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In order to suppress complex mixing noise in low-illumination images for wide-area search of nighttime sea surface, a 

model based on total variation (TV) and split Bregman is proposed in this paper. A fidelity term based on L1 norm and 

a fidelity term based on L2 norm are designed considering the difference between various noise types, and the regu-

larization mixed first-order TV and second-order TV are designed to balance the influence of details information such 

as texture and edge for sea surface image. The final detection result is obtained by using the high-frequency compo-

nent solved from L1 norm and the low-frequency component solved from L2 norm through wavelet transform. The 

experimental results show that the proposed denoising model has perfect denoising performance for artificially de-

graded and low-illumination images, and the result of image quality assessment index for the denoising image is supe-

rior to that of the contrastive models. 
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In recent years, the quantum efficiency and the energy 
response of the back-illuminated sensor are effectively 
enhanced with the improvement of the sensor manufac-
turing technology. Visible light cameras have gradually 
become capable of low-illumination imaging, which has 
played an important role in the area of wide-area search 
at night. However, compared with the images acquired in 
normal environment, the low-illumination images have 
more obvious noise, which has a serious impact on the 
target detection and recognition. Therefore, there is an 
urgent need to design an effective low-illumination im-
age denoising method. 

Denoising aims to reduce the influence produced by 
noise. This issue was widely discussed and a series of 
methods were proposed after years of study. At present, 
the image denoising methods include filtering method, 
partial differential equation method, nonlocal method, 
etc[1-6]. Although these methods may have a good effect 
of removing impulsive noise, Gaussian noise or Poisson 
noise of an image, the denoising effect on the images 
mixed with multiple noises is mostly limited. In recent 
years, the total variation (TV) method has been a typical 
way to restore an image with heavy noise. Typically, TV 
model formulates image denoising as an inverse prob-
lem: 

f=Hu+n,                                  (1) 
where f is a measurement image, u is an unknown true 
image, H is a linear operator denoting, and n is the addi-
tive noise. 

The most famous approach to restore u is to solve the 
minimization problem: 

1 2min ( ) ( )
u

R u R u+ .                               (2) 

According to different noise types, R1(u) is the certain 
data fitting term, and R2(u) denotes the regularization 
term. 

Numerous improved algorithms based on TV have 
been proposed aiming at different types of noises, such 
as impulsive noise, Gaussian noise, Poisson noise, etc. 
Sutour[4] minimized TV model with a nonlocal data fi-
delity term. Lanza[7] used parameterized non-convex 
regularization and induced sparsity of the gradient mag-
nitudes. Lazzaro[8] developed the weighted TV model via 
an edge driven metric which effectively reduces compu-
tation complexity and time. Wang[9] proposed a wavelet 
frame-based variational model with the ability of pre-
serving key features for Poisson noise removal. Shen[10] 
introduced nonlocal similarity model in TV in the wave-
let domain which can suppress the heavy noise and pre-
serve the details of images. Selesnick[11] proposed a new 
cost function involving a nonconvex penalty based on
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the Moreau envelope and it can be implemented using 
forward-backward splitting. Chen[12] presented the 
Moreau envelope viewpoint for the L1/TV image de-
noising model and five variants were proposed which 
characterize the solutions of the models. However, most 
denosing methods above depend on signal or 
high-frequency noise, which are not effective in the ap-
plication of low-illumination sea image denoising be-
cause the noises are mixed and heavy with different fre-
quencies in this condition. 

In this paper, for the night wide-area search (search for 
ships within a large area of the ocean) application, an 
improved framework based on TV and split Bregman is 
introduced for image denoising with complex mixed 
noises, and first-order TV and second-order TV are con-
tained in the regularization term which can hold image 
information with different detail requirements. 

In the normal case of camera imaging, the output noise 
is not a major factor that affects image quality. However, 
when the imaging illumination is low, the difference in the 
magnitude of the noise and background image information 
decreases as the exposure time increases, and the noise 
will not be ignored or even cover some of the image in-
formation. At that time, the noise can be produced by the 
interference process in the objective environment, the 
readout process by the charge coupler, the signal sampling, 
quantizing and transmitting, etc. According to the charac-
teristics of their dispersion and randomness, the noises can 
be divided into impulsive noise (random distribution), 
Poisson noise (Poisson distribution) and Gaussian noise 
(Gaussian distribution), as shown in Fig.1. 

 

 

Fig.1 Imaging effect of GSENSE400 detector in the (a) 
blackboard and (b) whiteboard (illumination: 0.05 lx, 
exposure time: 500 ms) 

 
For the terrestrial scene, only impulsive noise is obvi-

ous in the case of low illumination because of the rich 
information of the image, but for the sea surface images, 
the dark background makes the three kinds of noises 
more significant. Based on the analysis above, the classic 
noise model (1) can be expressed as: 

1

2

( , ) ( , )     ( , )
( , )

( , )                  ( , ) c

H u i j n i j i j
f i j

n i j i j

+ ∈Λ
=  ∈Λ

,           (3) 

where Λ is the index set of certain pixel, n1 represents 
additive Gaussian noise and Poisson noise on the domain 
Λ, and n2 represents the value of impulsive noise on the 
domain Λc.  

Eq.(2) is often expressed in the form of the following 
objective equation for the denoising problem: 

1
min{ ( )}

2
Hu f u

ω
λ ϕ− + ×  ,                 (4) 

where ǁ ǁω represents Lω norm. Normally, the fidelity of 
ω=2 can produce an optimal estimation in the presence 
of Gaussian noise. The fidelity of ω=1 can suppress the 
negative impact caused by outliers, but the adverse effect 
is that most other Gaussian noise pollution data is not 
suitable. Considering the image in this paper contains a 
variety of noises, we design the denoising method shown 
in Fig.2. In this paper, we obtain two images with exces-
sive removal of high frequency and incomplete removal 
of low frequency through L2 norm and L1 norm design 
respectively, and the final denoising effect is obtained by 
mixing and accumulating the high and low frequency 
information of two images, which can achieve the re-
moval of noise and the preservation of the image details. 

 

Fig.2 Flow chart of the proposed method 
The method is divided into three steps: 
Step1. For the removal of all mixed noises. A fidelity 

term which contains impulsive noise based on L2 norm 
is designed, and the regularization mixed first-order TV 
and second-order TV are designed to balance the influ-
ence of details information, such as texture and edge for 
sea surface image. In order to avoid the absorption of 
high-frequency feature information brought by the in-
troduction of impulse noise term, we adopt a regulariza-
tion scheme that contains both information to be recov-
ered and additional noise. 

The TV model is used to solve the blind image in-
painting problem: 

2 2

1 2 32 1 11,

1
min

2u v
u v f u u vλ λ λ+ − + ∇ + ∇ + ,        (5) 

where f is the observed image, u is the image that is 
waiting to be recovered, and v is the mixed noises in the 
observed image. For the variable v, the model of regu-
larization term is restricted to the following assumption 
that the percentage of impulsive noise is less than a 
threshold value as Ref.[13], which means that it is sparse 
on the situation as a whole for one image. λ1, λ2 and λ3 
are nonnegative parameters. ∇  is the gradient operator, 
∇ 2 is the Laplace operator, and they are defined as: 

22

1 x yu u u∇ = ∇ + ∇ ,                 (6) 

2 22

1

T T
x x y yu u u∇ = ∇ ∇ + ∇ ∇ .              (7) 

In Eq.(5), it is designed by mixing high and low orders, 
and L1 module based ∇ operator and ∇ 2 operator is 
selected as a regularization term. The parameters λ1 and 
λ2 are used to balance the weights of the two operators, 
which can balance the edge effect and the ladder effect in 
different scenes. But when we have a higher requirement 
on texture details, adjusting λ is not enough to completely 
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compensate for the edge loss at that time. 
Step2. For the removal of impulsive noise. We design 

a regularization term based on L1 norm, and the regu-
larization mixed first-order TV and second-order TV are 
designed as Step1. The TV model is used to solve the 
blind image inpainting problem at this time: 

2

1 21 1 1
min

u
u f u uλ λ− + ∇ + ∇  .           (8) 

The parameters in Eq.(8) have the same meanings as 
Step 1. In Eq.(8), the high-frequency noise and some 
low-frequency noise are effectively removed, and the 
image details are effectively preserved. 

Step3. We obtain the high and low frequency compo-
nents L1, H1, L2, H2 by using the wavelet transform of u1 
and u2 acquired by Step1 and Step2: 

1 1 1 2 2 2[ , ] ( ) ,   [ , ] ( )L H WT u L H WT u= =  .          (9) 

Finally, the inverse wavelet transform is used to syn-
thesize low-frequency components of Step1 and 
high-frequency components of Step2 to obtain the final 
denoising image u: 

u=WT−1(L1, H2).                           (10) 
The minimization problem can be solved by split 

Bregman iteration. The split Bregman algorithm was first 
proposed by Goldstein and Osher in Ref.[14] and it was 
applied in solving image restoration model based on L1 
regularized problem effectively. 

We replace ∇ u and ∇ 2u by two new variables d1 
and d2: 

1d u→ ∇ , 2

2d u→ ∇  .                     (11) 
Eq.(5) can be rewritten as: 

2

1 1 2 2 32 1 1 1,

1
min   ,

2u v
u v f d d vλ λ λ+ − + + +   

2

1 2s.t.  ,d u d u= ∇ = ∇ .                      (12) 

In order to make Eq.(12) simpler to solve, the con-
strained optimization problem can be converted into an 
unconstrained optimization problem:  

21 1 1 1

1 2 1 12 1,

1
( , , , ) min

2
k k k k

u v
u v d d u v f dλ+ + + + = + − + +   

2 221 2
1 1 2 2 2 2 31 12 22 2

k kd u b d d u b v
γ γλ λ− ∇ − + + − ∇ − + .(13) 

Then we solve the unconstrained optimization prob-
lem (13) with the following split Bregman based iterative  

schemes:  

1

2 2 21 21 2
1 1 2 22 2 2

21 1

3 12

21 11
1 1 1 1 11 2

1
min  

2 2 2
1

min                                                  
2

min                                      
2

k k k k k k

u

k k

v

k k k

d

u u v f d u b d u b

v u v f v

d d d u b

γ γ

λ

γλ

+

+ +

+ +

= + − + −∇ − + −∇ −

= + − +

= + −∇ −

2

21 2 12
2 2 2 2 21 2

1 1 1

1 1 1

1 2 1 1

2 2 2

   

min                                      
2
                                                                    

            

k k k

d

k k k k

k k k k

d d d u b

b b u d

b b u d

γλ+ +

+ + +

+ + +

= + −∇ −

= +∇ −
= +∇ −                                                       
















.(14) 

Eq.(5) then can be solved with the numerical algo-
rithm below. 

In the numerical algorithm above, Γ(λ, z) is the 
soft-thresholding operator designed by: 

Γ(λ, z)=sgn(z)max{|z|−1/λ, 0}.                (15) 

Algorithm 1: Numerical algorithm for solving Eq.(5): 
( ) Set the initial guesses ⅰ u0, v0, d1

0, d2
0, b1

0, b2
0; 

( ) Choose appropriate parameters ⅱ λ1, λ2, λ3, γ1, γ2; 
( ) Forⅲ  k=0,1,… , iterate until convergence. 

3

1 1

2 2

1 T 2 T 2 1 T

1 2 1 1 1

2 T

2 2 2

1 1

1 1

1 / 1

1 2 1

2 / 2

1 1 1

1 1 1

1 2 1 1

2 2 2

(1 ( ) ) [ ( )

( ) ( ) ( )]

( )

( )

( )

k k k

k k k

k k

k k k

k k k

k k k k

k k k k

u d b

d b f v

v f u

d u b

d u b

b b u d

b b u d

λ

λ γ

λ γ

γ γ γ
γ
Γ
Γ
Γ

+ −

+ +

+ +

+ +

+ + +

+ + +

 = + ∇∇+ ∇ ∇ ∇ − +


∇ − + −
 = − = ∇ +
 = ∇ +
 = +∇ −
 = +∇ −

.          (16)
 

Then, solve Eq.(8). We replace u − f, ∇ u and ∇ 2u 
by three new variables d1, d2 and d3: 

1d u f→ −  , 2d u→ ∇ , 2

3d u→ ∇  .           (17) 

Then Eqs.(12)—(14) can be rewritten as Eqs.(18) 
—(20): 

2

1 1 2 2 3 1 2 1 3 21 1 1
min    s.t. ,  ,

u
d d d d u f d u d uλ λ+ + = − =∇ =∇  ,    (18) 

21 1 1 1 1
1 2 3 1 1 1 2

( , , , ) min
2

k k k k k

u
u d d d d d u f b

γ+ + + + = + − + − + 

2 2232
1 2 2 2 2 3 3 31 12 22 2

k kd d u b d d u b
γγλ λ+ − ∇ − + + − ∇ − , (19) 

 .                         (20) 
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Eq.(8) then can be solved with the numerical algo-
rithm below. 

Algorithm2: Numerical algorithm for solving Eq.(8): 
(ⅰ) Set the initial guesses u0, d1

0, d2
0, d3

0, b1
0, b2

0, b3
0; 

(ⅱ) Choose appropriate parameters λ1, λ2, γ1, γ2, γ3; 
(ⅲ) For k=0,1,… , iterate until convergence. 

1

1 2

2 3
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T 2 T

2 2 2 3 3 3

1 1

1 1/ 1

1 1

2 / 2

1 2 1

3 / 3

1 1 1

1 1 1

1 1 1

2 2 2

1 2

3 3

( ( ) ) [ ( )

( ) ( ) ( )]

( )

( )

( )

k k k

k k k k

k k k

k k k

k k k

k k k k

k k k k

k k k

u d f b

d b d b

d u f b

d u b

d u b

b b u f d

b b u d

b b u

γ

λ γ

λ γ

γ γ γ γ
γ γ

Γ
Γ
Γ

+ −

+ +

+ +

+ +

+ + +

+ + +

+

= + ∇ ∇+ ∇ ∇ + − +
∇ − + ∇ −

= − +

= ∇ +

= ∇ +

= + − −
= +∇ −
= +∇ 1 1

3
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−

.       (21) 

We examined the performance of the proposed algo-
rithm in comparison with three previous denoising 
methods generally recognized as effective: 
block-matching and 3D filtering (BM3D)[3], anisotropic 
TV denoisng (ATV)[15], non-local means (NLM)[4]. The 
denoising performance is measured by the peak signal to 
noise ratio (PSNR), and PSNR is defined as: 

2

10 1010 log 20 log
MAX MAX

PSNR
MSE MSE

= × = ×  ,      (22) 

21 1

0 0

1
( , ) ( , )

m n

i j

MSE u i j u i j
mn

− −

= =

′= −  ,         (23) 

where MAX is the maximum pixel value of the image, u, 
u′ denote the original image and restored image, m and n 
are the horizontal and vertical pixel numbers, respec-
tively. 

In the first experiment, four typical 512×512 images 
with ship targets (Fig.3) are used as original images in 
order to examine the denoising performance for signal 
noise. The four images contain three kinds of standard 
vessels of hundred meters, ten meters and meters, and  
cover two application modes including high-resolution 
target recognition and low-resolution target search, 
which are well represented in marine target monitoring 
applications. All the four images are blurred with Gaus-
sian noise, impulsive noise with 0-means and different 
standard deviation values σ=0.05, 0.10, 0.15 and Poisson 
noise. The PSNR values of restored images with different 
methods are shown in Tab.1, and Fig.4 shows the exam-
ples of restored images. 

The second experiment is used to examine the denois-
ing performance for multiple noises. The noise order of 
low-illumination imaging corresponds to adding mixed 
Gaussian noise, impulsive noise with 0-means and dif-
ferent standard deviation values σ=0.15 and Poisson 
noise. In this experiment, the same four typical images 
above adding multiple noises of low-illumination noise 
order are used as degraded images. Fig.5 shows the re-
stored images using different methods and their PSNR 
values are shown in a histogram in Fig.6. 
 

 

Fig.3 Typical images 

 

Tab.1 PSNR (dB) of BM3D, NLM, ATV, OURS for four typical images (signal noise) 

Image1 BM3D NLM ATV OURS Image2 BM3D NLM ATV OURS

Noise σ PSNR PSNR PSNR PSNR PSNR Noise σ PSNR PSNR PSNR PSNR PSNR

0.05 20.35 23.96 21.99 23.03 24.04 0.05 18.65 19.78 20.01 18.60 20.07

0.10 20.30 24.05 21.96 23.06 24.05 0.10 18.61 19.58 20.01 18.37 19.95Gaussian 

0.15 20.11 24.12 21.92 23.14 24.05

Gaussian

0.15 18.54 19.81 20.04 18.69 20.04

0.05 26.40 26.26 26.99 23.53 27.52 0.05 19.38 19.77 19.92 18.33 21.08

0.10 24.34 24.96 25.66 23.51 27.84 0.10 19.01 19.57 18.89 18.10 20.03Impulsive  

0.15 21.33 23.09 23.78 21.58 26.83

Impulsive 

0.15 18.54 19.16 18.61 18.00 19.97

Poisson  25.40 26.26 26.29 23.83 27.03 Poisson  18.79 19.41 19.25 18.98 19.94

Image3 BM3D NLM ATV OURS Image4 BM3D NLM ATV OURS

Noise σ PSNR PSNR PSNR PSNR PSNR Noise σ PSNR PSNR PSNR PSNR PSNR

0.05 20.30 23.90 22.15 23.00 25.19 0.05 9.28 9.23 9.00 10.07 12.27

0.10 20.27 24.03 22.18 23.39 25.50 0.10 9.17 9.21 9.01 9.34 11.65Gaussian 

0.15 20.09 24.43 22.16 23.40 25.48

Gaussian

0.15 8.95 8.94 8.89 9.11 11.53

0.05 25.76 26.34 27.70 25.56 29.67 0.05 9.90 10.08 9.92 9.87 13.87

0.10 24.26 25.53 26.34 24.79 29.63 0.10 9.81 10.00 9.79 9.64 13.95Impulsive  

0.15 22.10 24.51 24.28 22.49 29.61

Impulsive 

0.15 9.42 10.01 9.64 9.41 13.88

Poisson  25.76 26.38 26.98 23.86 27.28 Poisson  9.28 9.95 9.59 9.81 12.50
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It can be seen in Tab.1 and Fig.4 that for Gaussian 
noise and Poisson noise, the results from our method are 
slightly better than those of BM3D and NLM. For im-
pulsive noise, our method has better performance than 
other comparison methods obviously. From Fig.5 and 
Fig.6, we can see that the values of PSNR have signifi-
cant difference and our method is a unique algorithm 
which can restore images with mixed Gaussian, Poisson 
and impulsive noises. Though our method has a better 
PSNR, the over-smooth problem still exists and edge 
details lose in a manner, which forms a constraint for 
large targets with texture details but a supremacy for  

small and weak targets. 
In the third experiment, an actual remote sensing cam-

era imaging and testing experiment is designed in order 
to verify the effectiveness of the proposed algorithm. 
Images above are used as input images shown by the 
image simulator and a self-developed low-illumination 
camera (CMOS sensor: GSENSE400) is used in 0.05 lx 
illumination. The denoising results are shown in Fig.7 
and Fig.8. The PSNRs of our method are 3.5%, 0.7%, 
3.5% and 7.9% higher than those of the best comparison 
methods for images, respectively. 

 

 

 

 

 

 

Fig.4 Results on Image1: Top row: Noisy images (From left to right: Gaussian noise (σ=0.05), Gaussian noise 
(σ=0.10), Gaussian noise (σ=0.15), impulsive noise (σ=0.05), impulsive noise (σ=0.10), impulsive noise (σ=0.15), 
Poisson noise); Second row: Results by BM3D; Third row: Results by NLM; Fourth row: Results by ATV; Bottom 
row: Results by the proposed method 

  
          (a)             (b)             (c)     

  

(d)           (e) 

Fig.5 Results on Image1 with multiple noises: (a) 
Original image; (b) BM3D; (c) NLM; (d) ATV; (e) OURS 
 

 

Fig.6 PSNR values of comparison methods (multiple 
noises)
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Fig.7 PSNR values of comparison methods 
(low-illumination) 

      
              (a)          (b)          (c) 

  
                  (d)             (e)  

Fig.8 Results on Image1 (low-illumination): (a) 
Low-illumination image; (b) BM3D; (c) NLM; (d) ATV; 
(e) OURS 
 

For time consumption experiment, Inter(R) Xeon(R) 
CPU E5-1620 v2 @3.70 GHz computer and MATLAB 
R2015a software are used. The average time of our 
method is 21.33 s, less than 138.5 s (NLM), but more 
than 11.08 s (ATV) and 13.56 s (BM3D). Time consum-
ing mainly occurs in the iteration of 2∇ operator. At the 
same time, it can effectively reduce the time consuming 
by controlling the iterative accuracy under the premise of 
ignoring certain denoising accuracy. 

In this paper, a method based on TV and split Breg-
man is proposed to solve the image denoising problem 
with multiple noises in low-illumination imaging scene.  

 
 
 

It is shown in the experiments that our algorithm is better 
than the existing algorithms both in signal noise condi-
tion and multiple noise condition, and it has effective 
application in low-illumination sea image denoising 
problem. In the future, we will generalize the proposed 
denoising model to more complicated noise status. 
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