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Graphene exhibits extremely strong optical nonlinearity in a perpendicular magnetic field, the optical
conductivities show complicated field dependence at a moderate light intensity, and the perturbation theory fails.
The full optical currents induced by a periodic field are nonperturbatively investigated in an equation-of-motion
framework based on the Floquet theorem, with the scattering described phenomenologically. The nonlinear
responses are understood in terms of the dressed electronic states, or Floquet states, which could be characterized
by a weak probe light field. The method is illustrated for a magnetic field at 5 T and a driving field with photon
energy 0.05 eV. Our results show that the perturbation theory works for weak fields <3 kV/cm, confirming the
unusual strong light-matter interaction for Landau levels of graphene. Our approach can be easily extended to
other systems.
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I. INTRODUCTION

Landau levels (LLs) of graphene show unique properties
including a large cyclotron energy h̄ωc ≈ 36

√
B(Tesla) meV

and nonequidistant energies. Graphene in a strong magnetic
field is suggested as a good platform for demonstrating many
fundamental dynamics concepts [1], even at room temperature.
Recent studies of the nonlinear responses have been extended
to wavelengths in the infrared [2–7]. A huge optical suscepti-
bility was predicted by Yao and Belyanin [3,4] and confirmed
by the four-wave mixing (FWM) experiments of König-Otto
et al. in the far infrared [5]. Proposed applications for graphene-
based photonics include the generation of entangled photons
[8], an all-optical switch [9], tunable lasers [6], the dynamic
control of coherent pulses [10], and the demonstration of
optical bistability and optical multistability [11,12].

Theoretically, optical nonlinearities are mostly studied in
an equation-of-motion framework, where solutions of the
dynamical equations can be obtained in the rotating wave
approximation (RWA) [3,4] or by the perturbation method
[7]. RWA is suitable for resonant transitions and modest
incident laser intensities, which are usually discussed between
the lowest several LLs. The perturbation theory can easily
include the contribution from all LLs, and it works well
only for weak light intensities. Both theoretical prediction [3]
and experimental measurement [5] confirm that the LLs of
graphene have very weak saturation fields with values around
a few kV/cm. For intense light fields, the optical response
could be obtained by numerical simulation, but often such
calculations do not lead to physical insights into the underlying
physics. In this paper, we propose to investigate the nonlinear
response in the basis of Floquet states.

When electrons are driven by a periodic field at frequency
�, nonperturbative solutions can be found for the Schrödinger

equation with the inclusion of the light-matter interaction,
and the electronic states are described as Floquet states from
the Floquet theorem [13]. This approach is used to study the
gap opening by a laser field in graphene [14–16] and Floquet
topological insulators [17]. For graphene in the absence of a
magnetic field, it is also employed to study the transport and
linear optical properties [18–21], the dynamic Franz-Keldysh
effect [19,22], and sideband effects [19]. Recently, Kibis et al.
[23] used the Floquet theorem to study the optical and transport
effects of dressed LLs of graphene by a monochromatic field.
With adequate damping, the system can reach a steady state
that is also periodic in time and can be probed [24] by a weak
light with a different frequency ω. Generally, the response
current includes components at frequencies l� and l� + ω

with integer l. Most studies focus on the response current
components at frequencies � and ω; little attention is paid
to the components at other frequencies, which are essential
quantities for many nonlinear optical phenomena including
third-harmonic generation (THG) and FWM.

In this paper we extend the Floquet theorem to study op-
tical nonlinearity in the equation-of-motion framework under
relaxation-time approximation, and set up a connection be-
tween the obtained expressions and the perturbation results. We
apply this approach to the optical response of LLs of graphene.
Due to the strong light-matter interaction, this approach is
illustrated for fields below a few tens kV/cm, which can be
generated by a continuous-wave laser or long duration laser
pulse. For considered field strength, the relaxation-time ap-
proximation is still a widely used description [3] for scattering.
As such, we discuss the nonlinear response including THG and
FWM.

We organize the paper as follows. In Sec. II we derive the
expressions for the response currents and conductivities from
a general point of view. In Sec. III we apply the model to
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graphene under a strong perpendicular magnetic field. The
optical nonlinearities for its steady state are given in Sec. III A,
the probe conductivities when a probe field is introduced are
given in Sec. III B, and an experimental scheme for detecting
and analyzing these signals is suggested in Sec. III C. In Sec.
IV we conclude and discuss the possible issues to be fixed in
the future.

II. METHOD

We consider the optical response of an N -level system
(states labeled by Roman letters n = 1,2, . . . ,N) to an electric
field E(t). The Hamiltonian can be written as

Ĥ (t) = Ĥ0 + eθ (t)E(t) · ξ̂ , (1)

where −e is the electron charge, Ĥ0 is the unperturbed
Hamiltonian described by a N × N matrix with elements
(Ĥ0)mn = εmδmn, and ξ̂ is a matrix describing the dipole
interaction. A quantity with a hat Ô stands for a matrix with
row and column indexed by the level index n. The electric
field E(t) = Edrv(t) + Eprb(t) includes a driving field Edrv(t),
which can be strong, and a probe field Eprb(t), which is usually
very weak. The light-matter interaction is turned on at t = 0
suddenly. The time evolution of the system is described by the
equation of motion

h̄
∂ρ̂(t)

∂t
= −i[Ĥ (t),ρ̂(t)] − h̄γ [ρ̂(t) − ρ̂0], (2)

where ρ̂(t) is a single-particle density matrix. The last term is
a widely used phenomenological description of the scattering,
with ρ̂0 the density matrix at equilibrium state and γ a
relaxation parameter. We organize the formal solution as

ρ̂(t) = ρ̂0 + ρ̂drv(t) + ρ̂prb(t), (3)

ρ̂drv(t) = e

ih̄

∫ t

0
dτ eγ (τ−t)Û(t,τ )Edrv(τ ) · [ξ̂ ,ρ̂0]Û(τ,t),

(4)

ρprb(t) = e

ih̄

∫ t

0
dτ eγ (τ−t)Û (t,τ )Eprb(τ ) · [ξ̂ ,ρ̂(τ )]Û(τ,t),

(5)

where Û (t,τ ) = ∑
α ψα(t)ψ†

α(τ ) is a unitary matrix, and ψα(t)
satisfies the Schrödinger equation

ih̄∂tψα(t) = [Ĥ0 + eEdrv(t) · ξ̂ ]ψα(t), for t > 0. (6)

Because we are only interested in the solution at t > 0,
the factor θ (t) appearing in the Hamiltonian H (t) can be
ignored. Here the Greek subscript α stands for the index of the
eigenstate with the inclusion of the driving field. Obviously,
the unitary matrix satisfies Û (τ,τ ) = I . We are interested
in the response current density [7] J(t) = −e Tr[v̂ρ̂(t)] with
v̂ = [ξ̂ ,Ĥ (t)]/(ih̄) = [ξ̂ ,Ĥ0]/(ih̄). It can be written as J(t) =
Jdrv(t) + Jprb(t), where Jdrv(t) = −e Tr[v̂ρ̂drv(t)] is a driving
current and Jprb(t) = −e Tr[v̂ρ̂prb(t)] is a probe current.

Here we consider a special driving field, which is periodic,

Ed
drv(t) =

∑
l

E
(l);d
drv e−il�t . (7)

The Roman superscripts stand for the Cartesian directions x̂ or
ŷ. Using the Floquet theorem [13], the eigenstates are Floquet
states, which are dressed electronic states and can be expanded
as

ψα(t) = e−iεα t/h̄
∑

l

e−il�tu(l)
α , (8)

where εα is the αth quasienergy, u(l)
α is an N -row vector, and

{u(l)
α ,l = . . . , − 1,0,1, . . .} forms the αth eigenvectors. They

satisfy the eigenequation

(lh̄� + εα)u(l)
α = Ĥ0u

(l)
α +

∑
n

eE
(n);d
drv ξ̂ du(l−n)

α . (9)

Although {u(l+m)
α ,l = . . . , − 1,0,1 . . .} for integers m are also

eigenstates of Eq. (9) with energies εα + mh̄�, they corre-
spond to the same state ψα(t) in Eq. (6); only one of them needs
to be considered. The normalization of ψα(t) gives Tr[Â(l)

α1α2
] =

δα1α2δl,0 with Â(l)
α1α2

= ∑
l1

u(l1)
α2

[u(l1−l)
α1

]†. After some algebra,
we get

ρ̂drv(t) =
∑

l

e−il�t ρ̂
(l)
drv(t), (10)

ρ̂
(l)
drv(t) =

∑
α1α2l1

A(l1)
α2α1

G(l−l1)
α1α2

× [1 − e−γ t ei(l−l1)�te−i(εα1 −εα2 )t/h̄], (11)

G(l)
α1α2

= e
∑

l2
E

(l2);d
drv Tr

{
[ξ̂ d ,ρ̂0]Â(l−l2)

α1α2

}
lh̄� − (εα1 − εα2 ) + ih̄γ

. (12)

The term ρ̂
(l)
drv(t) includes oscillating terms related to the

correlations between Floquet states, but decaying with a factor
e−γ t . These terms correspond to damped Rabi oscillations.
As t → ∞, they vanish; ρ̂

(l)
drv(t) and ρ̂drv(t) reach their steady

states, which are also periodic in time. In the clean limit γ → 0,
an apparent divergence appears in the expression of G(0)

αα , which
can be shown to vanish from Eq. (9) [25]. This is not surprising
because our results are the full solutions of the Schrödinger
equation, which should not diverge. The asymptotic current as
t → ∞ is

J d
drv(t → ∞) =

∑
l

e−il�tJ
(l);d
drv , (13)

J
(l);d
drv = −e

∑
α1α2l1

v(l1);d
α2α1

G(l−l1)
α1α2

. (14)

We have used notation Tr[X̂Â(l)
α1α2

] = X(l)
α1α2

for X̂ = v̂d .

The effects induced by the driving field can be detected
by a probe light Eprb(t). It leads to a change of the density
matrix by ρ̂prb(t), and induces a probe current density Jprb(t).
Up to the linear order of Eprb, we solve ρ̂prb(t) in Eq. (5) by
setting ρ̂(τ ) = ρ̂0 + ρ̂drv(τ ). The asymptotic result as t → ∞
is

ρ̂prb(t → ∞) =
∫

dω

2π

∑
l

e−il�t−iωt eEb
p(ω)

∑
α1α2l1

Â(l1)
α2α1

× [
G(l−l1);b

α1α2
(ω) + P (l−l1);b

α1α2
(ω)

]
, (15)
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with

G(l);b
α1α2

(ω) = Tr
{
[ξ̂ b,ρ̂0]Â(l)

α1α2

}
lh̄� + h̄ω − (εα1 − εα2 ) + ih̄γ

, (16)

P (l);b
α1α2

(ω) =
∑

αl2

[
ξ (l−l2);b
α1α

G(l2)
αα2

− G(l2)
α1α

ξ (l−l2);b
αα2

]
lh̄� + h̄ω − (εα1 − εα2 ) + ih̄γ

. (17)

Here the term G is from ρ̂0, and the term P is from ρ̂drv. The
current density is then

J d
prb(t → ∞) =

∫
dω

2π

∑
l

e−i(l�+ω)t σ
(l);db
prb (ω)Eb

prb(ω),

with the probe conductivity

σ
(l);db
prb (ω) = −e2

∑
α1α2l1

v(l−l1);d
α2α1

[
G(l1);b

α1α2
(ω) + P (l1);b

α1α2
(ω)

]
. (18)

The quantities J
(l);d
drv and J

(l);d
prb (ω) are experimental observable

quantities, which can be extracted by measuring the light
intensity of the electromagnetic radiation at frequencies l�

and l� + ω, respectively. The driving field affects the probe
conductivities in two aspects: One is that the quasienergies
enter in the denominators of Eqs. (16) and (17). In the limit
of weak relaxation, this contribution is significant around
resonant peaks. The other is that the steady states of the density
matrix, including both the occupations at each quasistate and
the polarization between them, are changed by the driving field.
The latter dominates the cases away from the resonances.

It is constructive to connect our results with the usual
perturbative conductivities. Here the order l in both J

(l);d
drv

and σ
(l);db
prb (ω) corresponds to the response frequency l� and

l� + ω, respectively, instead of the orders of the driving field.
At a weak field, Eq. (9) can be solved perturbatively by treating
the last term as a perturbation. In the lowest order with taking
εα → εn = εn and X(l)

α1α2
→ X(l)

n1n2
= Xn1n2δl,0, J

(1);d
drv reduces

to the perturbation results [7]. In general, the remarkable
differences come from the denominator of Eqs. (12) and (17).
In the limit γ → 0, the absorption edge can be changed by
the driving field, which leads to the so-called dynamic Franz-
Keldysh effects [22]. For a finite γ , in the regime where the
perturbation theory works, this phenomenon may be smeared
out. Usually, the conductivities with the contribution from lh̄�

may be discussed in the content of sideband effects. As we will
show later, they can be associated with the nonlinear responses
for weak driving fields.

III. RESULTS

We apply this approach to graphene in a strong magnetic
field, B = B ẑ. The electronic states are LLs noted as |νsnk〉,
where ν = + (−) is a valley index for the K (K ′) valley,
s = ± is a band index, n � (1 + νs)/2 is a Landau index,
and k is a continuum index. The eigenenergies are Eνsn =
sεn, where with εn = √

nh̄ωc with h̄ωc = √
2h̄vF / lc and the

magnetic length lc = √
h̄/(eB). The energies depend on the

index “sn” only. The continuum index k gives a degeneracy
D = gs/(2πl2

c ) with gs = 2 for spin degeneracy, and this
index will be suppressed hereafter. There is no coupling
between these two valleys, and the matrix elements of position

and velocity operators in the νth valley can be written as
ξ ν;s1n1,s2n2

= ∑
τ=± ξ τ

ν;s1n1,s2n2
(x̂ − iτ ŷ)/

√
2 and vν;s1n1,s2n2 =

ih̄−1(s1εn1 − s2εn2 )ξ ν;s1n1,s2n2
. Inversion symmetry connects

the quantities in the two valleys according to ξ+;s1n1,s2n2
=

s1s2ξ−;(−s1)n1,(−s2)n2
. Considering the Hermiticity of these

quantities, all relevant matrix elements can be generated from
v+

+;s1n1,s2n2
= s1vF δn1,n2+1(δn2 �=0/

√
2 + δn2,0δs2,−1).

In our calculations, the parameters are taken as B = 5 T,
h̄� = 0.05 eV, the chemical potential μ = 0 eV, the tem-
perature T = 10 K, and h̄γ = 10 meV. The driving field is
E(l)

drv = E0 x̂(δl,1 + δl,−1), and the density matrix at equilib-
rium is ρ0

ν;s1n1,s2n2
= [1 + e(s1εn1 −μ)/(kBT )]−1δs1s2δn1n2 with kB

the Boltzmann constant. The calculated Floquet states ψα(t)
in the ν valley are denoted as |να〉f with α = −Nc, − Nc +
1, . . . ,Nc − 1,Nc and Nc = 20 being the cutoff of the Landau
index, and their quasienergies are noted as ενα . The driving field
is taken as E0 < 60 kV/cm, in which our results are converged
for the specified Nc. The energies of the lowest several LLs are
εn = 0, 81, and 115 meV for n = 0, 1, and 2, respectively.
The driving photon energy does not match any of the resonant
conditions.

For a linearly polarized field, the system retains the electron-
hole symmetry, thus we can choose the quasienergies of the
Floquet states to satisfy ενα = −εν(−α), and εν0 = 0; the occu-
pation [ρ̂(l)

drv]ν;sn,sn at the LL |νsn〉 also satisfies [ρ̂(l)
drv]ν;+n,+n =

−[ρ̂(l)
drv]ν;−n,−n and [ρ̂(l)

drv]ν;−0,−0 = 0. Furthermore, due to the
crystal symmetry, the current responses J

(l);d
drv and σ

(l);db
prb (ω) are

nonzero only for odd order of l, and the density matrix ρ
(l)
drv(t)

is nonzero only for even order of l. For a comparison with our
previous work [7], we denote the perturbative conductivities as
σ

(n)
pert. In this paper, the relevant conductivities are σ

(1);xx
pert (�) and

σ
(3);xxxx
pert (�,�, ± �) for the driving field, and σ

(3);xxxx
pert (�, ±

�,ω) for the probe field.

A. Current density response to the driving field

In Fig. 1 we plot the effective conductivity σ
(1)
eff = J

(1);x
drv /E0

at a fundamental frequency � and σ
(3)
eff = J

(3);x
drv /E3

0 at the third-
harmonic frequency 3� as a function of the field amplitude
E0. We first compare these results with perturbation theory to
determine the field threshold. At weak fields, up to the third
order the effective conductivities are expanded as

σ
(1)
eff ≈ σ

(1);xx
pert (�) + 3σ

(3);xxxx
pert (�,�, − �)E2

0 , (19)

σ
(3)
eff ≈ σ

(3);xxxx
pert (�,�,�). (20)

The perturbation results give σ−1
0 σ

(1);xx
pert = 0.55 − 1.27i

with σ0 = e2/(4h̄), σ−1
0 σ

(3);xxxx
pert (�,�, − �) = (0.128 +

0.0108i) × 10−12 m2/V2, and σ−1
0 σ

(3);xxxx
pert (�,�,�) =

(−1.2 + 0.91i) × 10−13 m2/V2; they are plotted in Fig. 1(a)
as dashed curves. They agree with the full calculations
very well when the field is E0 < 5 kV/cm (for σ

(1)
eff ) or

E0 < 3 kV/cm (for σ
(3)
eff ) with an error less than 5%. These

small thresholds indicate an extremely strong interaction
between the periodic field and the LLs of graphene. For
large E0, the real part of σ

(1)
eff increases with the field with

a slope slower than the perturbation results, and reaches a
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FIG. 1. Current density induced by the periodic driving field
for E0 � 60 kV/cm. (a) The effective linear conductivity. (b) The
effective conductivity for THG. The dashed curves are perturbation
results given in the right-hand side of Eqs. (19) and (20).

peak with value 1.58σ0 at E0 ∼ 33 kV/cm; then it shows one
oscillation and arrives at another peak at E0 ∼ 51 kV/cm.
The imaginary part of σ

(1)
eff firstly increases with the field by a

larger slope, then reaches a peak around E0 ∼ 51 kV/cm. At
E0 ∼ 33 kV/cm, the imaginary part shows a shoulderlike fine
structure. From our discussion in Sec. II, we can understand
these features from the properties of Floquet states.

In Fig. 2(a) we plot the field dependence of the quasienergies
ε+α for states | + α〉f in the K valley for 1 � α � 7. At zero
field, these states correspond to the LLs | + +n〉 for 1 � n �
7. From electron-hole symmetry we can obtain their opposite
energy counterparts ε+α = −ε+(−α) and ε+0 = 0. We focus on
the quasistate | + 1〉f , which corresponds to the LL | + +1〉
at zero field. Its quasienergy shows a complicated dependence
of E0. It starts with 81 meV at zero field, and reaches a local
maximum around 113.5 meV at about E0 = 33 kV/cm, then
decreases to a local minimum with values 97 meV at E0 =
51 kV/cm, and increases again. For small fields, the energy
corrections come mostly from the LLs | + −0〉 and | + s2〉,
due to the selection rules.

For strong fields, the Floquet states mix more LLs; the selec-
tion rules between Floquet states can be greatly modified from
those between LLs. As an example, we analyze the behavior of
the state | + 1〉f around E0 ∼ 33 kV/cm. The energy of this
Floquet state is close to that of | + 4〉f , which is shown in the
same diagram by plotting an equivalent quasienergy ε+4 − h̄�

as a dashed curve. Their interaction is allowed and leads
to an anticrossing (about 1 meV splitting). Similar behavior
occurs around the local minimum at E0 ∼ 51 kV/cm, which

0.2

0.1

0
60300

(b)

[ρ̂
(0

)
d
rv

] +
;+

n
,+

n

E0 (kV/cm)

0.2

0.1

(a)

eV

FIG. 2. (a) Field dependence of quasienergies ε+α in the K valley
for 1 � α � 7. The two dashed curves correspond to the energy
ε+α − h̄� for α = 3 and 4. (b) Field dependence of the zeroth-order
occupations at different LLs | + +n〉 for 1 � n � 7.

is induced by the interaction between the quasistates | + 1〉f
and | + 3〉f . Besides the modification of the selection rules, the
strong field can also greatly change the occupations on each LL,
as shown in Fig. 2(b) for the occupation [ρ̂(0)

drv(t → ∞)]+;+n,+n

of the LL | + sn〉 for 1 � n � 7. When E0 > 30 kV/cm,
the occupation at the LL | + +1〉 is about 0.2, significantly
deviating from its thermal equilibrium (∼0). Therefore, both
the quasienergies and the populations show similar tendencies
as the optical conductivity σ

(1)
eff , and they dominate the optical

response induced by the driven field, as we discussed in Sec.
II. This partly explains why the perturbation theory based on
the thermal equilibrium fails.

In Fig. 1(b) we give the field dependence of the optical
conductivity σ

(3)
eff for THG. Both the real and imaginary parts

of σ
(3)
eff decrease quickly to very small values, and the imaginary

part shows a valley around E0 ∼ 20 kV/cm. Similar to σ
(1)
eff ,

σ
(3)
eff are mainly affected by the changes of optically excited

populations. Its real and imaginary parts behave in a similar
way because there is no specific physical process to distinguish
them.

B. Probe conductivities

The effects of the intense fields on the LLs can be charac-
terized by a weak optical field. In Fig. 3 we plot the spectra
of σ

(0);xx
prb (ω) for driving fields E0 = 1, 10, 20, and 51 kV/cm.

For a weak field E0 = 1 kV/cm, the probe conductivities in
Eq. (18) can be described perturbatively, and up to the third
order it is

σ
(0);xx
prb (ω) ≈ σ

(1);xx
pert (ω) + 6σ

(3);xxxx
pert (�, − �,ω)E2

0 . (21)

Our calculation agrees with the perturbation results very well,
indicating that the peaks in the real part can be understood by
the transition between different LLs. For all three other electric
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FIG. 3. The spectrum of the probe conductivity σ
(0);xx
prb (ω) for

different driving fields with (a) the real part and (b) the imaginary
part. The inset in (a) shows the perturbative third-order conductivity
[7] σ (3);xxxx(�, − �,ω) with the x axis also in h̄ω ∈ [0,0.4] eV. The
gray curves in (a) and (b) are the perturbative probe conductivity up
to the third order for E0 = 10 kV/cm.

fields, our calculations differ from the perturbation predictions
significantly. As an example, the disagreement is shown for the
case of E0 = 10 kV/cm. This is consistent with the results in
previous sections where the perturbation theory fails for fields
stronger than 3 kV/cm. For E0 = 51 kV/cm, most of these
peaks are smeared out and a significant one appears at a very
low photon energy around h̄ω = 23 meV. With increasing the
driving field, the spectra manifest several features including the
shift of the peak positions, the appearance of new peaks, and
the lowering of the original peak values. The characterization
energies, which should be related to the quasienergies of the
dressed states, also become vague. This seems to contradict
our analyses for Eqs. (16) and (17). They can be understood
as follows: (1) The LLs of graphene are not equally spaced.
At high driving field, the excited carriers enable new transition
channels, which result in peaks at new photon energies. (2)
With taking into account the sideband effects, the transition
energies should be in a form ενα1 − ενα2 − lh̄�, where the
integer l indicates a sideband contribution. In company with
(1), the peaks become very dense, especially for intense
driving fields. (3) The relaxation parameter is h̄γ = 10 meV,
which effectively broadens the transition peaks and smears out
the conductivity. All these mechanisms suggest complicated
energy scales involved in the system, and they are easier to
be understood from the results with setting a small relaxation
parameter in Eqs. (16) and (17).
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FIG. 4. The spectra of Re[σ (0);xx

prb (ω)] for E0 = 1, 10, 20, and 51
kV/cm. The relaxation parameters in Eqs. (16) and (17) are taken as
10 meV (thick curves) and 0.5 meV (thin curves, scaled by a factor
1/20), respectively. The arrows at the bottom indicate the transition
peaks for the results at the smaller relaxation parameter: a1 is for
E0 = 1 kV/cm, bi is for 10 kV/cm, and ci is for E0 = 20 kV/cm.

Figure 4 shows the real parts of the probe conductivities with
taking h̄γ = 0.5 meV. Due to the small relaxation parameter,
all peaks are sharper and narrower. The peaks at a1, b1, and
c1 are induced by the transitions between |ν0〉f → |ν1〉f and
|ν − 1〉f → |ν0〉f ; these transitions are allowed in the absence
of the driving field. Besides the position shifts due to the
energy changes of the dressed states, the values of the peaks
decrease too, due to the population changes. The peaks at b2

and c2 are induced by the sideband at l = 1 of the transitions
between |ν0〉f → |ν2〉f and |ν − 2〉f → |ν0〉f . Without the
driving field, these transitions are forbidden due to the selection
rules of LLs [7]; they become allowed because the driving
field mixes the wave functions. The peaks at b3 and c3 are
induced by the sideband at l = 2 of the transitions between
|ν0〉f → |ν3〉f and |ν − 3〉f → |ν0〉f ; and the peak at c4 is
induced by the sideband at m = 4 of the transitions between
|ν − 2〉f → |ν3〉f and |ν − 3〉f → |ν2〉f . For the small relax-
ation parameter, the real parts of the probe conductivity could
be negative for some photon energies, which are attributed to
the energy transfer from the driving field to the probe field. With
increasing the relaxation parameter to h̄γ = 10 meV, these
peaks are broadened. Two neighbor peaks merge into one if
their distance is shorter than the relaxation parameter. When the
electric field increases to 51 kV/cm, the wave function mixing,
the sideband effects, and population changes are all greatly
enhanced, and more transition peaks appear; the broadening by
the relaxation parameter becomes significant. Because there
are no special energy scales, these transition peaks can be
thought as distributing at all photon energies randomly; for
the large relaxation parameter, they are smeared out to give
a smooth curve. However, due to excited populations at all
dressed states, the transitions between neighbor quasilevels,
which contributes like a Drude contribution, show a peak at
small photon energies.

The system can also be detected by utilizing the re-
sponse currents at frequencies ω ± 2�, which are determined
by the conductivity σ

(±2);xx
prb (ω) for FWM. The results are
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FIG. 5. The spectrum of the probe conductivity σ
(0);xx
prb (ω) for

different driving fields with (a) the real part and (b) the imaginary
part.

shown in Fig. 5. At weak driving fields E0 = 1 kV/cm, the
results recover the perturbative conductivities σ

(2);xx
prb (ω) =

σ (3);xxxx(�,�,ω), and σ
(−2);xx
prb (ω) = [σ (3);xxxx(�,�, − ω)]∗

very well. With increasing the field strength, the spectra of this
conductivity show similar behavior to those of the conductivity
σ

(0);xx
prb (ω), and they are induced by the influences of the driving

field on the system.

C. A possible probe scheme

In order to connect our calculation with experiments, we
propose a possible probe scheme with theoretical analyses
for the radiation signal at different frequencies. A possible
structure is to put a graphene sheet on top of a substrate with
a refractive index n(ω). Both the driving and probe fields are
normally incident from above, and the detection signals are the
power of the upward radiation fields, as shown in Fig. 6.

Using the Green’s function technique [26] and the transfer
matrix formalism [27], the radiation field at frequency ω1 can
be expressed as

E(ω1) = Ei(ω1) + 2

1 + n(ω1)
Er (ω1), (22)

Er (ω1) = − 1

2cε0
J (ω1), (23)

where Ei(ω1) is the incident field from above, E(ω1) is the field
experienced by the electrons in the graphene sheet, Er (ω1) is
the field for detection, and J (ω1) is a functional of E(ω). In our
notation, E(�) = E0, E(ω) = Eprb(ω). In previous sections,

FIG. 6. Structure for detecting the radiation field. A graphene
sheet is put on top of a substrate with a refractive index n(ω1). Both
the driving field Edrv;i(�) and the probing field Eprb;i(ω) are incident
normally from above. The detection signal is the power of upward
radiation field Er (ω1) generated from the response current J(ω1) in
the graphene layer. The polarizations of both the incident fields and
the detection fields are along the x̂ direction.

we have discussed the currents at frequencies �, 3�, ω, and
ω ± 2�. Here we give connections between these currents and
the amplitudes of measurable fields for given incident fields.

(1) For the current J (�) = Jdrv(�) and the radiation field
Er (�): The field E0 that electrons feel in the graphene sheet
is different from the incident driving field Edrv;i(�) due to the
reaction field. From Eqs. (22) and (23) the relation between
the response current and the field is

E0 = Edrv;i(�) − 2

1 + n(�)

J
(1);x
drv (�)

2cε0
. (24)

Together with the current J
(1);x
drv (�) induced by E0 as shown in

Fig. 1(a), both J
(1);x
drv and E0 can be solved consistently. The ra-

diation field is obtained from Er (�) = −J
(1);x
drv (�)/(2cε0) and

further, the intensity is obtained from Ir (�) = 2cε0|Er (�)|2.
(2) For the third-harmonic generation at 3�: There is no

incident field at frequency 3�. With the solution E0 obtained
in the previous step, the response current at 3� is J (3�) =
σ

(0);xx
prb (3�)E(3�) + J

(3);x
drv . Setting ω1 = 3� in Eqs. (22) and

(23), we get

Er (3�) = −ξ (3�)
J

(3);x
drv

2cε0
, (25)

where the coefficient is given by

ξ (ω) = 1

1 + 2
1+n(ω)η

(0)(ω)
(26)

with η(j )(ω) = σ
(j );xx

prb (ω)/(2cε0).
(3) For the reflectivity of the probe field at ω: The cur-

rent is given by J (ω) = σ (0);xx(ω)Eprb(ω). Setting ω1 = ω in
Eqs. (22) and (23), we get Er (ω) = R(ω)Eprb;i(ω) with the
reflectivity R = −η(0)(ω)ξ (ω). The total field that electrons
feel in the graphene sheet is Eprb(ω) = ξ (ω)Eprb;i(ω).

(4) For the FWM signal: The current for FWM is J (ω ±
2�) = σ (0);xx(ω ± 2�)E(ω ± 2�) + σ (±2);xx(ω)Eprb(ω);
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substituting into Eqs. (22) and (23), we get

Er (ω ± 2�) = −ξ (ω ± 2�)η(±2)(ω)ξ (ω)Eprb;i(ω). (27)

The field amplitude is determined by three conductivities
σ

(0);xx
prb (ω), σ

(0);xx
prb (ω ± 2�), and σ

(±2);xx
prb (ω).

IV. CONCLUSION

In this study of the optical response induced by an intense
periodic field, we constructed a theoretical framework based
on the Floquet theorem, and derived the expressions for the full
induced optical current. These expressions were used to study
graphene subject to a strong perpendicular magnetic field. By
comparing with a perturbation theory up to the third order, we
determined the threshold field where the perturbation theory
broke down. We understood these nonperturbative behaviors
from the Floquet states, which could be detected by a weak
light field in an optical method. We proposed an experimental
scheme to observe these responses and linked the output signal

with the input field and our calculated quantities. Our results
can be extended to other systems.

There exist two unsolved issues in this approach: one is
related to the driving field. Because most strong incident fields
are laser pulses, they cannot be treated by a formalism based
on fully periodic fields in a straightforward way. It would be
necessary to extend the Floquet theorem to pulsed fields, even if
appropriate approximations were required. The other is related
to the phenomenological relaxation-time approximation used
in Eq. (2). As a widely adopted approximation in perturbation
theory for preliminary studies, it is not clear whether or not it
can be used, or how it would be implemented for very strong
fields. Although a microscopic treatment of the scattering is
possible [6,28], it would still be desirable to develop simpler
descriptions that might lead to more physical insight.
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