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1. Introduction

Compared to traditional imaging, the imaging of scenes hid-
den from the camera’s direct line of sight—known as seeing 

around corners, or non-line-of-sight (NLoS) imaging—has 
attracted growing attention in recent years. Much research has 
been done aiming to detect, track and image hidden objects 
[1–8]. Single-pixel imaging (SPI) [9–11], a novel imaging 
technique by means of coincidence measurement, has proven 
that SPI can capture images in low light, high absorption and 
high backscattering conditions [12–14]. This unique feature 
efficiently makes it possible to capture the image of hidden 
objects. In a passive SPI system, a beam emitted from a light 
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Abstract
Hidden object imaging has always been challenging for obtaining satisfiable imaging because 
of the limitations caused by the reflections from the surrounding environment. The light is 
highly degraded after propagation and reflection from the hidden object. Single-pixel imaging 
(SPI) is an advanced imaging approach becoming more remarkable; applicable for acquiring 
spatial information in low light, high absorption and backscattering conditions. Combination 
of SPI and compressed sensing (CS) can efficiently tackle the key drawbacks of SPI, such 
as long data-acquisition time and low reconstruction resolution. In the present study, a CS 
based hidden object SPI system is designed. This is able to reconstruct an image without 
the influence of diffuse reflection from a two-dimensional (2D) target, which is placed in a 
corner practically concealing the objects over 10  ×  10 cm of hidden space. The reconstruction 
obtained by our method is desirable and can save more than half of the data-acquisition time 
compared to the SPI algorithm. Our contribution presents a new insight for the application of 
SPI and provides a guideline for researchers to improve their applications.
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source illuminates the target and reflects to a digital micro-
mirror device (DMD) after interacting with the objects. After 
processing by the DMD, the reflected light is focused on a 
photodetector to get the intensity values. Using this technique, 
images are reconstructed from a series of continuous mea-
sured intensity, each of them means an independent subset of 
the spatial information in the same scene. This makes imaging 
possible in a complex situation, which is impossible or chal-
lenging with multipixel image sensors.

Due to SPI advantages and the rapid development of spatial 
light modulators (SLMs), a lot of experimental setups have been 
built recently to capture imaging in different fields. Paul Nipkow 
might be the earliest researcher to use an SPI technique by 
means of a rotating Nipkow disk to encode and transmit image 
information in 1884 [15]. Based on SPI, a technique called opti-
cal coherence tomography has been developed by David et al for 
noninvasive cross-sectional imaging in biological systems [16]. 
Howland established a laser-based 3D imaging system by means 
of photon-counting and compressive sensing [17]. Howland 
used a single-pixel camera to realize a compressed sensing, 
photon counting lidar system and reconstructed both depth and 
intensity maps from a single under-sampled set of incoherence 
[18]. For the wavelengths where multipixel image sensors are 
unavailable, a lot of research has also been done using SPI, such 
as imaging in the terahertz band [19, 20] and fluorescence imag-
ing through scattering media and multimode fibers [21–23].

However, there are limited studies focusing on the applica-
tion of SPI to capturing images of hidden objects, and sys-
tematically investigating the influence of pattern types and 
measurements on the reconstruction performance. Therefore, 
exploiting advantages of SPI for hidden object imaging, we 
demonstrate a passive SPI imaging technique to reconstruct 
images of NLoS targets via diffusely reflected laser pulses. 
We design an experimental setup, which has the ability to 
recover the hidden object images. For the SPI algorithm, to 
completely capture the whole unknown scene up to a par-
ticular resolution, the least number of measurements required 
is equal to the total number of pixels in the reconstructed 
images [24]. Hence, a compressing technique is employed 
to reconstruct the image in order to save sampling time and 
improve the reconstruction efficiency in the current research. 
Our experimental results show that the proposed compressed 
sensing (CS)-based passive underwater SPI are more reliable 
than conventional imaging approaches for hidden objects. In 
addition, our method can save more than half of the time to get 
the same resolution, compared with SPI algorithm.

We begin with a brief theoretical introduction of underwater 
SPI in section 2. In section 3, we show the reconstructed images 
using various pattern types and the number of measurements. 
Moreover, evaluations of the performance with regard to each 
other and the original targets are also presented in this section. 
Finally, our conclusion and future work are given in section 4.

2. Theory

The SPI method acts by accumulating bucket sums of a light 
field that was both contacted with a target under investigation 

and a controllable modulator device. Practically, the way in 
which the imaging beam contacts with the object and the 
modulator (DMD) presents an essential difference between 
two unique approaches to the single pixel imaging method. 
It would be convenient to take the following approaches: the 
active mode is determined by following the agreement mod-
ulator, object and bucket detector; and the passive mode is 
determined by following an agreement object, modulator and 
bucket detector. Standard SPI system architecture contains the 
following main components: a source of light, optics, a single 
pixel detector and an SLM. Figure 1 shows the schematic of 
our experimental setup to detect and image the hidden objects 
using SPI. We represent a single measurement Yj in a multi-
plexing scheme by the following expression:

Yj =
N∑

i=1

ΦjiXi, (1)

or by the matrix equation

Y = ΦX, (2)

where Y is a column vector with M-elements representing M 
measurements, and Φ is the M  ×  N measurement matrix, in 
which each row represents a pattern displayed on the SLM. 
For a well-conditioned measurement matrix [25] and the fully 
determined case, i.e. M  =  N, the reconstruction becomes linear 
and can be solved by a simple matrix equation: X  =  Φ−1  ×  Y 
[26]. The image can be spatially multiplexed with many dif-
ferent types of measurement matrices.

It is widely believed that intensity-based imaging systems 
require pattern values that are confined to either 1 or 0—as 
physical masks or patterns—to either pass light to the detector 
or stop it. However, utilization of patterns with negative val-
ues yield lower noise [26], but it is generally only achievable 
with phase-sensitive measurements. Often, intensity-based 
imaging masks are approximated by adding two [1, 0] masks 
and subtracting those that obtain a mask with [1, 0, −1] or  
[1, −1] values [27]. However, there are two significant disad-
vantages to the above approach: twice as many measurements 
are necessary, thus doubling the acquisition time; and the 
noise power increases because the variance is additive [28].

CS is a scheme for the simultaneous compression and sam-
pling of sparse signals through incomplete, non-adaptive lin-
ear measurements [21–23, 29]. The evolution of CS theory 
has led to a great advantage in the SPI field. Considering the 

Figure 1. Schematic diagram of experimental setup: passive gated 
SPI system. DLP: digital light processing.
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sparsity of objects with respect to measure functions, their 
known basis or exact solutions for single pixel measure-
ments; equation  (1) can be achieved even in the situations 
where the number of measurements, M, are less than 20% of 
the number of object pixels, N. Following that, there exists 
an N-dimensional sparsifying basis Ψ (Ψ  =  {ψ1, ψ2……, ψN}). 
The N-dimensional signal, X (X  =  {X1, X2……, XN}), is called 
K-sparse, which can be expressed as:

X = ΨS (3)

in which K � N non-zero entries are contained in the 
N  ×  1vector S.

For the CS theory, it is stated that, when the signal (X) con-
tains such a K-sparse basis, signal (X) can be reconstructed 
to more than M  =  O(KlogN) incoherent linear measurements 
with a high probability:

Y = ΦX = ΦΨS. (4)

Here Y is a M  ×  1 measurement vector and Φ is a M  ×  N 
measurement matrix, which is incoherent with the sparsifying 
matrix Ψ [30].

The matrix Φ is defined as the measurement matrix [30]. If 
the maximum magnitude of the elements of ΦΨ is small, the 
incoherent property would be fulfilled [31]. When Φ is a ran-
dom basis for an example scrambled block Hadamard ensem-
ble, a pseudorandom sequence and Bernoulli binary vectors; 
this condition is achievable [32, 33].

Since the K-sparse sparsifying basis, Ψ, occurs in sev-
eral signal types, such natural images are sparse in Fourier, 
DCT or wavelet domains; a property taken advantage of in  
compression standards like JPEG2000 and JPEG. The l1  
norm minimization using measurement Y can retrieve S  
(hence X) [34]:

α̂ = argmin ‖a‖ 1, (5)

subject to Y = ΦΨa, (6)

where ‖a‖ 1 =
∑N

i=1 |ai| represents the l1 norm of S. This type 
of optimization problem is known as a basis pursuit [34].

The gradient of the sparse image can be utilized by apply-
ing total variation (TV) minimization to the image. The dis-
crete gradient for a digital image X, can be determined at pixel 
location xij [35]:

Gij =

Ç
Gh;ij(X)
Gv;ij(X)

å

Gh;ij(X) = xi+1,j − xi,j

Gv;ij(X) = xi,j+1 − xi,j.

 

(7)

The TV of X can be written as the sum of the magnitudes 
of Gij (X) at each location in X:

TV(X) =
∑

ij

»
Gh;ij(X)

2
+ Gv;ij(X)

2. (8)

Quadratic constraints of TV minimization have been 
proposed to yield more suitable visual quality than the l1 
optimization when retrieving images using noisy observa-
tions [35]

minTV(X), (9)

subject to ‖ΦX − Y‖ 2 � ε. (10)

Candes et al concluded seven distinct data reconstruction 
optimization problems. The CS inverse problem has been 
solved using a proposed software package (l1_MAGIC) with 
CS measurements [36].

3. Experiment and analysis

In the above sections, we present a brief theoretical introduc-
tion of the SPI, CS and schematic of our experiment setup. 
Having demonstrated the SPI, CS and schematic of the sys-
tem, we show imaging of the hidden object with a compressive 
method. There are well-developed mathematical techniques 
to reconstruct X from an underdetermined equation (1). Here 
we use a sequence of ordered binary randoms and Hadamard 
patterns as the measurement matrix Φ. In the SPI algorithm, 
the acquisition speed for image reconstruction is straightly 
proportional to the number of measurements. Utilizing a 
compressive technique minimizes the necessary number of 
measurements, which reduces the reconstruction and com-
putational time. The influence of pattern type and number 
of measurements on the quality of reconstructed images are 
investigated in the experimental part. The principle behind the 
scheme of CS imaging can be summarized in equation (1), in 
which Y is an M  ×  1 column vector, X is an image with N pix-
els and Φ is the measurement matrix with an M  ×  N dimen-
sion. Using CS, we can reconstruct the image with a lower 
number of measurements than the number of pixels in the 
image, which is not possible in an SPI algorithm, an optim-
ization method described in [37, 38].

3.1. Experimental setup

Our experimental setup is demonstrated in figure 2. The laser 
source is required to illuminate the required area of the object 
using a collimator as it expands the laser beam diameter. After 
passing through the beam splitter (BS), the beam is split into 
two perpendicular directions. One beam goes to the glossy 
wall and a fraction of the beam goes towards the photodetec-
tor, which is connected to a delay generator and necessary to 
synchronize the laser beam with a single pixel detector. The 
reflected beam from the glossy wall is expected to interact 
with the hidden object, which has a glossy nature. After inter-
acting with the object, the light beam is reflected from the wall 
again. Finally, the beam is projected onto a DMD chip through 
the BS and imaging lens. Using focused light from the imag-
ing lens, random and Hadamard patterns are projected by the 
DMD to the collecting lens and focused onto the single pixel 
detector. The corresponding intensity values are captured by 
the DAQ.

The DLP (DLP Light Crafter 6500, Texas Instruments) 
is comprised of square micromirrors (1920 rows and 1080 
columns), each mirror can be situated at two angles:  +12° 
and  −12°. Each mirror represents an individual pixel in X 
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and Φ. The orientation of each mirror can be either towards 
a collecting lens (representing 1 in Φ) or away from the 
collecting lens (representing 0 in Φ). The reflected light 
is focused onto the single pixel detector using a collecting 
lens, where it calculates the product of X Φ to measure the 
Y as an output voltage. The custom software was written in 
a matrix laboratory (MATLAB). With the plan of applying 
compressive sensing, the DLP is required to communicate 
with MATLAB so that the projection mask can be evolved 
in the middle of the measurement. Thus, a MATLAB code 
to communicate with the DLP through transmission con-
trol protocol/internet protocol has been introduced. Apart 
from DLP, DAQ is required to be linked with MATLAB 
as well. The data acquisition toolbox for MATLAB has 
already included the function ready to use with the National 
Instrument device. With the successful communication of 
the two devices, a MATLAB code was written to automate 
and, most importantly, synchronize the data collection pro-
cedure. It eliminates the possibility of linking the wrong 
reading to the mask. Instead of time-based correspondence, 
the DLP will only project the next matrix pattern after the 
reading for the current matrix pattern is acquiesced. With 
the elimination of the possible error, the measurements can 
be done at a faster pace and be more systematic. Following 
minimization of the total variation (min-TV), the recon-
structed images can be realized within 20 s of the recon-
struction algorithm in MATLAB [37].

To evaluate the influence of pattern types on imaging qual-
ity, we employ peak signal-to-noise-ratio (PSNR), which is 
often used to measure the reconstruction quality of images. 
Here, PSNR is defined as:

PSNR = 10 · log10(
MAX2

I

MSE
) (11)

where, MAX2
I  is the maximum possible pixel value of the 

image when the pixels are represented using 8 bits per sam-
ple, this is 255 and MSE is the average squared difference 
between the estimated images and the original object which 
can be given by:

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[R(i, j)− O(i, j)]

2

, (12)

in which R (i, j) is the reconstructed image and O (i, j) is the 
image of the object. In addition, m  ×  n is the number of pixels 
in the comparison image.

3.2. Results and analysis

3.2.1. Influence of pattern. The characteristics and types of 
different spatially arranged patterns directly affect the imaging 
results in terms of possible resolution, fidelity, imaging speed 
and compressibility. Binary (Hadamard and random) patterns 
are used in our study to reconstruct the object. These patterns 
provide large spatial frequency information of the scene. In 
binary patterns, every pixel must be either fully transmissive 
(1) or not-transmissive (0). On the other hand, in the case of 

grayscale patterns, the transmission of every pixel must vary 
between 0 and 1.

To examine the influence of patterns on reconstruction per-
formance, images are reconstructed by projecting Hadamard 
and random patterns with varying resolutions (32  ×  32, 
64  ×  64 and 128  ×  128) under same number of measurements. 
Figure 3(e) and (f) display the reconstructed 128  ×  128 images 
of the hidden object by projecting random and Hadamard pat-
terns under 500 measurements. From figure  3(f), the edges 
can clearly be seen using Hadamard patterns—other than the 
random one, which proves the quality with the Hadamard pat-
terns are better. From all the reconstructed results in figure 3, 
it is evident that reconstruction is better for each resolution 
using the Hadamard pattern. Applying equations  (11) and 
(12), the PSNR of the reconstructed images in figure 3 are cal-
culated and plotted in figure 4. A clear rising trend of PSNR 
from 32  ×  32 to 128  ×  128 can be observed and the PSNR 
corresponding to the Hadamard pattern has a better response 
than the random pattern.

3.2.2. Influence of number of measurements. To investigate 
the effect of the number of measurements on hidden object 
imaging, images with different resolutions are reconstructed 
by projecting Hadamard patterns using varying number 
of measurements (300, 500 and 1000 measurements). The 
images obtained under nine different parameters are shown 

Figure 2. Experimental setups for hidden object SPI.

(a)  (c)  (e)  

(b)  (d)  (f)  

Figure 3. Reconstructed results with different resolution using 
random and Hadamard patterns under 1000 measurements.  
(a) 32  ×  32 random pattern; (b) 32  ×  32 Hadamard pattern;  
(c) 64  ×  64 random pattern; (d) 64  ×  64 Hadamard pattern;  
(e) 128  ×  128 random pattern; (f) 128  ×  128 Hadamard pattern.

Laser Phys. Lett. 15 (2018) 126201



5

Q Chen et al

in figure 5. During the sampling of the object, a fraction of 
the fine detail is missing because of the noise under sampling. 
The object can be reconstructed when the number of measure-
ments is less than 20% of the total number of pixels using CS.

Based on figures 5(g)–(i), it is evident that the reconstructed 
images become more reliable on the increasing number of 
measurements from 300 to 1000 because the structure of the 
original object can be clearly detected with naked eyes. From 
figure 6, it can be observed that figures 5(c), (f) and (i) are 
the most reliable reconstructed images with different resolu-
tions. The corresponding PSNRs of each reconstructed image 
of figure 5 are shown in figure 6, in which it is shown that 
the PSNR is proportional to the number of measurements. It 
can be observed that the reconstruction performance is higher 
for more measurements as compared to fewer measurements. 
The reconstructed image quality continually increases with 
the growth of the number of measurements. In general, we 

can conclude that the more measurements we do, the higher 
reconstructed images we obtain. Therefore, more sampling 
times should be performed to obtain better reconstruction per-
formance in real applications.

4. Conclusion and future work

In the current research, we designed a system to exhibit the 
novel application of SPI to image the hidden object, which is 
beneficial for practical applications of hidden object imaging. 
the proposed system employs Hadamard and random illumi-
nation patterns to reconstruct the 2D object image using CS. 
Following the CS approach, our system is capable to recon-
struct the object with resolutions of 32  ×  32, 64  ×  64, and 
128  ×  128 using few measurements. Experimental results 
show that the reconstruction performance is proportional to 
the number of measurements. Therefore, to enhance recon-
struction quality, a greater number of measurements are 
required. This substantial reduction in the number of measure-
ments efficiently minimizes the data acquisition. The signifi-
cant beneficial effects of Hadamard patterns compared with 
random patterns on object reconstruction have been shown in 
this paper.

In future, to extend our investigation of hidden object SPI, 
we will study the influence of factors such as laser wavelength, 
target characteristics, laser intensity and required optics on 
imaging performance.

Acknowledgments

This work was supported by the National Natural Sci-
ence Foundation of China (NSFC) (61605016); Project 111 
(D17017).

References

	 [1]	 Xu F, Shulkind G, Thrampoulidis C, Shapiro J H, Torralba A, 
Wong F and Wornell G W 2018 Revealing hidden scenes by 

Figure 4. The plot of PSNR with different resolution under 1000 
measurements with respect to projected pattern types.

(b) 

(a) 

(c) 

(d)

(e) 

(f) 

(g) 

(h) 

(i) 

Figure 5. Reconstructed results with different resolution using 
Hadamard patterns under different number of measurements.  
(a) 32  ×  32 300 measurements; (b) 32  ×  32 500 measurements;  
(c) 32  ×  32 1000 measurements; (d) 64  ×  64 300 measurements; 
(e) 64  ×  64 500 measurements; (f) 64  ×  64 1000 measurements;  
(g) 128  ×  128 300 measurements; (h) 128  ×  128 500 
measurements; (i) 128  ×  128 1000 measurements.

Figure 6. The plot of PSNR with different resolution under 
Hadamard patterns with respect to number of measurements.

Laser Phys. Lett. 15 (2018) 126201



6

Q Chen et al

photon-efficient occlusion-based opportunistic active imag-
ing Opt. Express 26 9945–62 

	 [2]	 Velten A, Willwacher T, Gupta O, Veeraraghavan A, 
Bawendi M G and Raskar R 2012 Recovering three-dimen-
sional shape around a corner using ultrafast time-of-flight 
imaging Nat. Commun. 3 745

	 [3]	 Valzania L, Zolliker P and Hack E 2017 Topography of hid-
den objects using THz digital holography with multi-beam 
interferences Opt. Express 25 11038

	 [4]	 Javidi B and Kishk S 2003 3D object watermarking by a 3D 
hidden object Opt. Express 11 874–88

	 [5]	 Janassek P, Blumenstein S and Elsäßer W 2018 Recovering 
a hidden polarization by ghost polarimetry Opt. Lett. 
43 883

	 [6]	 Gariepy G, Tonolini F, Henderson R, Leach J and Faccio D 
2016 Detection and tracking of moving objects hidden from 
view Nat. Photon. 10 CTh4B.3

	 [7]	 Cua M, Zhou E H and Yang C 2017 Imaging moving targets 
through scattering media Opt. Express 25 3935

	 [8]	 Cheng Q, Tan Z, Wang H and Wang G P 2017 Long distance 
invisibility system to hide dynamic objects with high selec-
tivity Sci. Rep. 7 10231

	 [9]	 Zhang Z, Wang X, Zheng G and Zhong J 2017 Fast Fourier sin-
gle-pixel imaging via binary illumination Sci. Rep. 7 12029

	[10]	 Higham C F, Murraysmith R, Padgett M J and Edgar M P 
2018 Deep learning for real-time single-pixel video Sci. 
Rep. 8 2369

	[11]	 Augustin S, Frohmann S, Jung P and Hübers H W 2018  
Mask responses for single-pixel terahertz imaging Sci. Rep. 
8 4886 

	[12]	 Schmitt K M and Rahm M 2016 Evaluation of the impact of 
diffraction on image reconstruction in single-pixel imaging 
systems Opt. Express 24 23863

	[13]	 Ren H, Zhao S and Gruska J 2018 Edge detection based on 
single-pixel imaging Opt. Express 26 5501

	[14]	 Jauregui-Sánchez Y, Soldevila F, Clemente P, Tajahuerce E 
and Lancis J 2017 European Conf. on Biomedical Optics 
SPIE Proc. 10416 104160C 

	[15]	 Zhang Z, Wang X, Zheng G and Zhong J 2017 Hadamard 
single-pixel imaging versus Fourier single-pixel imaging 
Opt. Express 25 19619–39

	[16]	 Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, 
Chang W, Hee M R, Flotte T, Gregory K and Puliafito C A 
1991 Optical coherence tomography Science 254 1178–81

	[17]	 Howland G A, Dixon P B and Howell J C 2011 Photon-count-
ing compressive sensing laser radar for 3D imaging Appl. 
Opt. 50 5917–20

	[18]	 Lum D J, Howland G A, Howell J C and Ware M R 2013 
Photon counting compressive depth mapping Opt. Express 
21 23822–37

	[19]	 Watts C M, Shrekenhamer D, Montoya J, Lipworth G, Hunt J, 
Sleasman T, Krishna S, Smith D R and Padilla W J 2014 

Terahertz compressive imaging with metamaterial spatial 
light modulators Nat. Photon. 8 605–9

	[20]	 Ivanov S R, Sun B, Hornett S M, Hobson P A, Gibson G M, 
Padgett M J and Euan H 2016 Noninvasive, near-field 
terahertz imaging of hidden objects using a single-pixel 
detector Sci. Adv. 2 e1600190

	[21]	 Popoff S M, Goetschy A, Liew S F, Stone A D and Cao H 
2014 Coherent control of total transmission of light through 
disordered media Phys. Rev. Lett. 112 1–2

	[22]	 Plöschner M, Tyc T and Čižmár T 2015 Seeing through chaos 
in multimode fibres Nat. Photon. 9 529–35

	[23]	 Mahalati R N, Gu R Y and Kahn J M 2013 Resolution 
limits for imaging through multi-mode fiber Opt. Express 
21 1656–68

	[24]	 Phillips D B, Sun M J, Taylor J M, Edgar M P, Barnett S M, 
Gibson G M and Padgett M J 2017 Adaptive  
foveated single-pixel imaging with dynamic supersampling 
Sci. Adv. 3 e1601782 

	[25]	 Cheney W and Kincaid D 2007 Numerical Mathematics and 
Computing (Pacific Grove, CA: Brooks/Cole)

	[26]	 Harwit M 1979 Hadamard Transform Optics (New York: 
Academic)

	[27]	 Davis D S 1995 Multiplexed imaging by means of optically 
generated Kronecker products: 1. The basic concept Appl. 
Opt. 34 1170–6

	[28]	 Taylor J R 1982 An Introduction to Error Analysis (Mill Val-
ley, CA: University Science Books)

	[29]	 Stantchev R I, Sun B, Hornett S M, Hobson P A, Gibson G M, 
Padgett M J and Hendry E 2016 Noninvasive, near-field 
terahertz imaging of hidden objects using a single-pixel 
detector Sci. Adv. 2 e1600190 

	[30]	 Baraniuk R 2008 Conf. on Information Sciences and Systems
	[31]	 Candès E and Romberg J 2006 Sparsity and incoherence in 

compressive sampling Inverse Problems 23 969–85
	[32]	 Gan L, Do T T and Tran T D 2015 European Signal Process-

ing Conf., 2008
	[33]	 Do T T, Tran T D and Lu G 2008 IEEE Int. Conf. on Acous-

tics, Speech and Signal Processing
	[34]	 Chen S S, Donoho D L and Saunders M A 2001 Atomic 

decomposition by basis pursuit SIAM Rev. 43 129–59
	[35]	 Candès E J, Romberg J K and Tao T 2006 Stable signal 

recovery from incomplete and inaccurate measurements 
Commun. Pure Appl. Math. 59 1207–23

	[36]	 Smith G W, Beutler D E, Bell J D, Seymour C L G, 
Hohlfelder R J, Gallegos R R and Dudley J 2005 Novel 
x-ray imaging diagnostics of high-energy nanosecond pulse 
accelerators Proc. SPIE 5580 559–71

	[37]	 Donoho D L 2006 Compressed sensing IEEE Trans. Inf. 
Theory 52 1289–306

	[38]	 Candes E, Romberg J and Tao T 2006 Robust uncertainty prin-
ciples: Exact signal reconstruction from highly incomplete 
frequency information IEEE Trans. Inf. Theory. 52 489–509

Laser Phys. Lett. 15 (2018) 126201

https://doi.org/10.1364/OE.26.009945
https://doi.org/10.1364/OE.26.009945
https://doi.org/10.1364/OE.26.009945
https://doi.org/10.1038/ncomms1747
https://doi.org/10.1038/ncomms1747
https://doi.org/10.1364/OE.25.011038
https://doi.org/10.1364/OE.25.011038
https://doi.org/10.1364/OE.11.000874
https://doi.org/10.1364/OE.11.000874
https://doi.org/10.1364/OE.11.000874
https://doi.org/10.1364/OL.43.000883
https://doi.org/10.1364/OL.43.000883
https://doi.org/10.1038/nphoton.2015.234
https://doi.org/10.1038/nphoton.2015.234
https://doi.org/10.1364/OE.25.003935
https://doi.org/10.1364/OE.25.003935
https://doi.org/10.1038/s41598-017-10658-7
https://doi.org/10.1038/s41598-017-10658-7
https://doi.org/10.1038/s41598-017-12228-3
https://doi.org/10.1038/s41598-017-12228-3
https://doi.org/10.1038/s41598-018-20521-y
https://doi.org/10.1038/s41598-018-20521-y
https://doi.org/10.1038/s41598-018-23313-6
https://doi.org/10.1038/s41598-018-23313-6
https://doi.org/10.1364/OE.24.023863
https://doi.org/10.1364/OE.24.023863
https://doi.org/10.1364/OE.26.005501
https://doi.org/10.1364/OE.26.005501
https://doi.org/10.1117/12.2285979
https://doi.org/10.1117/12.2285979
https://doi.org/10.1364/OE.25.019619
https://doi.org/10.1364/OE.25.019619
https://doi.org/10.1364/OE.25.019619
https://doi.org/10.1126/science.1957169
https://doi.org/10.1126/science.1957169
https://doi.org/10.1126/science.1957169
https://doi.org/10.1364/AO.50.005917
https://doi.org/10.1364/AO.50.005917
https://doi.org/10.1364/AO.50.005917
https://doi.org/10.1364/OE.21.023822
https://doi.org/10.1364/OE.21.023822
https://doi.org/10.1364/OE.21.023822
https://doi.org/10.1038/nphoton.2014.139
https://doi.org/10.1038/nphoton.2014.139
https://doi.org/10.1038/nphoton.2014.139
https://doi.org/10.1126/sciadv.1600190
https://doi.org/10.1126/sciadv.1600190
https://doi.org/10.1103/PhysRevLett.112.133903
https://doi.org/10.1103/PhysRevLett.112.133903
https://doi.org/10.1103/PhysRevLett.112.133903
https://doi.org/10.1038/nphoton.2015.112
https://doi.org/10.1038/nphoton.2015.112
https://doi.org/10.1038/nphoton.2015.112
https://doi.org/10.1364/OE.21.001656
https://doi.org/10.1364/OE.21.001656
https://doi.org/10.1364/OE.21.001656
https://doi.org/10.1126/sciadv.1601782
https://doi.org/10.1126/sciadv.1601782
https://doi.org/10.1364/AO.34.001170
https://doi.org/10.1364/AO.34.001170
https://doi.org/10.1364/AO.34.001170
https://doi.org/10.1088/0266-5611/23/3/008
https://doi.org/10.1088/0266-5611/23/3/008
https://doi.org/10.1088/0266-5611/23/3/008
https://doi.org/10.1137/S003614450037906X
https://doi.org/10.1137/S003614450037906X
https://doi.org/10.1137/S003614450037906X
https://doi.org/10.1002/cpa.20124
https://doi.org/10.1002/cpa.20124
https://doi.org/10.1002/cpa.20124
https://doi.org/10.1117/12.565136
https://doi.org/10.1117/12.565136
https://doi.org/10.1117/12.565136
https://doi.org/10.1109/TIT.2006.871582
https://doi.org/10.1109/TIT.2006.871582
https://doi.org/10.1109/TIT.2006.871582
https://doi.org/10.1109/TIT.2005.862083
https://doi.org/10.1109/TIT.2005.862083
https://doi.org/10.1109/TIT.2005.862083

	Imaging of hidden object using passive mode single pixel imaging with compressive sensing
	Abstract
	1. Introduction
	2. Theory
	3. Experiment and analysis
	3.1. Experimental setup
	3.2. Results and analysis
	3.2.1. Influence of pattern. 
	3.2.2. Influence of number of measurements. 


	4. Conclusion and future work
	Acknowledgments
	References


