymaking practices are important types of land-use man-
agement in grassland ecosystems. A suitable selection of tillage can
improve the availability of water for yield performance by enhancing
the storage capacity in soil water, reducing evaporation from the soil
and allowing better development of root systems (Lampurlanés et al.,
2001). Merrill et al. (1996) observed that spring wheat roots penetrate
deeper into soil under no-tillage than under spring disking, with a
higher density of root length due to cooler soil and higher water con-
servation in the near-surface area. Nevertheless, the practice of no-til-
lage can progressively increase mechanical resistance of the ground
surface, limiting the distribution of roots within different soil profiles
(Mosaddeghi et al., 2009). Roots are thinner and longer under tilled
compared to no-tilled soil, and they are generally more profuse in tilled
than in no-tilled soils at all depths (Karunatilake et al., 2000). The ef-
fects of haymaking on belowground productivity are different from
tillage. Haymaking can accelerate the increase in carbon allocation to
shoots, promote change in light regime and nutrient input, and create
gaps and soil disturbance (Schaffers et al., 1998; Bakkar, 1989). As the
constant supply of nutrients through atmospheric deposition can in-
crease nutrient concentration, haymaking has become a significant tool
in counteracting or reversing the changes in plant species decomposi-
tion of the vegetation (Schaffers et al., 1998).

To date, neither information about BNPP based on the ingrowth
donut method nor information about effects of tillage and haymaking
practices on BNPP and root fraction (fBNPP) has been available for the
Songnen grassland. Therefore, the present study was performed to in-
vestigate effects of tillage and haymaking practices on BNPP and root
fraction (fBNPP) at a site with three main management practices, i.e.,
cultivation, artificial grassland, and natural grassland. Specifically, two
questions should be answered: (1) Can different management practices
of tillage and haymaking speed up BNPP restoration, increase below-
ground C allocation, and further enhance soil organic matter? (2)
Which land-use management is the best feasible approach for grassland
restoration from the point of view of the whole plant? Understanding
the effects of tillage and haymaking practices on BNPP and fBNPP could
improve our knowledge of the terrestrial C cycle, build a more complete
theory framework, and provide suggestions for land-use practices and
sustainable grassland ecosystems restoration.

2. Material and methods

2.1. Study site

2.1.1. Site description
This field experiment was carried out at Grassland Farming

Research Station of Northeast Institute of Geography and Agroecology,
Chinese Academy of Sciences at the Songnen grassland, Changling
County, Jilin Province, Northeast China. The Songnen grassland has an
area of 300 ha and extends from 44° 34′ to 44° 38′ N and from 123° 30′
to 123° 35′ E. The study site is relatively flat, with an elevation about
145 m above sea level and characterized by a temperate, semi-arid
continental monsoon climate. The climate is hot and wet in summer but
very dry and cold in winter, with a mean temperature of 23 °C in July
and −20 °C in January. The annual average air temperature is between
4.9 °C and 6.4 °C, and the frost-free period is about 140–160 days. The
mean annual precipitation is around 450 mm, with 70% falling from
June to September. The three experimental years were distinct in terms
of precipitation (Supplemental Fig. S1). 2012 was a wet year with
481 mm of rainfall between June and September and an annual

precipitation of 525 mm, while rainfall in 2013 was relatively low in
terms of amount (355 mm) but with a clear seasonal distribution and
most of the rain events occurring in July and August. The year 2014 had
the driest season, with an annual precipitation of 248 mm. Mean annual
temperature in 2012–2014 was between 5.15 °C and 6.96 °C
(Supplemental Fig. S1). The soil type is meadow saline-alkali, with high
basic salt content. The pH of the soil varied from 7.5 to 10. The
dominant native species were Leymus chinensis (Trin.) Tzvel., Chloris
virgata Sw., and Puccinellia spp (Yu et al., 2014). Community coverage
was 60%-90%, with 100–200 g m−2 standing biomass.

2.1.2. Experimental design
The experiment includes three main types of management, i.e.,

maize cultivation; artificial grassland; and natural grassland. Maize
cultivation management was divided into: maize tillage (MT); maize
no-tillage, keeping residues (MNTKR); and maize no-tillage, removing
residues (MNTMR). Artificial and natural grassland management was
divided into no-haymaking (NHM) and haymaking (HM) treatments.
Therefore, in each block (45 m in length, 11 m in width), there were
seven treatments: MT; MNTKR; MNTMR; artificial grassland, no hay-
making (AGNHM); artificial grassland, haymaking (AGHM); natural
grassland, no haymaking (NGNHM); and natural grassland, haymaking
(NGHM). A total of four blocks were established, with four replications
for each treatment. Artificial grassland was composed totally (100%) of
the perennial rhizome species L. chinensis, and the natural grassland
was about 30% constituted of weeds species (Carex duriuscula and
Phragmites australis) and about 40% of C. virgata. At the end of each
growing season, all plants in maize cultivation management were har-
vested and cut down, with residues left until the early beginning of next
growing season. During the same period, plants in haymaking plots of
both artificial and natural grasslands were cut down to 5 cm height and
taken away for hay, while in the no-haymaking plots, plants were kept
intact throughout the entire study period. At the early beginning of
following growing season, the first plot of maize cultivation manage-
ment was completely tillage, while the second and third plots were not
tillage. In the second plot, all maize and plant residues were kept,
whereas in the third plot, residues were removed. In the haymaking
plots, all plants residues were removed.

2.2. Plant samples collection and measurements

2.2.1. Aboveground net primary productivity (ANPP), belowground net
primary productivity (BNPP), net primary productivity (NPP), and root
fraction (fBNPP)

During the three years, plants were harvested when aboveground
biomass attained its peak value between August and September. For
each treatment, all the plants within an area of 1 m × 1 m with three
replicates were collected by cutting at ground level and the above-
ground biomass was considered approximately equal to the above-
ground net primary productivity (ANPP). For maize cultivation man-
agement, only one replicate was considered. All samples were dried at
75 °C for 48 h.

The ingrowth donut method (Milchunas et al., 2005) was performed
to determine BNPP (g m−2). In autumn 2011, three PVC tubes were
installed in every treatment for root collection throughout the entire
experiment period. Roots were collected at the end of each growing
season. Briefly, during root collection, PVC tubes were extracted from
the holes. Soils and nylon mesh in the holes were collected, bagged,
labeled, and taken to the laboratory for separation. All roots, residual
impurities contained in soils, and nylon mesh were separated manually.
Clean soil and nylon mesh were then returned to the original holes for
the next sampling. Collected roots were handwashed and dried at 75° C
for 48 h, and then weighed. BNPP was calculated as:

= −BNPP Δx π R R/ ( )1
2

2
2
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Where, Δx: Total weight of root in the PVC column; π = 3.14; R1: Ra-
dius of steel cylinder = 8.5 cm; R2: Radius of PVC tube = 7.5 cm

Net primary productivity NPP (g m−2) was determined by summing
ANPP and BNPP:

= +NPP ANPP BNPP

The fraction of total NPP allocated to belowground (fBNPP) (Hui and
Jackson, 2006) was calculated as follows:

= +f BNPP ANPP BNPP/( )BNPP

2.2.2. Soil moisture content and soil organic matter (SOM) measurement
Soil moisture content (m3 m−3) was determined in the 0–10 cm soil

layer using a portable “Campbell Scientific TDR 100 (Time Domain
Reflectometry, Germany)" with a probe length of 7.5 cm. The mea-
surement was taken at intervals of 15 days. Ten measurements were
performed in each treatment in the vicinity of PVC tubes and the
average value was used in analysis. For soil organic matter (SOM), soil
samples were taken to a depth of 30 cm from five random locations
within each treatment. The soil bulk density was similar for all treat-
ments. Soil samples were put into plastic bags and stored in shade be-
fore being transported to the laboratory for measurement. All samples
were air-dried, separated from the visible plant materials, and ground
to pass first through a 2-mm sieve and then though a 0.49-mm sieve for
SOM analysis. An amount of 0.5 g sieved soil was taken for analysis and
a modified Mebius method was used to determine SOM.

2.3. Data analysis

Statistical analyses were performed using SPSS 17.0 (SPSS Inc,
Chicago, IL, USA). Two-way analysis of variance (ANOVA) was used to
analyze the effects of years, treatments, and their interaction on ANPP,
BNPP, NPP, and fBNPP. One-way ANOVA was performed to examine the
effect of different treatments on soil moisture and soil organic matter.
Correlation and regression analysis were conducted with SigmaPlot
10.0, while a post hoc least significant difference (LSD) test was used to
compare the mean values within a patch. The significant difference
level was at P< 0.05.

3. Results

3.1. Soil moisture content (SMC)

Soil moisture content (SMC) of all treatments had a similar seasonal
dynamic and peaked at different levels across the three years of study
(Fig. 1). In 2012, SMC peaked three times–in late June, mid-July, and
mid-September (Fig. 1A). In 2013, SMC showed a similar pattern, with
the peaks occurring in late May, mid-July, and mid-September
(Fig. 1B). However, in 2014, SMC peaked twice, in late May and the
middle of September (Fig. 1C). Overall, there was a trend showing that
the highest mean SMC was obtained in MT and the lowest was found in
AGHM treatments (Fig. 1A, B, C). Across the three growing seasons,
2012 showed the highest mean SMC (m3 m−3) compared to those in
2013 and 2014 (2012: 31.57 ± 1.56; 2013: 19.58 ± 0.88; 2014:
15.85 ± 0.61).

3.2. Aboveground net primary productivity (ANPP) and net primary
productivity (NPP)

There was a strong interaction between year and treatments af-
fecting ANPP (P < 0.001, Table 1). During the three experimental
years, ANPP ranged from 391 to 1822 g m−2. There was a trend with
MT leading to the highest ANPP value (1822 g m−2), whereas the
lowest value (391 g m−2) was observed in the HGHM treatment
(Fig. 2a). With respect to management individually and across the
whole study period, ANPP decreased significantly (P < 0.05) from MT

to MNTMR in maize cultivation managements, while in both artificial
and natural grassland management, ANPP decreased from HM to NHM
treatments. In general, ANPP decreased from 2012 to 2014 (2012:
880.48 g m−2, 2013: 828.80 g m−2, and 2014: 652.95 g m−2) (Fig. 2a).

Like ANPP, NPP was significantly affected (P < 0.05) by treat-
ments over the three years (Table 1). NPP decreased significantly
(P < 0.05) from MT to MNTMR in maize cultivation management and
also decreased from AGNHM to AGHM in artificial grassland manage-
ment over the three experimental years (Fig. 2b). However, as to the
natural grassland management, haymaking significantly decreased NPP
in 2012 and 2014, while it significantly increased NPP in 2013
(P < 0.05) (Fig. 2b).

3.3. Belowground net primary productivity (BNPP) and root fraction
(fBNPP)

There was no significant interactive effect between year and treat-
ment on BNPP (P= 0.710, Table 1). On average, BNPP varied from 254
to 1331 g m−2. Overall, MT (1331 g m−2) tended to have the highest
BNPP value, while the lowest was found in AGNHM (220 g m−2).
Across the different treatments, BNPP decreased significantly
(P < 0.05) from MT to MNTMR in maize cultivation management,
whereas BNPP was higher in the haymaking treatment than the no-
haymaking treatment in both artificial and natural grassland

Fig. 1. Seasonal dynamics of soil moisture content (mean ± SE) at different treatment
patterns in 2012 (A), 2013 (B), and 2014 (C). The insert figures show the average soil
moisture content in different treatments during the growing seasons. The treatments in-
clude: MT (maize tillage), MNTKR (maize no-tillage, keeping residues), MNTMR (maize
no-tillage, removing residues), AGNHM (artificial grassland no haymaking), AGHM (ar-
tificial grassland, haymaking), NGNHM (natural grassland, no haymaking), and NGHM
(natural grassland, haymaking). Means with the same letter are not significantly different
(P > 0.05).
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managements (Fig. 3a). Natural grassland (323 g m−2) had more BNPP
than artificial grassland (280 g m−2). In terms of years, BNPP was
higher in 2012 than in 2013 and 2014.

As with BNPP, there was no significant interactive effect between
year and treatments on fBNPP (P = 0.141, Table 1). Root fraction (fBNPP)
ranged from 0.25 to 0.54 during the whole experimental period.
Overall, fBNPP in MT (0.48) was the highest, while the lowest value was
found in AGNHM (0.28). fBNPP was greater in 2014 than in 2013 and
2012, respectively.

3.4. Soil organic matter (SOM)

Soil organic matter (SOM, g kg−1) in both 0–10 cm and 10–20 cm
soil profiles varied across treatments (Fig. 4). In general, the highest
concentration (8.7 g kg−1) was observed in MT in 10–20 cm soil pro-
file, whereas the lowest concentration (4.3 g kg−1) was found in AGHM
in 0–10 cm soil profile. SOM decreased significantly (P < 0.05) from
MT to MNTMR, AGNHM to AGHM, and NGNHM to NGHM, respectively
(Fig. 4). For artificial grassland management, there was no significant
effect of the haymaking practice on SOM.

3.5. Correlation comparisons

There was a significant positive relationship between SMC and
ANPP (r2 = 0.333, P < 0.0001), BNPP (r2 = 0.222, P < 0.0001),
whereas no significant correlation was found between SMC and fBNPP

Table 1
Results of two-way ANOVA analysis for effects of Year (Y), Treatment (T) and their interaction (Y x T)on aboveground net primary productivity (ANPP), belowground net primary
productivity (BNPP), net primary productivity (NPP) and root fraction (fBNPP).

Factors ANPP BNPP NPP fBNPP

df F Sig. F Sig. F Sig. F Sig.

Y 2 52.910 < 0.001 30.114 <0.001 16.949 < 0.001 2.292 0.109
T 6 183.368 < 0.001 536.670 <0.001 103.845 < 0.001 25.076 <0.001
Y x T 12 8.604 < 0.001 0.737 0.710 2.057 0.033 1.519 0.141

Fig. 2. Aboveground net primary productivity (A) (ANPP, g m−2) and net primary pro-
ductivity (B) (NPP, g m−2) (mean ± SE), of different treatments across the experimental
years. The treatments are as indicated in Fig. 1. The different lowercase letters represent
significant different (P < 0.05) between treatments in the same year. The different ca-
pital letters represent significant different (P < 0.05) between years within the same
treatment.

Fig. 3. Belowground net primary productivity (a) (BNPP) and root fraction (fBNPP) (b)
(mean ± SE) of different treatments during study periods. The different treatments are
as indicated in Fig. 1. Means with the same letter are not significantly different
(P > 0.05).

Fig. 4. Soil organic matter (SOM) of different treatments at 0–10 cm and 10–20 cm soil
depths. Means with the same letter are not significantly different (P > 0.05).

B. Diabate et al. Soil & Tillage Research 175 (2018) 62–70

65



(r2 = 0.017, P = 0.71) (Fig. 5). fBNPP and BNPP were significantly po-
sitively correlated (Fig. 6) (r2 = 0.318, P < 0.0001), but there was no
significant relationship between fBNPP and ANPP (ANPP: r2 = 0.066,
P = 0.018) (Fig. 6). The correlation between SOM and ANPP, BNPP,
NPP in both 0–10 cm and 10–20 cm soil profiles was analyzed by re-
gression analysis (Fig. 7). As for ANPP, there was significant positively
correlated with SOM in both profiles (0–10 cm, r2 = 0.376, p = 0.
0001; 10–20 cm, r2 = 0.234, p = 0.009). BNPP was significantly posi-
tively correlated with SOM in both profiles (0–10 cm, r2 = 0.403,
p < 0.0001; 10–20 cm, r2 = 0.435, p < 0.0001). NPP was also sig-
nificantly positively related to SOM in both 0–10 cm soil profiles
(r2 = 0.414, p < 0.0001) and 10–20 cm soil profiles (r2 = 0.353,
p = 0.001).

4. Discussion

4.1. Effects of tillage and haymaking practices on soil moisture

Water availability, whether precipitation or soil moisture content
(SMC), has been widely used as the key controlling factor for grassland
productivity (Niu et al., 2008; Liu et al., 2009; Han et al., 2011). In this
study, the positive correlation between SMC and ANPP, and also be-
tween SMC and BNPP throughout multifactor linear regression analyses
(Fig. 5), confirmed that water is the dominant factor controlling
grassland productivity. This result is also in agreement with previous
studies showing that grassland productivity is dependent on SMC
(Knapp and Smith, 2001; Weng and Luo, 2008). In addition, our results
showed that SMC decreased from MT to MNTMR, through MNTKR in
maize cultivation management and from no-haymaking to haymaking
treatments in both artificial and natural grassland managements (Fig. 1,

insert A, B, C). Previous studies reported that tillage had a significant
effect on SMC by affecting the amount of infiltrating precipitation water
into soil and evaporative water losses (Gao et al., 1999; Tremberth
et al., 2003; IPCC, 2007; Xu et al., 2013). In tillage treatments, soil was
well structured, less compacted, and therefore prepared to retain the
precipitation efficiently, leading to an increase in water storage. Eva-
poration from the soil is an important component of evapotranspiration
and can be regulated by management of the surface, such as through
tillage, maize residue envelopment, and mulching, which can change
soil water content (Wang et al., 2007; Guan et al., 2015). In the present
study, our results revealed that in no-tillage treatments, SMC was
greater in MNTKR than in MNTMR treatment (Fig. 1 insert).
Monneveux et al. (2006) reported that keeping maize residues on the
ground improved the capacity of soil to intercept rainfall, reduced soil
temperature, and therefore increased SMC, as observed in the present
study. Furthermore, the increase of SMC in no-haymaking treatments
consistently matched previous studies, likely due to the availability of
water and nutrients, as reported in the studies by Sherry et al. (2008)
and Xu et al. (2012) that haymaking by removing aboveground biomass
reduced soil moisture content due to exposing the grassland to light,
radiation, and evaporation.

4.2. Effects of tillage and haymaking practices on ANPP and NPP

Our results indicated that tillage and haymaking practices directly
affected grassland aboveground net primary productivity (ANPP).
ANPP and NPP decreased markedly from MT to MNTMR in the maize
cultivation management (Fig. 2). Previous studies concluded that til-
lage, by breaking soil compaction, promoted soil water infiltration ca-
pacity, root growth, and penetration, and finally enhanced ANPP and

Fig. 5. Correlation between soil moisture content and ANPP (A), BNPP (B), fBNPP (C) over the three experimental years. For A: y = 11.0374 + 0.0142 x, r2 = 0.335, p < 0.0001; B: y = -
15.872 + 0.013 x, r2 = 0.318, p < 0.0001.

Fig. 6. Relationship between root fraction (fBNPP) and ANPP (A) and BNPP (B). For B: y = 0.5645 + 0.0001x, r2 = 0.3186, p < 0.0001.
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NPP (Pikul and Aase, 1999; Pikul and Aase 2003; Guan et al., 2015).
Our results are in agreement with those studies. Moreover, maize re-
sidues on the soil surface protect the soil from evaporation and erosion,
and provide substrates for soil microorganisms, which accounts for
higher yield (Dong et al., 2009). For artificial and natural grasslands,
the results showed that ANPP varied from 462 to 684 g m−2 and
reached 640 g m−2 and 567 g m−2 in the artificial and natural grass-
land managements, respectively. Previous studies have shown that
ANPP varied from 50 to 250 g m−2 with an average of 150 g m−2 in
natural conditions (Bai et al., 2004); however, ANPP ranged from
568 g m−2 to 1028 g m−2 at moderately and heavily grazed sites, under
condition of sufficient water and nitrogen addition, respectively, in the
Inner Mongolian semi-arid steppe (Li et al., 2011). According to Li et al.
(2014) and Diabate et al. (2015), ANPP ranged from 100 to 730 g m−2

in a patchy natural Songnen grassland, and our data fall in that range.
Our results revealed that haymaking increased ANPP due most likely to
the increase in carbon allocation to leaf, nutrient input, and/or change
in life regime (Han et al., 2011). ANPP was higher in the artificial
grassland than in the natural grassland, likely due primarily to species
composition. Artificial grassland was 100% composed of the native
perennial rhizomatous species L. chinensis, which is the dominant spe-
cies in the Songnen grassland (Zhou et al., 2006). The high increase of
ANPP in artificial grassland is mainly due to the capacity of L. chinensis
to tolerate harsh conditions, the small seed size, which contributes to
the promotion of more seeds, the rapid maturity of seed, and early fall
(Donath and Eckstein, 2012; Miglécz et al., 2013; Li et al., 2014). It is
widely known that species with larger seeds mature and fall later,

which reduces their possibility to reach soil, and they therefore have
less opportunity to germinate and grow (Li et al., 2014). Furthermore,
L. chinensis is a typical clonal grass with great economic value and high
resistance to various stresses. It has been reported that this species
generally tolerates the damage of defoliation with its ability for com-
pensatory or over-compensatory growth (Zhao et al., 2008). The higher
ANPP in NHM compared to HM treatments may be attributable mainly
to the presence of optimal conditions for germination and growth. Litter
can provide optimal conditions for the soil in no-haymaking treatment
by maintaining water availability and by decreasing evaporation, which
in turn increases productivity. It has been widely reported that a rea-
sonable amount of litter facilitates germination and vegetation growth
by providing optimal conditions during extreme environmental condi-
tions (Brooker et al., 2008; Eckstein et al., 2012; Javier et al., 2012; Li
et al., 2014).

4.3. Effects of tillage and haymaking on BNPP

Belowground net primary productivity (BNPP) is expected to play a
large role in the availability of resources compared to ANPP (Li et al.,
2011). In the present study, BNPP varied with different managements
and decreased significantly from MT to MNTMR in maize cultivation
management, whereas it increased markedly from no-haymaking
(NHM) to haymaking (HM) treatments in both artificial and natural
grassland managements (Fig. 3a). Furthermore, BNPP was higher in
2012 than in 2013 and 2014, probably due to the high precipitation
amount that was 1.47 and 2.11 times greater in 2012 than in 2013 and

Fig. 7. Relationship between SOM and ANPP, BNPP,
NPP at 0–10 cm and 10–20 cm soil depths. For ANPP:
((0–10 cm); y= -18.434+ 145.4x, r2 = 0.376,
p = 0.0001, (10–20 cm) y= 300.289+ 80.35x,
r2 = 0.234, p = 0.009), for BNPP: ((0–10 cm); y= -
451.76+ 172.54x, r2 = 0.403, p < 0.0001,
(10–20 cm); y = -256.7+ 125.56x, r2 = 0.435,
p < 0.0001); for NPP: ((0–10 cm); y= -
470.2+ 317.95x, r2 = 0.414, p < 0.0001,
(10–20 cm); y = 43.57+ 205.9x, r2 = 0.353,
p = 0.001).
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2014, respectively (Supplementary Fig. S1). Previous studies reported
that precipitation promoted plant growth in relatively dry conditions
(Sala et al., 1988; Huxman et al., 2004; Xu et al., 2013). Our results
showed positive effects of tillage on plant root growth and BNPP, and
this finding is consistent with the previous studies. Guan et al. (2015)
found that plow tillage improved the spatial and temporal patterns of
root system distribution, and that root length density was positively
correlated with grain yield. Similarly, Pikul and Aase, (1999) and Pikul
and Aase (2003) reported that sub-soiling reduced soil compaction and
enhanced root growth, yield, and water use efficiency (Bennie and
Botha, 1986). In addition, Guan et al. (2015) reported that no-tillage
practice can delay plant growth and maturity, as was typically observed
in this study. Furthermore, BNPP in natural grassland was greater than
in artificial grassland, probably due to their species composition. Nat-
ural grassland was composed of annual and biannual species such as
Salsola collina Pall, Chenopodium glaucum L., Artemisia annua L., Sonchus
arvensis L., Setaria viridis (L.) Scop. Considered opportunistic species,
they have the ability to rapidly occupy space by displaying strong ra-
mets when resources are available (Gao et al., 2011; Diabate et al.,
2015). However, in both artificial and natural grasslands, haymaking
practice significantly increased BNPP (Fig. 3a), and this is probably due
to the compensatory growth mechanism effects. Previous studies re-
ported that after cutting or clipping of aboveground biomass, plants
may adjust their growth through compensatory growth that can sti-
mulate belowground biomass production due to increased sink strength
(McNaughton et al., 1998; Xu et al., 2012). Moreover, haymaking can
change plant physiological processes and allocation patterns, leading to
the increase of BNPP, as previously reported by Xu et al. (2012) and
confirmed in this study.

4.4. Effects of tillage and haymaking on root fraction (fBNPP)

Root fraction (fBNPP) is a vital parameter in plant ecology and evo-
lution as well as in C cycling models (Enquist and Niklas, 2002; Ågren
and Franklin, 2003; Hui and Jackson, 2006). In the present study, fBNPP
was higher in 2014 than in 2012 and 2013, due mainly to lower pre-
cipitation and higher temperatures occurring in that period. Previous
studies reported positive effects of warming on fBNPP in grassland eco-
systems. For example, Xu et al. (2012) reported that warming re-
markably increased fBNPP, indicating that plants were adjusting their
allocation patterns to maximize their relative growth rate. Warming
induced dry conditions increasing fBNPP when plants allocated pro-
portionally more biomass to roots in response to low moisture condi-
tions, based on the optimal partitioning theory (Bloom et al., 1985;
Chapin et al., 1987), which is supported by several studies (Hui and
Jackson, 2006; McCarthy and Enquist, 2007). The estimates of fBNPP in
this study varied from 0.25 to 0.54 with a mean of 0.38. The values
were smaller compared to the estimates of data compiled across the
world’s grasslands, which range from 0.40-0.86 with a mean of 0.71
(Hui and Jackson, 2006). This is probably attributable to sampling and
calculation methods: our estimation was based on ingrowth donut
methods for root collection, while the previous studies either used soil
auger methods to get total belowground biomass, then estimate or
calculate BNPP (Hui and Jackson, 2006; Gao et al., 2008), or else used
14C dilution methods for BNPP (Milchunas and Lauenroth, 1992). The
estimated fBNPP in this study may be underestimated due to biases of
method performed. The shallow depth of donuts (30 cm) may be one of
the main reasons for the fBNPP underestimation, even though it has been
stated that 85% of roots are concentrates in 0–20 cm soil depth in
grassland ecosystems (Jackson et al., 1996). However, we found that
there are parts of roots in deep soil layers, especially in maize culti-
vation management, that will not be covered by this method, thus
leading to the underestimation fBNPP. As with all methods for collecting
root samples, the ingrowth donuts method also has some inherent
disadvantages that may underestimate BNPP (Milchunas et al., 2005).
For example, plants with a principal vertical spatial orientation of roots

tend to grow vertically to the ingrowth walls, resulting in an under-
estimation of root production when the plants are horizontally estab-
lished to the ingrowth structure. Also, the diameter of the ingrowth
donut in a link to potentially full available area may constitute a factor
influencing estimate of root production. Previous studies reported that
the diameter of an ingrowth donut greater than the horizontal root
spread of a species would have some area without any root biomass, yet
that area would still be included in the calculation, resulting in un-
derestimation of production in root occupied area (Milchunas et al.,
2005; Milchunas, 2009). Here, we need to mention that this is the only
feasible method of direct measuring BNPP in this salt alkali soil, al-
though ingrowth donuts can induce some bias. Our results also showed
that fBNPP decreased from MT to MNTMR in maize cultivation man-
agement probably due to the optimal conditions caused by tillage (see
BNPP discussion). In both artificial and natural grassland, haymaking
led to the highest fBNPP value (Fig. 3b). Similar studies have reported
positive effects of cutting aboveground biomass on root fraction by
disturbing the balance between ANPP and BNPP (Gao et al., 2008; Xu
et al., 2012), leading to the increase of fBNPP. After haymaking, soils are
more exposed to evaporation, leading to water loss, which can stimu-
late root growth by capturing more water in deeper soil, as supported
by previous studies that reported plants growing at low water avail-
ability exhibiting stronger growth in BNPP compared to those under
favorable water conditions (Hui and Jackson, 2006; Gao et al., 2011; Xu
et al., 2012). Plants may have adjusted physiological processes because
the aboveground biomass demand of water and nutrients decreased
dramatically after haymaking, leading to reallocation of more resources
to roots (Oesterheld and McNaughton, 1988).

4.5. Effects of tillage and haymaking on soil organic matter (SOM)

Considered the main source of SOM in grassland ecosystem, pro-
ductivity, including ANPP and BNPP analysis, is a significant component of
the terrestrial carbon cycle, especially carbon sequestration (Devagiri et al.,
2013). This concept was corroborated by a strong relationship between
SOM and ANPP and BNPP and NPP (Fig. 7). Usually, the reclamation of
native grassland to agricultural land can dramatically reduce SOM absorp-
tion and storage due to soil heterotrophic activity and microbial decom-
position of SOM (Wang et al., 2009; Syswerda et al., 2011; Yu et al., 2014).
However, the grassland we studied is heavily degraded and had been cul-
tivated for a long time before being abandoned. As shown in our results,
SOM content was less than 10 g kg−1, while SOM of intact native grassland
is around 30–40 g kg−1 (Song et al., 2009; Wang, 2009). In the present
study, we sought to learn which managements can enhance both ANPP and
BNPP, as well as NPP and SOM. SOM in the maize cultivation management
was higher compared to those in artificial and natural grasslands at both soil
profiles (Fig. 4), possibly due to the height of the maize community. Chave
et al. (2005) reported that average height of community is a good predictor
of net primary productivity (NPP) for plants, which directly influences the
amount of carbon contained in vegetation and incorporated into the soil as
litter (Lavorel and Grigulis, 2012; Devagiri et al., 2013; Diabate et al., 2015).
We also found that SOM was higher in the natural grassland than in the
artificial grassland (Fig. 4), mainly because of the differing abilities of the
plant species to capture, store, and release carbon. The artificial grassland
was 100% composed of the perennial species L. chinensis, whereas the
natural grassland was about 30% composed of weed species (C. duriuscula
and P. australis) and about 40% of windwill grass (C. virgata), and the
combined functional characteristics of plant communities under a given
regional climatic management are a key driver of carbon sequestration in
terrestrial ecosystems (Duiker and Lal, 1999; Thompson et al., 2009). For
both artificial and natural grassland management, SOM remarkably in-
creased in the no-clipping treatment compared to the clipping treatment,
probably due to the removal of litter in the clipping treatment. The positive
correlation between SOM and BNPP confirms that more C is allocated to soil
and therefore may increase global C sequestration.
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5. Conclusion

Grassland degradation through excessive reclamation has become a
serious social, environmental, and ecological problem in China, and its
restoration is a pressing matter. To solve this problem, it is necessary to
include belowground parts of the plants for successful and sustainable
management and restoration of degraded grassland from the whole
plant perspective. Our findings indicate that land-use practices had
significant effects on BNPP and fBNPP. Practices such as tillage and
haymaking enhanced BNPP, belowground C allocation, and also SOM in
maize tillage practice. Therefore, these practices should be given great
consideration in grassland management.
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