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Abstract: Torque ripples caused by cogging torque, flux harmonics, and current measurement error
seriously restrict the application of a permanent magnet synchronous motor (PMSM), which has been
paid more and more attention for the use in inertial stabilized platforms. Sliding mode control (SMC),
in parallel with the classical proportional integral (PI) controller, has a high advantage to suppress
the torque ripples as its invariance to disturbances. However, since the high switching gain tends
to cause chattering and it requires derivative of signals which is not readily obtainable without an
acceleration signal sensor. Therefore, this paper proposes a robust SMC scheme based on a rapid
nonlinear tracking differentiator (NTD) and a disturbance observer (DOB) to further improve the
performance of the SMC. The NTD is employed to providing the derivative of the signal, and the
DOB is utilized to estimate the system lumped disturbances, including parameter variations and
external disturbances. On the one hand, DOB can compensate the robust SMC speed controller, it can
reduce the chattering of SMC on the other hand. Experiments were carried out on an ARM and
DSP-based platform. The obtained experimental results demonstrate that the robust SMC scheme
has an improved performance with inertia stability and it exhibits a satisfactory anti-disturbance
performance compared to the traditional methods.

Keywords: permanent magnet synchronous motor; inertia stability; sliding mode control; nonlinear
tracking differentiator; disturbance observer; robust

1. Introduction

As its attractive characteristics such as efficiency, power density, torque-to-inertia ratio, reliability,
etc., the application of permanent magnet synchronous motors (PMSM) on inertial stabilized platforms
have been paid more and more attention. Usually, an airborne inertial stabilization photoelectric
platform is equipped with visible or infrared cameras, and if we want to obtain stable and clear images,
the stability of the platform must be high enough. However, due to the influence of inherent factors,
such as the cogging torque of the permanent magnet synchronous motor, the torque ripples caused by
the motor during operation seriously affects the performance of the motor. The torque ripples will also
produce noise when the servo system is running at high speed and even cause the system to vibrate
mechanically at low speed [1–3].

There are several ways to weaken the torque ripple from the optimization design of the motor,
and it is the most effective means, such as skew of the stator lamination stack or rotor magnetization,
skewing and fractional slot pitch windings, increasing the number of phases, dummy slots, and dummy
teeth, optimization of the air gap flux distribution, and the magnet pole arc width and position, etc. [4].
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However, optimizing the design of the motor usually makes it difficult to manufacture, and it will
increase the cost significantly.

Active control is another method to reduce the torque ripple by changing the input current
or voltage to achieve the desired torque output. Many scholars have performed a great deal of
work in this area and have made many achievements. Thus, we can only achieve the purpose by
changing the control strategy instead of the motor itself. No matter what way the PMSM is controlled,
the controller is needed, so there is no extra cost. Additionally, by active control techniques, the design
and manufacturing cycle of the motor can also be saved [5,6].

In previous works, Hung designed a torque ripple suppression strategy based on position
compensation [7]. However, the exact correspondence between the torque ripple and the position
must be known if this method is used, otherwise the result may be worse. In fact, this is an open-loop
compensation strategy. For closed-loop control, an effective way is to use torque transducer, but this
will make the structure of control system more complex and increase the cost. The effect of the
traditional PI control on the torque ripple caused by the mechanical parts (e.g., cogging torque and
load oscillations) is also not satisfactory. Iterative learning control is used in [8–10], it gradually
eliminates periodic torque ripples by iteration. This is indeed an effective way to eliminate the periodic
torque ripples of the PMSM, but it is not suitable on the optoelectronic stabilization platform. Since the
motion of the aerial photoelectricity platform is usually random and works at a low speed.

SMC is a popular nonlinear method for PMSM control [11–15]. As the sliding mode can be
designed and independent of the object parameters and disturbances, SMC has the advantages of quick
response, insensitivity to parameter changes and disturbances, no on-line identification, and simple
physical realization. In particular, it is a very attractive aspect of the invariance to the disturbance [16].
Sliding mode variable structure control has also been successfully applied in many fields [17–21].
However, the invariance of the sliding mode variable structure control to the parameter perturbation
and external disturbance of the system is changed by the high-frequency jitter of the control quantity.

Therefore, in this paper, on the basis of the design of a robust sliding mode controller, a disturbance
observer is introduced to reduce the switching gain, so that the buffeting effect of the system can
be weaken. The two-order derivative of the signal is usually needed in the sliding mode controller,
but the use of speed sensors or accelerometers will make the system complex and increase the cost
significantly. The traditional differential method is divided into two main types: one is to calculate
the change of signal in unit time, or to calculate the time used by the unit change quantity. However,
the traditional differential method is not ideal. Although the Kalman filter and the dual-sampling-rate
observer are presented, they are also limited in practice for the model needs to be known, while we
cannot always obtain the accurate model of the system [22–24]. A fast-nonlinear tracking differentiator
for practical application of engineering is discussed in [25]. The problem of the phase lags of the
differentiator has been considered and a feedforward is used to improve the differential estimate
by extends the traditional structure and provides an additional freedom for the design of NTD [26].
It improves the accuracy of the differential estimate compared with the traditional method and is
suitable for engineering practice.

This paper is organized as follows. In the second part, the mathematical model of PMSM is
established. The scheme of a robust SMC based on rapid NTD and DOB is introduced in three sections
in the third part, where the convergence of the method and the control structure of the whole system
are also given in this part. Section 4 introduces the construction of the experimental platform for
PMSM. In Section 5, the effectiveness of the proposed robust SMC scheme is proved by experiments,
and the results are discussed. The last part of the article gives the conclusion.

2. Mathematical Model of PMSM

In order to simplify the mathematical model of three phase PMSM in the natural coordinate system,
the coordinate transformation usually includes static coordinate transformation (Clark transformation)
and synchronous rotation coordinate transformation (Park transformation). The relationship between
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them is shown in Figure 1, in which ABC is a natural coordinate system, α− β, is a stationary coordinate
system, and d− q is a synchronous rotating coordinate system.

Figure 1. Relationship between the various coordinate systems.

The coordinate transformation of the natural coordinate system ABC to the stationary coordinate
system α− β is the Clark transformation. According to the relationship between the various coordinate
systems shown Figure 1, the formula is as follows:

[ fα fβ f0]
T = T3s/2s[ fA fB fC]

T (1)

Among them, f is the variable of motor voltage, current or magnetic chain, and T3s/2s is the
coordinate transformation matrix, which can be expressed as follows:
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where the coefficient 2/3 is obtained according to the amplitude as the constraint condition. When the
power constant is used as the constraint condition, the coefficient becomes

√
2/3.

The coordinate transformation of the stationary coordinate system α − β to the synchronous
rotating coordinate system d− q is the Park transformation:

[ fd fq]
T = T2s/2r[ fα fβ]

T (3)

where T2s/2r is the coordinate transformation matrix, which can be expressed as follows:

T2s/2r =

[
cos θe sin θe

− sin θe cos θe

]
(4)

According to the above relationship, the transformation relationship between the transformation of
the natural coordinate system ABC to the synchronous rotating coordinate system d− q can be obtained:

[ fd fq f0]
T = T3s/2r[ fA fB fc]

T (5)

T3s/2r is the coordinate transformation matrix, which can be expressed as follows:

T3s/2r = T2s/2r × T′3s/2s =
2
3

[
cos θ

− sin θe

cos(θe − 2π/3)
− sin(θe − 2π/3)

cos(θe + 2π/3)
− sin(θe + 2π/3)

]
(6)

where T′3s/2s is the top two rows of T3s/2s.
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It is necessary to point out that for a three-phase symmetric system, the zero-sequence component
f0 can be ignored when calculating.

In order to facilitate the design of the controller, we choose the mathematical model under the
synchronous rotating coordinate system d− q [27,28]. The stator voltage equation is as follows: ud = Rid +

dψd
dt −ωeψq

uq = Riq +
dψq
dt + ωeψd

(7)

The stator flux equation is as follows:{
ψd = Ldid + ψ f
ψq = Lqiq

(8)

Then we can get a new stator voltage equation:{
ud = Rid + Ld

did
dt −ωeLqiq

uq = Riq + Lq
diq
dt + ωe(Ldid + ψ f )

(9)

where ud and uq are the stator voltage along the d and q axes, respectively, id and iq are the stator
current along the d and q axes, respectively, R is the stator resistance, ψd and ψq are the stator flux
linkages along the d and q axes, respectively, ωe is the electrical angular speed, Ld and Lq are the
inductances along the d and q axes, respectively, and ψ f are the flux linkages of the permanent magnet.

According to the Equation (9), we can find that the mathematical model of PMSM is fully
decoupled. Then we can get the electromagnetic torque equation:

Te =
3
2

piq[id(Ld − Lq) + ψ f ] (10)

Equations (7)–(10) are the mathematical model for the built-in PMSM, and for the surface mounted
PMSM, the stator inductance Ld = Lq. Then we can obtain:

Te =
3
2

piqψ f = Ktiq (11)

where Te is the electromagnetic torque, p is the number of pole pairs and Kt is the torque coefficient.
The equation of PMSM dynamic is:

J
dωm

dt
= Te − TL − Bωe (12)

where J is the inertia, ωm is the mechanical angular speed, TL is the load torque, and B is the viscous
frictional coefficient.

In fact, the above model is only obtained under ideal conditions. Parasitic torque pulsations exist
in PMSM due to the non-sinusoidal flux density distribution around the air gap, errors in current
measurements, and variable magnetic reluctance of the air gap due to the stator slots [8]. The speed of
the motor will oscillate as a result, especially at low operating speeds. Therefore, to reduce the speed
ripples, an appropriate control strategy is needed to minimize the torque ripple.

3. Design of Robust Sliding Mode Control

3.1. Robust Sliding Mode Control

SMC is essentially a kind of nonlinear control method, and its nonlinearity expressed as the
discontinuity of the control variables. The difference between SMC and other control strategy is that
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the “structure” is not fixed. SMC can change according to the current state (such as the error and its
derivative) of the system in the dynamic process, forcing the system to move in accordance with the
state trajectory of a predetermined “sliding mode”. Following is the robust SMC strategy used in
this paper.

According to Equation (12), we can obtain the mathematical model of the PMSM:

J
..
θm = Ktiq + D (13)

where D is the system lumped disturbance, and θm is the mechanical angular. In order to facilitate the
subsequent deduction, we use B to represent J/Kt, to represent D/Kt, and remove the subscripts of θm:

B
..
θ = id + d (14)

Without loss of generality, suppose that the parameters B and d are bounded, |B|≤ ∆1, |d|≤ ∆2 .
The control objective is e = θ − θd = 0, and we select the following sliding mode function [29]:

σ =
.
e + αs(e) (15)

where α > 0, and s(e) is the saturation error function, we define that:

ρ(e) =
√

c2 + e2−
∣∣∣c∣∣∣ (16)

of which c is an arbitrary constant:

s(e) =
dρ

de
=

e√
c2 + e2

(17)

Then we can get following properties of ρ(e) and s(e):
.
ρ(e) = s(e)

.
e

.
s(e) = ds(e)

de
.
e = c2 .

e√
(c2+e2)

3

(18)

According to the above formula, we can obtain:

.
θ =

.
e +

.
θd (19)

and: ..
θ =

..
θd +

..
e =

.
σ +

..
θd − α

.
s(e) (20)

Multiplied by B on both sides of Equation (20) yields:

B
.
σ = id − B

..
θd + Bα

.
s(e) + d (21)

Then we can get the following sliding mode controller:

id = −kpe− kv
.
e− ktσ− η

σ

|σ| , kp, kv, kt > 0, η > 0 (22)

The following is a proof of its large scale asymptotic stability.
According to Equations (21) and (22):

B
.
σ = −kpe− kv

.
e− ktσ− η

σ

|σ| + Bα
.
s(e)− B

..
θd + d (23)
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Multiplied by σ on both sides of Equation (23) yields:

σB
.
σ = −β− η

∣∣∣σ∣∣∣−σ(B
..
θd − d) (24)

where:
β = σ

[
kpe + kv

.
e + ktσ− Bα

.
s(e)

]
= kpe

.
e + (kv + kt)

.
e2 − αB

.
s(e)

.
e + α(kv + 2kt)s(e)

.
e

+αkpes(e) + α2kts2(e)− α2Bs(e)
.
s(e)

(25)

According to Equation (18), the positive definite functions v1 and v2 can be defined as follows:{
v1 = 1

2 kpe2 + α(kv + 2kt)ρ(e)− 1
2 α2Bs2(e)

v2 = (kv + kt)
.
e2
+ αkpes(e)− αB

.
s(e)

.
e + α2kts2(e)

(26)

where kp > 1
c2 α2∆1, kv + kt >

1
|c|α∆1, then β can be expressed as:

β =
.
v1 + v2 (27)

Further we can get:
kpe2 > e2

c2 α2∆1 > e2

c2 α2B > e2

c2+e2 α2B = α2Bs2(e)

(kv + kt)
.
e2

> 1
|c|α∆1

.
e2

> c2 .
e√

(c2+e2)
3
αB

.
e = αB

.
s(e)

.
e

(28)

At last, if Lyapunov function is selected as follows:

V =
1
2

Bσ2 + v1 (29)

then: .
V = σB

.
σ +

.
v1 = −β− η

∣∣∣σ∣∣∣−σ(B
..
θd − d) +

.
v1

= −v2−
∣∣∣σ∣∣∣[η + σ

|σ| (B
..
θd − d)]

(30)

Therefore, if |B|≤ ∆1, |d|≤ ∆2 and
∣∣∣ ..θd

∣∣∣≤ ∆a , the following result can be obtained:

.
V = −v2−

∣∣∣σ∣∣∣[η − (∆1∆a + ∆2)] ≤ −v2, ∀η > ∆1∆a + ∆2 (31)

As v2 is positive definite, so
.

V is negative definite. Therefore, the stability of the system and the
gradual stability of large range can be guaranteed by the sliding mode controller id.

Further using the boundary layer method to improve the control law yields:

uc = −kpe− kv
.
e− ktσ− ηsat(

σ

ψ
) (32)

where:

sat(
σ

ψ
) =


−1 σ < −ψ
σ
ψ − ψ ≤ σ ≤ ψ

1 σ > ψ

(33)

The overall block diagram of the robust sliding mode control is shown in Figure 2. The field-oriented
control (FOC) method is utilized to control the PMSM. The robust sliding mode controller is employed
as the speed controller to generate the q-axis reference current isqre f . In order to obtain maximum
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electromagnetic torque, isqre f is always assigned to zero. e is measured by an image tracker,
.
θ and θ are

measured by a gyroscope and an encoder, respectively.

Figure 2. Block diagram of robust sliding mode control.

3.2. Disturbance Observer

In the above proof we notice that the switching gain η needs to be greater than ∆1∆a +∆2. Generally,
∆1 and ∆a can be obtained or estimated from actual system, but we cannot obtain the exact values of
∆2, because it is not only related to the parameters of the motor itself, but also many factors, such as the
tightness of the mechanical installation and the disturbance caused by the cable, and so on. In order to
make the system stable, we usually use a high gain, but excessive gain will easily cause the chattering of
the system. Thus, a natural idea is that if we observe the disturbance and compensate it in the system,
the buffeting effect of the system can be greatly reduced. Equation (14) can be drawn as Figure 3.

Figure 3. Block diagram of Equation (14).

where P(s) = 1
Bs2 , a typical DOB based on the nominal model is shown in Figure 4 [30].

Figure 4. Typical disturbance observer.
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where Pn(s) is the nominal model of practical system, and P−1
n (s) is its inverse model, Q(s) is a

low-pass filter, and ξ is the measurement noise.

δ̂ ≈ Q(s)
{
[(uc + d)P(s)]P−1

n (s)− uc
}

= Q(s)
{
[(uc + d)P(s)]P−1

n (s)− uc
}

= Q(s)d

(34)

This structure uses the inverse of the nominal model to estimate the disturbance, but the relative
order of the model is generally greater than one, so it is not physically possible. Additionally, the effect
of measurement noise will affect the observation precision. To solve this problem, the inverse of
the model can be multiplied by a low-pass filter. According to the relative order of the nominal
model above, we can design the low-pass filter as the form of the typical two order system, so that
the relative order of the product by the inverse of the model and the low-pass filter will be equal
to zero, thus avoiding the direct differentiation of the measured signal. The DOB after structural
transformation is shown as shown in Figure 5.

Figure 5. Disturbance observer after structural transformation.

Thus, after obtaining δ̂, the upper bound of ∆1∆a +∆2 can be determined approximately. Then the
minimum switch gain simply needs to satisfy η ≥

∣∣∆1∆a + δ̂
∣∣ to guarantee the system stability and

robustness. This means that the DOB can reduce the minimum switching gain and, thus, reduce the
buffeting of the system on the premise of assurance of system robustness.

3.3. Rapid Nonlinear Tracking Differentiator

Note that the derivative of the signal is contained in the robust sliding mode control designed
above. There are usually no corresponding sensors in the actual system. To obtain the approximate
differential of a signal, a nonlinear tracking differentiator (NTD) is a good solution [25,26], as it makes
use of the principle of signal tracking and guarantees the quality of the differential. Guo, B.-Z. and
Zhao, Z.-L. give the general form of the NTD and gives a proof of it [31].

Suppose that the equilibrium point (0,0) of the following system is globally asymptotically stable:{ .
x1(t) = x2(t), x1(0) = x10
.
x2(t) = f (x1(t), x2(t)), x2(0) = x20

(35)

among which f : R2 → R is a locally Lipschitz continuous function and f (0, 0) = 0. x10 and x20 are
the initial value. If the differential needed signal r is differentiable and supt∈[0,∞]

∣∣ .
r(t)

∣∣ < ∞, then the
following tracking differential:{ .

z1R(t) = z2R(t), z1R(0) = z10
.
z2R(t) = R2 f [z1R(t)− r(t), z2R(t)

R ] , z2R(0) = z20
(36)
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is convergent in the sense that: for every a > 0, z1R is uniformly convergent to r on [a, ∞) as R→ ∞ ,
where z10 and z20 are any given initial value. The selection nonlinear function f in (36) is a key problem
which is also the focus of previous research.

However, reference [25] pointed out that there are always serious phase lags in the output no
matter how the nonlinear function is designed. Thus, the NTD with feedforward is proposed to improve
the rapidity: { .

z1R(t) = z2R(t), z1R(0) = z10
.
z2R(t) = R2 f [z1R(t)− r(t), z2R(t)

R ] + k
.
r(t), z2R(0) = z20

(37)

where k (k > 0) is a constant. A detailed proof is given in [25]. According to ([25], Remark 3.1), there is
no need for

.
r(t) in the implementation of the NTD, although the wanted signal differential

.
r(t) appears

in Equation (37).
In this paper, we make a slight improvement to Equation (37):{ .

z1R(t) = z2R(t), z1R(0) = z10
.
z2R(t) = R2 f [z1R(t)− r(t), z2R(t)

R ] + k
.
r(t)× L(s), z2R(0) = z20

(38)

To reduce the impact of the noise of the input signal r(t), a low-pass filter L(s) is added to the
feedforward. The cutoff frequency of the L(s) can be designed according to the specific requirements
of the practical system.

Thus, the block diagram of proposed robust sliding mode controller based on rapid NTD and
DOB can be employed, as shown in Figure 6.

Figure 6. Robust sliding mode controller based on rapid NTD and DOB.

It is worth noting that the input signal of the NTD is acquired by adding e and θ, and the output
signal of the NTD is

.
θd.

.
e is obtained by subtracting

.
θ from

.
θd.

4. Implementation of Experimental System

The composition of the experimental system is shown in Figure 7, whereas Figure 8 shows the
photograph of the experimental platform. The experimental system was mounted to a two-axis swing
platform which was used to simulate the disturbance of the aircraft to the system. It is composed
of a permanent magnet synchronous motor, a single-axis gyroscope, an off-axis encoder, driver,
and acquisition circuit, control circuit, image tracker, visible light camera, and so on. The parameters
of the tested PMSM is listed in Table 1. The high-precision single-axis gyroscope is employed
for measurement of the angular velocity of the relative inertial space of the motor. In order to
reduce the effect of friction on the shaft of the motor, an off-axis encoder was used. Unlike the
photoelectric encoder, it works by using the principle of magnetic induction. The resolution ratio
of the encoder is 360/219 degrees and it is an absolute encoder. Angle detection is realized using
the DSP (TMS320F28069) through the SPI interface and speed detection is realized using the ARM
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(STM32F407) through the RS422 serial port. The sampling frequency for the angle and current is
8 kHz, whereas the sampling frequency for the gyroscope is 2 kHz with a baud rate of 921.6 kbps.
In this experimental system, DSP is mainly used to control the integrated drive chip DRV8312 in the
current loop. The control strategy proposed in this paper is mainly implemented in ARM. The serial
communication time of the DSP and the ARM is 1 ms. All programs are programmed in the C language.

Figure 7. Configuration of the ARM and DSP-based experimental setup.

Figure 8. Photograph of the experimental platform.
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Table 1. Parameters of PMSM.

Description Value

Peak torque ≥ 0.75N ·M
Continuous plugging torque ≥ 0.15N ·M

Rated voltage 24 V
Peak current 13.8 A

Armature resistance 11.8 Ω
Armature inductance 28 mH
Speed (Max. no-load) 3600 r/min
Number of pole pairs 4

Initia 0.5 Kg ·m2 × 10−5

The performance evaluation of the proposed robust sliding mode controller is presented in the
following section.

5. Experimental Results and Discussions

To verify the effectiveness of the proposed robust SMC scheme in this paper, experiments are
carried out under different strength sinusoidal disturbance conditions added by the swing platform,
including d = 3 sin(2π× 0.1t), d = 6 sin(2π× 0.1t), d = sin(2πt), and d = sin(2π× 2t) (unit: degrees).
The following three methods are compared in the experiment: The traditional PI method, the robust
SMC with differentiator using the Euler method, and the robust SMC with NTD. Based on the Z-N
method [32], the parameters of traditional PI method are chosen as kp = 0.2, ki = 1.0; the parameters
of the robust sliding mode controller are kp = 0.1, kv = 1.0, kt = 0.6, η = 5 +

∣∣δ̂∣∣; ψ is determined to be
0.1 through multiple attempts; The parameters of the disturbance observer are:

Q(s) =
w2

p

s2 + 2βpwps + w2
p

(39)

where the cut-off frequency wp is set to be 6000rad/s, and the damping coefficient βp is set to be 0.7.
The approximate current loop model P(s) ≈ 1/(0.0001989s + 1) is acquired by sweeping frequency.

The parameters of the rapid NTD are selected by referring to [25], the nonlinear function f is
selected as:

f (z1, z2) = −α1[(βz1)
p
q + z1]− α2[(βz2)

p
q + z2] (40)

where α2 = 2α1 = 2.0, β = 30.0, p/q = 3, and k = 650, and the low pass filter L(s) is in the same form
with Q(s), but wpl = 1256 rad/s .

Additionally, the traditional PI method is adopted in the current loop of the PMSM driver, and the
parameters of the three methods are all the same: d-axis PI parameters: Kdp = 8.0 and Kdi = 1.0. q-axis
PI parameters: Kqp = 8.0 and Kqi = 1.0. In order to compare the performance of the three control
algorithms more fairly, the actual measurement is carried out when parameters are set, so that the
measured bandwidth of the system is kept as consistent as possible, which is about 30 Hz (−3 dB).

In order to demonstrate the ability of the proposed method under different disturbance conditions,
experiments are carried out in the tracking mode. By analyzing the data of the gyroscope, the inertial
stability performance of the system can also be analyzed.

The experimental results of the PI, robust SMC with Euler, and robust SMC with NTD under the
disturbance d = 3 sin(2π × 0.1t) are shown in Figures 9–11. Figures 9a, 10a and 11a show the speed
signal of the gyro output, and Figures 9b, 10b and 11b show the tracking error obtained by integrating
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the speed signal. The tracking error shows the inertial tracking capability of the system. The RMS
value of the tracking error is used for compared. The formula for calculating the RMS is:

RMS = [
1

n− 1

n

∑
i=1

(xi − x)2]

1
2

(41)

Figure 9. Experiment results of PI control. d = sin(2πt): (a) speed; and (b) tracking error, RMS = 48.6156 urad.

Figure 10. Experiment results of robust SMC with Euler. d = sin(2πt): (a) speed; and (b) tracking
error, RMS = 25.7942 urad.

Figure 11. Experiment results of robust SMC with NTD. d = sin(2πt): (a) speed; and (b) tracking error,
RMS = 17.5528 urad.
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The experimental results demonstrate that, at the disturbance of sin(2πt), the robust sliding mode
controller with NTD achieves a satisfactory inertial tracking performance. The tracking error RMS
values of the three control methods are 48.6156 urad, 25.7942 urad, and 17.5528 urad, respectively.
Compared to the PI method and the robust sliding mode controller with Euler, the tracking error RMS
values of the robust sliding mode controller with NTD reduce by 63.89% and 31.95%, respectively.
In order to verify the effectiveness of the proposed method under various disturbances, the following
comparison experiments are also conducted.

Figures 12–14 show the experiment results in medium angle low frequency disturbance signal
d = 3 sin(2π × 0.1t) with the maximum acceleration of 1.18o/s2; Figures 15–17 show the experiment
results in the large angle, low-frequency disturbance signal d = 6 sin(2π × 0.1t) with the maximum
acceleration of 2.37o/s2; Figures 18–20 show the experiment results in small angle, high-frequency
disturbance signal d = sin(2π × 2t) with the maximum acceleration of 157.91o/s2. In addition,
d = sin(2πt) is the small angle, medium-frequency disturbance signal with the maximum acceleration
of 39.48o/s2.

Figure 12. Experiment results of PI control. d = 3 sin(2π × 0.1t): (a) speed; and (b) tracking error,
RMS = 60.6991 urad.

Figure 13. Experiment results of robust SMC with Euler. d = 3 sin(2π× 0.1t): (a) speed; and (b) tracking
error, RMS = 12.9125 urad.
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Figure 14. Experiment results of robust SMC with NTD. d = 3 sin(2π× 0.1t): (a) speed; and (b) tracking
error, RMS = 7.1381 urad.

Figure 15. Experiment results of PI control. d = 6 sin(2π × 0.1t): (a) speed; and (b) tracking error,
RMS = 73.4717 urad.

Figure 16. Experiment results of robust SMC with Euler. d = 6 sin(2π× 0.1t): (a) speed; and (b) tracking
error, RMS = 13.9755 urad.
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Figure 17. Experiment results of robust SMC with NTD. d = 6 sin(2π× 0.1t): (a) speed; and (b) tracking
error, RMS = 8.4473 urad.

Figure 18. Experiment results of PI control. d = sin(2π × 2t): (a) speed; and (b) tracking error,
RMS = 55.7748 urad.

Figure 19. Experiment results of robust SMC with Euler. d = sin(2π × 2t): (a) speed; and (b) tracking
error, RMS = 39.5665 urad.
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Figure 20. Experiment results of robust SMC with NTD. d = sin(2π × 2t): (a) speed; and (b) tracking
error, RMS = 23.0459 urad.

From the experimental results presented, it is evident that the proposed robust SMC with NTD
has obvious advantages. For a more intuitive comparison, the RMS value column diagram of the
tracking error under different disturbance conditions is shown in Figure 21. What is worth paying
attention to here is that when only the PI method is compared, the RMS value of the tracking error
under the disturbance of 3 sin(2π × 0.1t) and 6 sin(2π × 0.1t) with small maximum acceleration is
even higher than the others. This is due to the existence of friction and other disturbances in the
system, and the other two methods, due to the use of the disturbance observer, this phenomenon is
well suppressed.

Figure 21. Comparison results of the tracking error in RMS.

Considering the robustness of the proposed method, we change the parameters of the controlled
object by artificially increasing the load [33]. Specifically, we use the method of sticking lead blocks to
achieve this. In fact, the inertia J is increased in Equation (13) in this way. By testing the performance of
the system in this case, we can indirectly weigh the robust performance of the system when the model
changes. Figure 22 shows the experiment results under the disturbance signal d = 3 sin(2π × 0.1t)
by adding a 50 g lead (the load weight of the original system is about 800 g); Figure 23 shows the
experiment results under the disturbance signal d = sin(2πt) by adding an 80 g lead.
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Figure 22. Robustness experiment results of robust SMC with NTD. d = 3 sin(2π × 0.1t): (a) speed;
and (b) tracking error, RMS = 9.9620 urad.

Figure 23. Robustness experiment results of robust SMC with NTD. d = sin(2πt): (a) speed; and (b) tracking
error, RMS = 25.9620 urad.

Comparing the results of Figures 23 and 11, Figures 22 and 14, respectively, we can determine that
although the performance of the system is lower than that of the original, it still has good performance.
To a certain extent, the robustness of the controller is verified. In practical applications, due to the
influence of environment, such as temperature, humidity, mechanical wear, and so on, the parameters
of the system will change. Therefore, the robustness of the system is of great significance.

6. Conclusions

A robust sliding mode control strategy based on a rapid nonlinear tracking differentiator and
disturbance observer is presented in this paper, for the purpose of improving the anti-disturbance
ability of the PMSM inertial tracking system, so to achieve better inertial stability. Sliding mode control
is a reasonable choice for its invariance to the disturbance and the complexity of disturbance. The rapid
nonlinear tracking differentiator provide the derivative for SMC controller. Disturbance observer is
utilized to estimate the lumped disturbances of the system. The estimated disturbance is utilized
to compensate the robust sliding mode controller, which can reduce the minimum switching gain
and, thus, alleviate the system sliding mode chattering simultaneously. Experimental investigations
were conducted on an integrated ARM-DSP-based PMSM platform. The PMSM servo system was
operated under different kinds of sinusoidal disturbances coming from a two-axis rotating platform.
The effectiveness of the proposed robust SMC with an NTD scheme was demonstrated by the
experimental results.
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