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Plasmon-induced hot carrier transfer to the surface of three-dimensional topological insulators
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We consider theoretically a conical Ag tip coupled to surface states of a three-dimensional topological insulator
(3D TI) such as Bi2Se3. Generation of propagating surface plasmon polaritons (SPPs) in a metal cone by a laser
field produces an intense optical field near the tip of the cone and high concentration of hot carriers in the metal
near the surface of the topological insulator. Such hot carriers are transferred through a Schottky contact between
tip and TI to the chiral spin surface states of TI, resulting in finite spin polarization and spin current at the surface
of TI. SPPs in the metal cone are excited with a THz laser with energy in the optical band gap of 3D TI to avoid
photoexcitations in the bulk of Bi2Se3. We also propose a detail scheme for experimental measurements of such
currents. Our results can find applications in spintronics.
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I. INTRODUCTION

In a nanosystem of a size larger than the nonlocality radius,
ln ∼ υF /ω, the radiative decay of SPPs is highly suppressed,
and SPPs transfer most of their energy to valence band
electrons creating “hot” carriers. It has been shown that decay
of SPPs can generate strong photocurrent in plasmonic nanoan-
tennas/semiconductor interface [1,2]. An unprecedented level
of optical energy accumulation can be achieved at the tip, and
generated hot carriers after decay of SPPs can be used for the
purpose of nanoscopy based on atomic force microscopy in
scanning the surface of a material below spatial resolution of
50 nm [3]. Significant energy transfer from SPPs to single
electron excitations occurs for nanosystems (nanocrystals)
with a size around 10 nm [4,5].

The decay rate of SPPs is inversely proportional to radius
R of a plasmonic nanocone if R is less than the skin depth

of metals, ls = ω
c

[Re( −ε2
m

εm+εd
)], where εm and εd are the metal

and medium dielectric parameters, respectively (for Ag and
Au, ls ∼ 25 nm) [6–9]. Due to a strong filed enhancement,
accumulation of energy can be obtained to a scale of size of
the nonlocality radius, which is around a nanometer. The SPPs
propagating towards the tip are adiabatically concentrated,
and the optical energy is focused along tapered waveguides
at the dimension of nonlocality radius. The group velocity of
SPPs, υg = 1

h̄

dEq

dq
, asymptotically decreases along waveguides,

which leads to a highly localized field at the conical tip [7,8].
SPPs in nanocylinders or nanorods of noble metals at terahertz
frequency (THz) are shown to have propagation length in
millimeter range [10,11].

If wave vector q (q � 0.3 L, where L is a high symmetry
point of the first Brillouin zone of Ag) of SPP is small compared
to electron’s momentum, then SPP’s energy, that is transferred
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to s electrons, is an energy difference between the states k
and k + q, Ek+q − Ek ≈ h̄2

m
q · k. This energy difference is

below the interband threshold Eth (in Ag, Eth = 3.7 eV). Hot
carriers with longer lifetime (and mean free path of up to
40 nm) are generated after decay of SPPs with energy lower
than the interband threshold. Above Eth, generated hot carriers
are short lived and are excited mostly from d bands with the
mean free path of 5 nm or smaller [12]. Therefore, in noble
metals the interband threshold separates two regimes of hot
carrier excitations. In a conical waveguide with tip size a,
SPPs characteristic wavelength is equal to the size of the tip’s
circumference and maximum energy transferred to hot carriers
is about h̄2

m
qk. If we assume that the plasmonic fields result in

the transitions around the Fermi level in metal, then the energy
transferred to hot carriers is h̄υF q ≈ 0.3 eV for a tip of size
a = 4 nm.

The spins of SPPs induced carriers in a metal tip are
randomly oriented. Such carriers are injected on a surface of
3D TI with spin chiral states, which results in a spin polarized
surface current due to nonequilibrium carrier distribution and
spin-momentum locking property of TI surface states. In
Ref. [13], authors propose a model for a topological plasmon
spin filter that utilizes THz spin plasmons on the surface of
3D TI to generate a static spin accumulation in resonant Ag
metallic nanostructures coupled to the 3D TI. In one half cycle
of plasmonic field, a spin-up is induced while in the other
half cycle a spin-down is induced in the Ag metal. Spins
are then driven away in opposite directions by a drift. This
possibility shows that 3D TI can be a source of polarized
spin current without a need of external drift. In this paper, we
propose another approach to generation of spin polarization
at the surface of 3D TI coupled to the metal conical tip. The
idea is based on adiabatic concentration of SPPs at the end
of the tip. We consider hot carriers are generated after the
decay of SPPs in a conical Ag waveguide of base radius R

and length L. The induced hot carriers are transferred to a
surface of 3D TI material such as Bi2Se3, generating a spin
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FIG. 1. Schematic of (a) an Ag cone placed over a Bi2Se3 surface
with an orientation angle of θ. SPs are excited and decay inducing hot
carriers, which are injected to the surface of Bi2Se3, and (b) the band
alignments at the Ag/Bi2Se3 interface. The side view of the Dirac
cones are also depicted to show surface states (SSs), and (c) SPP
decay induced carriers with energy EF � E � EF + eϕb and spin
component Sy are filling single particle Dirac states.

polarized current with density of up to 104 A/cm2. Our result
for the spin polarized current for a finite sheet of 3D TI with the
given surface area is in the same order of magnitude (few micro
amperes) as of the current obtained in the experiments [14]. We
assume that the system is irradiated with a laser of wavelength
6 μm (≈0.2 eV) that selectively excites SPPs and does not
photoexcite 3D TIs as the laser energy is within the optical
band gap of Bi2Se3 [15]. Below the optical band gap of Dirac
system, direct transitions are prohibited as the bands are filled
up to the Fermi level. For the energy of photon h̄ω � 2EF ,
photoexcitation does not occur in the 3D TI [16,17]. The 3D
TIs are small band-gap semiconductors with metallic surface
states. The energy dispersion of such surface states is the
same as the energy dispersion of relativistic Dirac fermion,
and the spin is locked in the direction perpendicular to the
momentum [15,18,19]. Coupling between optical field and
electrons in the metal tip induces long lived carriers through
intraband transitions in Ag [12,20]. When the tip is placed near
the surface of Bi2Se3, a nanoschottky diode is formed at the
interface with a potential height of eϕ(r)|r=0 = eϕb [21]. This
potential difference is asymptotically equal to a difference of
the work functions, eφAg − eχBi2Se3 = 0.2 eV, between the two
materials [Fig. 1(b)] (work function of a clean sample of Bi2Se3

is ≈4.23 eV [22]). The SPPs decay generates a nonequilibrium
distribution of the carriers in the metal around the Fermi level.
Such carriers are transferred into the surface of TI, which is
characterized by single particle relativistic dispersion relation,
see Fig. 1(c). Our system consists of an Ag conical tip of
dimension a � √

A, where A is the area of the surface of
Bi2Se3. The tip angle is 0.08 rad. The waveguide is placed
with a small angle orientation as shown in Fig. 1(a) that allows
a maximum momentum transfer from metal to the surface of
3D TI. Due to a nanosize of the tip, we assume that single
particle electron states at the surface of TI are unperturbed. In
addition to that, the metal tip is not in complete contact with the
surface of TI and therefore, it is sufficient to treat the situation
under a regime of weak coupling of metal and Dirac states of
Bi2Se3 [21,23,24]. This approximation is also valid in optical
experiments, where the surface states are weakly coupled to
the photoexcited bulk carriers [25–27].

The paper is organized as follows: We present our model
based on the density matrix formalism in Sec. II. In Sec. III,
we calculate the SPP fields propagating in a conical waveguide
and show explicitly the field intensity developed at the tip.

Section IV is devoted to the interaction of the SPP field with
the metal electrons around the tip. We calculate the density
of electrons that can be excited as a result of SPP decay. In
Sec. V, descriptions of the SPP induced excited electrons that
are moved to the interface and are transferred to the surface are
presented. Finally, we summarize our paper with conclusions
in Sec. VI.

II. MODEL BASED ON DENSITY MATRIX FORMALISM

Consider a Hamiltonian for our system as

H (t ) = Ho + V (t ), (1)

where Ho is a time independent state Hamiltonian with eigen-
value Eo and V (t ) is a time varying potential which induces
transitions between the eigenstates of Ho. The light matter
interaction on the metal surface can be described by the term
V (t ).

The Liouville equation to be solved is [28]

h̄
∂ρ(t )mn

∂t
= i[ρ(t )mn, H ] + ∂ρ(t )mn

∂t

∣∣∣∣
decay

, (2)

where Γmn = h̄
τmn

is a relaxation rate between mth

and nth states, and the decay term ∂ρ(t )mn

∂t
|decay =

−Γmn(ρ(t )mn − ρ(0)mn) describes the vacuum fluctuations
or spontaneous emission. Diagonal terms of the Liouville
equation are given by

�
ρmm (t ) =�mmδρmm(t ) + i

h̄

∑
m�=n

(ρnm(t )Vmn(t )

− Vnm(t )ρmn(t )), (3)

where δρmn(t ) = ρmn(t ) − ρmn(0). Any diagonal term of V (t )
just renormalizes Eo. The off diagonal term of the density
matrix is given by

�
ρmn (t ) = i

h̄
ρmn(t )

(
Eo

n − Eo
m

) + i

h̄
Vmn(t )(ρmm(t ) − ρnn(t ))

− �mm(ρ(t )mm − ρnn(0)). (4)

To find the population density, δρmm, on the surface of
metal, the solution of interest is the diagonal element of
density matrix, which can be solved under rotating wave
approximation.

In the interaction picture, the off diagonal term is

ρmn(t ) = ρI
mn(t )e− i

h̄
(Eo

n−Eo
m )t . (5)

This implies

h̄ρ̇I
mn(t ) = − h̄�mmρI (t ) − iVmn(t )(ei(ωt+ωmnt )

+ ei(ωt−ωmnt ) )(ρnn(t ) − ρmm(t )), (6)

where Vmn(t ) = Vmn(e−iωt + eiωt ). The density matrix
can be written in two components form as ρI

mn(t ) =
(ρI,a

mn (ω)e−iωt + ρI,b
mn (ω)eiωt )eiωmnt . Under adiabatic pumping

ρ(t ) → ρ(ω), and rotating wave approximation, the term with
ei(ωt+ωmnt ) can be discarded. This implies that the components
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of the density matrix can be written as [28]

ρI,a
mn (ω) = |Vmn|

(
ρI

nn − ρI
mm

)
h̄ω − h̄ωmn + iΓmnh̄

(7)

ρI,b
mn (ω) = |Vmn|

(
ρI

nn − ρI
mm

)
−h̄ω − h̄ωmn + iΓmnh̄

. (8)

When a dynamic equilibrium is established, the rate of
change of the density matrix with respect to time approaches

to zero,
�
ρmm (t ),

�
ρnn (t ),→ 0. Under this situation the stim-

ulated emission and absorption are balanced by the relaxation
process [28]. With the help of equations (7) and (8), we can
write the off diagonal density matrix elements in frequency
space. Then using equations (3) and (4), the nonequilibrium
population density can be obtained as

δρmm(t ) = − 2

�mm

∑
m�=n

(ρnn − ρmm)|Vmn|2

×
[

�mn

(h̄ω − h̄ωmn)2 + (Γmnh̄)2

+ �nm

(h̄ω + h̄ωmn)2 + (Γnmh̄)2

]
, (9)

where we drop the index I. Note that δρmm(t ) = −δρnn(t ).
Two terms on the right hand side of equation (9) describe
the emission and absorption process between the states nth

and mth.

III. SPP FIELD IN CONICAL WAVEGUIDE

The matrix elements Vmn are determined by interaction
between the plasmonic field and the single electron system
in the metal. We solve for radial and longitudinal components
of the plasmonic field in metal under the condition of adiabatic
focusing of the field in the tip. Following Ref. [7], Maxwell’s
equation required to solve in the cylindrical coordinates for
TM modes Hθ = φ(ξ )ψ (z) are

ξ 2 ∂2φ

∂ξ 2
+ 1

ξ

∂φ

∂ξ
− (

1 + β2ξ 2k2
o

)
φ = 0 (10)

∂2ψ

∂z2
+ n2 = 0, (11)

where β = √
n2 − ε, and n is the index of refraction that is a

function of z. With r = βξko, solutions

φ< = A I1(r<) (12)

φ> = B K1(r>), (13)

where A and B are the field amplitudes, respectively, inside and
outside the metal surface. Kn(In) are the nth modified Bessel
function of the second (first) kind. The solutions for magnetic
field can be written as Hθ (r<) = φ(r<)ψ (z) and Hφ (r>) =
φ(r>)ψ (z), where r>(r<) is greater (smaller) than R. Electric
field can be calculated using ∂Er

∂t
= − c

εi

∂Hθ

∂t
and ∂Ez

∂t
= c

r

∂rHθ

∂t

with the time varying components. Using boundary condition
Ez1 = Ez2 and ε1Ez1 = ε2Ez2, we obtain the condition

ε2

β2

K1

Ko

+ ε1

β1

I1

Io

= 0, (14)

FIG. 2. The total electric field distribution of (a) radial component
and (b) longitudinal component in a Ag conical waveguide. The length
of the cone is 2000 nm, and SPPs are propagating from base to tip in
vacuum. The insets show the fields near the tip in enlarged scale. The
simulation stops at 2 nm away from the tip.

where ε1 and ε2 is the dielectric function of environment and
that of metal. The R dependence of the index of refraction n

is obtained by solving the equation (14). Under the asymptotic
limit of the modified Bessel function we obtain

n =
√

4

k2
oR

2

(
ε1/ε2

W [e2γ ε1/ε2]

)
+ ε1, (15)

where γ ≈ 0.577 is a Euler constant and W is Lambert’s func-
tion. The R dependence of n increases rapidly as we approach
to the tip. In Fig. 2 we show the electric field amplitude of
SPPs propagating along the conical waveguide. Near the tip
accumulation of energy is obtained at the unprecedented level.

IV. INTERACTION OF SPP WITH ELECTRONS
IN METAL TIP

The second quantization expression for the electric field of
SPP has the following form

E =
∑

q

Eq(r )(a+
q + aq). (16)

The interaction potential is given by

VI =
∑
q,k

Ωk,q(b+
c,k−qbv,kc

+
q + b+

v,k+qbc,kcq), (17)

where

Ωk,q = ie

mωk,k
′

∫
�∗

c,k′ Eq · P�v,kd
3r. (18)

Consider a simple model where electrons are trapped in a
box with infinitely high potential wall, V (r ) = ∞. Then the
solutions of the Schrodinger equation in cylindrical coordi-
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FIG. 3. (a) Carrier generation rates after SPPs decay. As an
example, for length L = 2000 nm (red) and 2500 nm (green) are
shown. As SPPs reach towards the tip, generation rate per unit length
is higher. (b) The population density around the tip for L = 2000 nm
conical waveguide at different sizes of the tip.

nates can be written as

�n,l = Cn,le
iθ sin

(nπ

L
z
)
Jl (μξ ), (19)

where mth zero of the Bessel function Jl is μl,m = zl,m

R(z) l =
0, 1 , 2, 3...., and Cn,l are the amplitudes of the wave function.
The corresponding energy eigenvalues are

El,m = (h̄2/2m)
(
z2
l,m/R2 + n2π2/L2

)
. (20)

Consider, as an example, zl,m = 30, n = 5, and a short waveg-
uide with L = 10 nm. We obtain energy El,m ≈ 40 meV at
R = 40 nm. For a larger value of L, the wave vector kz can
be considered as a continuous variable. Therefore, only a
sufficiently high value of quantum numbers contribute, which
means the excitations happen close to the Fermi level. For a
given state with quantized wave vector kz = nπ

L
, the contri-

bution to Ωk,q comes from the longitudinal field component,
and it is nonzero only when the initial quantum number mi

and the final quantum number mf are even and odd, and
vice versa. On implementing a propagating solution for a long
waveguide, we obtain a nonzero contribution from the radial
component in addition to the longitudinal component of the
field. Figure 3(a) shows the effect of decreasing of R(z) on
the excitation rate Ωk,q that describes the number of carriers
generated per second. The results are shown for two different
lengths of waveguide. It is to be noted that if the radius of the
waveguide is less than the electron’s mean free path, then SPPs
lifetime is suppressed due to surface scattering and related size
effects that can reduce τp by up to a factor of 5 [29].

Taking into account the symmetry of the problem, we adopt
a cylindrical coordinates system to solve for the net excitation
density of metal electron at the interface. The angle φ at
which a plasmon’s wave vector is scattered by an electron

is in the range k2−k2
F +q2

2kq
� cos φ � 1. The energy difference

h̄ωk+q, k = Ek+q − Ek determines the group velocity of the
SPPs. SPPs with the momentum satisfying the above condi-
tions can produce a plasmon drag effect on the surface of
3D TI [30]. The SPP momentum in the radial direction is
highly confined near the tip due to its one-dimensional nature
of propagation along the cone axis. For states defined by the
indices m and n in equation (9), the population density can be
equivalently written in k space. A plasmon with momentum
q can scatter an electron with initial momentum k to final
momentum k + q. Hereafter we use k space indexing rather

than indexing the state by m and n as these are two equivalent
pictures. To simplify equation 9, we assume �mn ≈ �mm =
�nn. The denominator of the density matrix becomes a real
quantity defining the detuning from the resonance and depends
not only on the scattering wave vector but also on the scattering
angle. With the help of equations (17) and (18), equation (9) for
the hot carriers density can be recast in terms of Rabi frequency.
Here we calculate the hot carriers density around the tip and
write the diagonal element of density matrix given by equation
(9) as

δρk = = 2

(2π )3

1

h̄ω
k2
r |Ωk,q |2

∫
θ

cos θdθ

∫
k

dk

∫
φ

× d(cos φ)(
h̄ω − h̄2kq cos φ

m
− h̄2q2

2m

)2
+ �2h̄2

, (21)

where φ has limits of φmin = k2−k2
F +q2

2kq
and φmax = 1. The limit

over k is determined by the momentum conservation restricted
by the value of cos φ. kr is the wave vector in the radial
direction. θ is the orientation of the cone with respect to the
surface, and it is integrated to be unity. Integrations in equation
(21) are readily performed to obtain

δρk = 2

(2π )3

1

h̄ω
k2
r |Ωk,q |2 m

h̄2q
log

(
kf

k − q

)
Θ (k − kF ),

(22)

where �(...) is the Heavyside step function that determines
the lower cutoff limit for the wave vector of the carrier. The
momentum conservation is explicitly satisfied by taking into
account the plasmon-electron scattering angle φ. Equation (22)
shows that excitation density has logarithmic dependence on
(kf /k − q ). For k → kf and q � k, we obtain δρk → 0. The
excited carriers are distributed within a narrow region of k

space above the Fermi wave vector (kF = 1.08 × 108/cm) as
shown in Fig. 3(b). This region corresponds to the energy range
of EF � E � eϕb. Figure 3(b) also shows the excited carrier
density for different tip sizes.

V. INJECTION INTO TOPOLOGICAL SURFACE STATES

In Sec. IV, we calculated the density of excited hot carriers
in metal after the decay of SPPs. The excitation density of
hot carriers given by equation (22) can be injected into the
topological surface states if the surface density of state is
known. Only those carriers that are injected below the gap
of 3D TI have a possibility of retaining the Dirac particlelike
features. The number of carriers injected into the topological
surface states with the wave vector k along the x direction
can be written as δη = g(E)DDirac�E, where DDirac is the 2D
density of states for Dirac fermions, �E is the energy interval
of Dirac single particle states in the range of �k, and g(E) is the
carrier distribution. The carrier distribution g(E) is obtained
by normalizing δρk from equation (22) with the total number
of possible excitations within the range of EF and EF + eϕb,
and it can be written as g(E) = δρk/

3
2 ( N

V
)
∫
E

1
EF

( E
EF

)
1/2

dE [31],

where N/V ≈ 1022/cm3. In 2D, DDirac = |E|
2π (h̄υf )2 , where

υF ≈ 6 × 105 m/s is the Fermi velocity for Bi2Se3. The carrier
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FIG. 4. (a) Carrier distribution on the surface of Bi2Se3 after the
injection and is plotted as a function of kx and inverse of the sample’s
length along the y axis. (b) Current density due to spin polarized
carriers on the Dirac bands of the surface of Bi2Se3 as a function
of the Dirac fermion wave vector at different SPPs wave vectors at
the tip. The current density is obtained above the Fermi wave vector
kD

F = Ek/h̄υF . Note that energy is measured from the vacuum level.
The inset shows the scheme of spin polarization on the Dirac bands.

distribution is limited in the y direction for fix ky . The 2D
density of state is inverse Ly dependent, DDirac = 1/Ly h̄υF .
We need particle flux traveling with momentum kx whose spin
is locked along ky and passing through a strip of length ky

in the reciprocal space. Using the energy E ≈ h̄υf k of an
electron around the Dirac point on the Fermi surface, we write
the density of carriers injected into the surface of 3D TI in the
longitudinal direction (x axis) as

δη = δρk

2

V

N

E
3/2
F{

(EF + eφ)3/2 − E
3/2
F

} 1

Lyh̄υF

eϕb, (23)

where the factor 1/2 is due to two states of spin, and only
half the number of electrons are traveling to the +x axis.
Note that Ly is the length of the Bi2Se3 sample along the
y direction, and δρk is given by equation (22). Due to the
well defined momentum direction of a single particle Dirac
state in a reciprocal space, only those hot electrons having a
tangential momentum direction with nearly overlapping spin
components to the Dirac states are injected. The electrons with
spin-up (spin-down) polarization contribute to the electron
current along +kx (−kx). The polarized current density, J

↑
x ,

for spin up states can be written as J
↑
x = eυF

∫
δη↑, where δη↑

is the density of spin up carriers. J
↑
x can be explicitly written

as

Jx = 1

2
eυF

2

(2π )3

1

h̄ω
k2
r |Ωk,q |2 m

h̄2q
C

1

Lyh̄υf

εF

(
k

′

kf

−k
′
f

kf

)
,

(24)

where k
′ = k + (k − q ) log [kf /(k − q )] and k

′
f = kf +

(kf − q ) log [kf /(kf − q )], and C = V/N ( ε
3/2
F

(εF +eϕb )3/2−ε
3/2
F

) is

a normalization factor.
Similarly, the expression for the spin down component

contributing to the electron current along −kx has the form
J

↓
x = −eυF

∫
δη↓, where the negative sign is due to the

opposite direction of Fermi velocity. In Fig. 4(a), we show
carrier distribution on the surface of Bi2Se3 at different inverse
length scales along the y axis after the injection, and in
Fig. 4(b), we show J

↑
x on the surface of Bi2Se3 as a function

of electron wave vector for |ky | ≈ 1/Ly = 0.017/nm and

FIG. 5. Experimental setup to measure the enhanced spin polar-
ized current on the surface of Bi2Se3 due to SPPs decay induced hot
carriers. (a) Two ferromagnetic detectors on the surface measure the
voltage proportional to projection of the 3D TI spin polarization onto
the magnetization axis. (b) A small shift of Δk of the circular Fermi
surface along +kx generates current with spin along +ky .

at different values of SPP momentum. The group velocity
of SPP approaches zero and the wavelength is equal to the
tip’s circumference. Excited carriers above the metal Fermi
surface with energy EF � Ek � EF + eϕb are passed to the
semiconducting surface through the oxide layer with thickness
of around one nanometer and energy barrier height of nearly
3 eV [3], see Fig. 1(b). The magnitude of Dirac fermion’s wave
vector is determined as |kD| = Ek/h̄υF . Note that kD � kF ,
and kD is calculated so as to satisfy the energy conservation
across the interface. The spin polarized current is generated
due to a shift of the center of the circular Fermi surface by
ΔkF along +kx .

The in-plane group velocity υg of the Dirac fermions
is a spin dependent quantity. From the low energy Dirac
Hamiltonian, Hk = h̄υf (z × σ ) · k − μ, it can be obtained
that υg = 1

h̄

∂Hk

∂k
= 2

h̄
υf (z × S), where S = h̄

2 σ . If S is along
+ŷ, it is apparent that υg points along +x̂, a direction of
the charge flow. The average spin polarizations along +ŷ
is given by 〈Sy〉 = h̄

2eυf η
Jx . Thus, a flow of spin polarized

charges creates a net average spin accumulation in the direction
perpendicular to the flow. Even a low carrier transfer efficiency
can create a significant charge current across the interface [3],
which in turn is proportional to the spin accumulation.

To measure J ↑(J ↓) experimentally, we propose a simple
scheme as shown in Fig. 5. The photon energy of the laser
that lunches SPPs in the Ag conical waveguide is chosen to be
h̄ω < 2h̄ωopt, where ωopt is the optical band-gap frequency
of 3D TI (h̄ω � 0.2 eV), to avoid photoexcitations on the
surface and in the bulk of 3D TI. A thin film of Al2O3

is grown on a sample of Bi2Se3 film. Two spin sensitive
ferromagnetic probes (such as Fe/Al2O3) are placed on the
surface that detects spin polarized electrical current. This
technique successfully enables electrical detection of the spin
polarization in semiconductors and metals [14,32–34]. The
ferromagnetic detector records the full spin signal proportional
to the unpolarized charge current for electrons when the spins
on the surface are polarized in an opposite direction to the
contact magnetization direction (note magnetic moment ms is
in the direction of magnetization M). As we rotate the direction
of M in the x-y plane at the ferromagnetic contact, the spin
signal decreases and becomes zero when M perfectly aligns
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with the direction of momentum (orthogonal to the direction
of the spin polarization). Reversing the direction of the charge
current changes the sign of recorded voltage. The reversal of
the contact magnetization should lead to a hysteresis loop of
the spin voltage of the ferromagnetic contact. The measured
spin voltage amplitude is given by ΔV = α

γPFMEF PSS

2e
, where

α = σSS/σTotal, σSS (σTotal) is the surface (total) conductance, γ
is the efficiency of spin detection of the contact, PFM = n↑ −
n↓/n↑ + n↓ is the spin polarization of the contact, n↑ (n↓) is
the electron density for majority (minority) spin direction, and
PSS = nSS↑ − nSS↓/nSS↑ + nSS↓ is the spin polarization of the
surface states [14,23]. ΔV is the voltage difference between the
majority and minority spin carrier induced voltages measured
at the detector terminals. The difference ΔVSPP − ΔVbare

before and after the SPPs excitation gives the measure of the
net spin related signal.

VI. CONCLUSION

We show that carriers generated after decay of SPPs in an
adiabatic conical Ag waveguide with the tip size of a few

nanometers can be transferred to the surface of 3D TI such
as Bi2Se3. We calculate the spin polarization current density
due to hot carriers on the surface of 3D TI and provide a
scheme for an experimental measurement of such currents. Our
calculated value of the spin polarized current is of the order
of 104 A/cm2, and this result agrees with the experimentally
measured value of spin polarized current on the surface of
3D TI. Our results can be useful for optical generation of
enhanced spin polarizations and corresponding currents that
can be useful in spintronics.
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