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Abstract In this paper, we have studied the multiphoton transition Jaynes-Cummings
model (N = 1, 2, 3, 4, 5, 6), and researched the effect of initial state superposition coef-
ficient C1, the initial photon number n, the transition photon number N , and the quantum
discord δ on the quantum entanglement degrees, and given the quantum entanglement
degrees curves with time evolution. We obtain some results, which should have important
significance in the quantum computing and quantum information.
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1 Introduction

Quantum entanglement plays an important role in many quantum information and quan-
tum computation tasks. And many well-known quantum systems poses quantum correlation
that need to be characterized and realized for use in different applications. One of these
very important quantum systems is Jaynes-Cummings model [1, 2]. The Jaynes-Cummings
model, describing a harmonic oscillator coupled to a spin-1/2 system, underlies a wide vari-
ety of potential platforms for quantum computation, such as atoms in cavities [3], trapped
ions [4], superconducting circuits [5, 6], and clouds of cold atoms [7]. One advantage of
Jaynes-Cummings model is that it is exactly solvable model and we can investigate its entan-
glement properties analytically. One important application of Jaynes-Cummings model is
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in quantum computing for realization of quantum registers, namely cavity and circuit quan-
tum electrodynamics. Gea-Banacloche and coworkers [8] have verified the existence of
maximally entangled state in externally driven JCM. A large number of studies of such
simple systems have been carried out for independent [9, 10] and also coupled Jaynes-
Cummings models [11–14]. The many-body models being studied include quantum spin
systems [15–17], models bearing novel topological properties [18, 19], models of electron
phonon interaction, and systems in high energy physics [20–22].

In Jaynes-Cummings model with intensity-dependent coupling of a pair of two-level
atoms the exact periodicity of the second-order squeezing oscillations is violated, whereas
in a single atom one takes place the exact periodicity of the squeezing revivals. The squeez-
ing revivals have also been observed in two-photon JaynesCCummings model of a pair of
atoms. In this situation it is important to investigate the generation of higher-order squeezing
of the quantized cavity fields in above-mentioned Jaynes-Cummings model.

The single photon and double photon Jaynes-Cummings model had been studied largely.
In this paper, we have studied the multiphoton transition Jaynes-Cummings model (N =
1, 2, 3, 4, 5, 6), and researched the effect of initial state superposition coefficient C1, the
initial photon number n, the transition photon number N , and the quantum discord δ on the
quantum entanglement degrees, and given the quantum entanglement degrees curves with
time evolution. We find when the transition photon number N or the initial photon number
n increases, the entanglement degrees oscillation get faster. When the initial state superposi-
tion coefficient C1 = 0, the initial photon number n = 0 and the quantum discord δ2 = 4g2,
the entanglement degrees oscillation get slower, and keep the time of entanglement degrees
1 is longer than the quantum discord δ2 = 0. When the initial state superposition coefficient
C1 = 0.76, the initial photon number n = 0, the quantum discord δ2 = 0, the entanglement
degrees E ≈ 1 for N = 1, 2, 3, 4, 5, 6 When the quantum discord δ2 = 4g2, the entangle-
ment degrees variation range become larger for N = 1, 2, 3, but the entanglement degrees
E ≈ 1 for N = 4, 5, 6. These results have important significance in the quantum computing
and quantum information.

2 The Multiphoton Jaynes-Cummings Model and Entanglement Degrees

Let us consider the N-photon Jaynes-Cummings model, the Hamiltonian is

H = ωa+a + 1

2
ω0σz + g(a+N

σ− + aNσ+), (� = 1) (1)

where σz =| a >< a | − | b >< b |, σ+ =| a >< b |, σ− =| b >< a |.
The initial state is

| ψ(0) >= c1 | a, n > +c2 | b, n + N >, (2)

where |c1|2 + |c2|2 = 1, the state | b > is atom ground state, state | a > is atom excited
state, and the wave function at any time is

| ψ(t) >= c1(t) | a, n > +c2(t) | b, n + N >, (3)

substituting (1) and (3) into Schrodinger equation

i
∂

∂t
| ψ(t) >= H | ψ(t) >, (4)
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we obtain

i
∂

∂t
[c1(t) | a, n > +c2(t) | b, n + N >]

=
[
ωa+a + 1

2
ω0σz + g(a+Nσ− + aNσ+)

]
[c1(t) | a, n > +c2(t) | b, n + N >]

=
[
ωnc1(t) + 1

2
ω0c1(t) + gc2(t)

√
(n + 1)(n + 2) · · · (n + N)

]
| n, a >

+
[
ω(n+N)c2(t) − 1

2
ω0c2(t) + gc1(t)

√
(n+1)(n+2) · · · (n+N)

]
| n+N, b >, (5)

comparing the both sides of (5), we have

i
∂

∂t
c1(t) = ωnc1(t) + 1

2
ω0c1(t) + gc2(t)

√
(n + 1)(n + 2) · · · (n + N), (6)

i
∂

∂t
c2(t) = ω(n + N)c2(t) − 1

2
ω0c2(t) + gc1(t)

√
(n + 2)(n + 1) · · · (n + N), (7)

the Laplace transform of functions c1(t) c2(t) are

L1(p) = L[c1(t)], L2(p) = L[c2(t)], (8)

and Laplace transform formulas

L[ċ1(t)] = pL1(p) − c1(0), L[ċ2(t)] = pL2(p) − c2(0), (9)

using Laplace transforms to the both sides of (6) and (7), we get

ipL1(p) − ic1(0) = ωnL1(P ) + 1

2
ω0L1(p) + g

√
(n+1)(n+2) · · · (n+N)L2(p), (10)

ipL2(p)−ic2(0)=ω(n+N)L2(P )+ 1

2
ω0L2(p)+g

√
(n+1)(n+2)· · ·(n+N)L1(p), (11)

with c1(0) = c1 and c2(0) = c2.

L1(p) = c1

p + iωn + i
2ω0

− i
g
√

(n+1)(n+2) · · · (n+N)

p + iωn + i
2ω0

(
D

p + A
+ E

p + B

)
, (12)

L2(p) = D

p + A
+ E

p + B
, (13)

where

A =
iω(2n + N) + i

√
δ2 + ω2

1

2
, (14)

B =
iω(2n + N) − i

√
δ2 + ω2

1

2
, (15)

D =

(√
δ2 + ω2

1 − δ

)
c2 + ω1c1

2
√

δ2 + ω2
1

, (16)
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E =

(√
δ2 + ω2

1 − δ

)
c2 − ω1c1

2
√

δ2 + ω2
1

, (17)

c1(t) = e− i
2ω(2n+N)t

⎡
⎢⎣c1 cos

⎛
⎜⎝

√
δ2 + ω2

1

2
t

⎞
⎟⎠ − i

c1δ + c2ω1√
δ2 + ω2

1

sin

⎛
⎜⎝

√
δ2 + ω2

1

2
t

⎞
⎟⎠

⎤
⎥⎦ , (18)

c2(t) = e− i
2ω(2n+N)t

⎡
⎢⎣c2 cos

⎛
⎜⎝

√
δ2 + ω2

1

2
t

⎞
⎟⎠ + i

c2δ − c1ω1√
δ2 + ω2

1

sin

⎛
⎜⎝

√
δ2 + ω2

1

2
t

⎞
⎟⎠

⎤
⎥⎦ , (19)

where δ = ω0 − Nω, ω1 = 2g
√

(n + 1)(n + 2) · · · (n + N), ω0 is the atomic transition
frequency, and ω is the optical field frequency.

With the state (2), we can obtain the density operator of atom-photon system

ρ̂(t) = |ψ(t) >< ψ(t)|
= |c1(t)|2|n, a >< a, n| + c1(t)c

∗
2(t)|n, a >< b, n + 2|

+c2(t)c
∗
1(t)|n + 2, b >< a, n| + |c2(t)|2|n + 2, b >< b, n + 2|, (20)

the reduce density operator of atom A is

ρ̂A(t) = tr(a)ρ̂(t)

=< n|ρ̂(t)|n > + < n + 2|ρ̂(t)|n + 2 >

= |c1(t)|2|a >< a| + |c2(t)|2|b >< b|, (21)

the matrix form of ρ̂A(t) at basis vectors |a > and |b >

ρ̂A(t) =
(

< a|ρ̂A(t)|a > < a|ρ̂A(t)|b >

< b|ρ̂A(t)|a > < b|ρ̂A(t)|b >

)
=

( |c1(t)|2 0
0 |c2(t)|2

)
, (22)

the quantum system entanglement degrees is

E(t) = −tr
[
ρ̂A(t) log2 ρ̂A(t)

]

= −tr

[( |c1(t)|2 0
0 |c2(t)|2

)
·
( | log2 c1(t)|2 0

0 log2 |c2(t)|2
)]

= −(|c1(t)|2 log2 c1(t)|2 + |c2(t)|2 log2 |c2(t)|2). (23)

3 Numerical Result

In this section, we shall calculate the quantum entanglement degrees with (18), (19) and
(23). From the Figs. 1, 2, 3, 4, 5, 6, 7, 8 and 9, we have given the curves of the atom and
light field entanglement degrees, which are periodic oscillation with time evolution, the
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Fig. 1 The curves of the atom and light field entanglement degrees with time evolution, the initial state
superposition coefficient C1 = 0, the initial photon number n = 0, the quantum discord δ2 = 0

Fig. 2 The curves of the atom and light field entanglement degrees with time evolution, the initial state
superposition coefficient C1 = 0, the initial photon number n = 0, the quantum discord δ2 = 4g2
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Fig. 3 The curves of the atom and light field entanglement degrees with time evolution, the initial state
superposition coefficient C1 = 0, the initial photon number n = 1, the quantum discord δ2 = 4g2

Fig. 4 The curves of the atom and light field entanglement degrees with time evolution, the initial state
superposition coefficient C1 = 0, the initial photon number n = 3, the quantum discord δ2 = 4g2
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Fig. 5 The curves of the atom and light field entanglement degrees with time evolution, the initial state
superposition coefficient C1 = 0.36, the initial photon number n = 0, the quantum discord δ2 = 0

Fig. 6 The curves of the atom and light field entanglement degrees with time evolution, the initial state
superposition coefficient C1 = 0.36, the initial photon number n = 0, the quantum discord δ2 = 24g2



286 Int J Theor Phys (2018) 57:279–289

Fig. 7 The curves of the atom and light field entanglement degrees with time evolution, the initial state
superposition coefficient C1 = 0.36, the initial photon number n = 1, the quantum discord δ2 = 24g2

entanglement degreeE is in the range of 0−1. From Figs. 1–4, the initial state superposition
coefficient C1 = 0, i.e., the atom and light field entanglement degree is 0 at initial state.
With the time evolution, the atom and light field should be in the entangled state. In Fig.
1a–f, the initial photon number n = 0, the quantum discord δ2 = 0, the transition photon
numbers N are 1, 2, 3, 4, 5 and 6, respectively. In Fig. 1a-f, the entanglement degree 0 ≤
E ≤ 1. When the numbers of photons N increases, the entanglement degrees oscillation
get faster, i.e., the period becomes small. When N = 1, 2 and 3, the evolution curves of
entanglement degrees change slowly with time t , and keep the time of entanglement degrees
1 longer. When N > 3, the entanglement degree oscillate quickly, and keep the time of
entanglement degree 1 short. When N = 6, the entanglement degree oscillate very quickly,
and keep the time of entanglement degree 1 very short. In Fig. 2, the quantum discord
δ2 = 4g2, and other parameters are the same as Fig. 1. Comparing Fig. 2 with Fig. 1, When
the quantum discord δ2 = 4g2, the entanglement degrees oscillation get slower, and keep
the time of entanglement 1 is longer than the quantum discord δ2 = 0. In Figs. 3 and 4,
the initial photon numbers n = 1 and 3, respectively, and other parameters are the same as
Fig. 2. Comparing Fig. 2 with Figs. 3 and 4, when the initial photon numbers increase, the
entanglement degrees oscillation get faster.

From Figs. 5, 6 and 7, the initial state superposition coefficient C1 = 0.36, i.e., the atom
and light field are in the entangled state at initial state. In Fig. 5a–f, the initial photon number
n = 0, the quantum discord δ2 = 0, the transition photon numbers N are 1, 2, 3, 4, 5 and
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Fig. 8 The curves of the atom and light field entanglement degrees with time evolution, the initial state
superposition coefficient C1 = 0.76, the initial photon number n = 0, the quantum discord δ2 = 0

Fig. 9 The curves of the atom and light field entanglement degrees with time evolution, the initial state
superposition coefficient C1 = 0.76, the initial photon number n = 0, the quantum discord δ2 = 4g2
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6, respectively. In Fig. 5a–f, the entanglement degree E > 0. When the number of photons
N increases, the entanglement degrees oscillation get faster. In Fig. 6, the quantum discord
δ2 = 24g2, and other parameters are the same as Fig. 5. Comparing Figs. 6 with Fig. 5, we
find when the quantum discord increases, the entanglement degree variation range increase,
and keep the time of entanglement 1 is longer. In Fig. 7, the initial photon number n = 1,
and other parameters are the same as Fig. 6. Comparing Fig. 7 with Fig. 6, we find when
the initial photon number increases, the entanglement degrees oscillation get faster.

From Figs. 8 and 9, the initial state superposition coefficient C1 = 0.76, i.e., the initial
state of atom and light field is close to maximum entanglement. In Fig. 8a–f, the initial
photon number n = 0, the quantum discord δ2 = 0, the transition photon numbers N

are 1, 2, 3, 4, 5 and 6, respectively. In Fig. 8a–f, we find when the numbers of photons N

increases, the entanglement degrees oscillation get faster, and their entanglement degrees
E ≈ 1. In Fig. 9, the quantum discord δ2 = 4g2, and other parameters are the same as
Fig. 8. Comparing Fig. 9 with Fig. 8, we find when the quantum discord increases, the
entanglement degrees oscillation get faster. When N = 1, 2, 3, the entanglement degrees
variation range are larger, when N = 4, 5, 6, their entanglement degrees E ≈ 1.

4 Conclusion

In this paper, we have studied the effect of initial state superposition coefficient C1, the ini-
tial photon number n, the transition photon number N , and the quantum discord δ on the
quantum entanglement degrees with the Jaynes-Cummings model, and given the quantum
entanglement degrees curves with time evolution. We find when the transition photon num-
ber N or the initial photon number n increases, the entanglement degrees oscillation get
faster. When the initial state superposition coefficient C1 = 0, the initial photon number
n = 0 and the quantum discord δ2 = 4g2, the entanglement degrees oscillation get slower,
and keep the time of entanglement degrees 1 is longer than the quantum discord δ2 = 0.
When the initial state superposition coefficient C1 = 0.76, the initial photon number n = 0,
the quantum discord δ2 = 0, the entanglement degrees E ≈ 1 for N = 1, 2, 3, 4, 5, 6 When
the quantum discord δ2 = 4g2, the entanglement degrees variation range become larger
for N = 1, 2, 3, but the entanglement degrees E ≈ 1 for N = 4, 5, 6. These results have
important significance in the quantum computing and quantum information.
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