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ABSTRACT: The performance and flexibility of perovskite solar cells (PSCs)
have been enhanced by introducing microstructured WO3/Ag/WO3 (WAW)
multilayer transparent electrodes, which can be fabricated through glancing
angle deposition (GLAD) method. The structure and morphology of the
second WO3 layers in WAW films can be altered significantly by changing the
deposition angles. A film with porous, oriented WO3 nanocolumns was
obtained at the deposition angle of 75°. The rigid and flexible devices based on
this microstructured electrodes show enhanced power conversion efficiencies
(PCEs) of 14.91 and 13.79%, respectively, which are increasing by 10.36 and
10.14% in comparison with the devices based on the WAW electrodes with
planar structure, respectively. Simultaneously, the bending stability of the
flexible PSCs based on the microstructured WAW electrode has been
improved significantly, which retains 90.97% of its initial PCE after 1000 times
bending under the maximum strain of 1.3%, compared with the 78.39% of the reference device with the planar WAW electrode.
This can be attributed to the unique microstructure of WAW electrodes fabricated by GLAD methods, releasing the mechanical
stresses under repeated bending; moreover, the smaller grains induced by this electrode can disperse the stress, which decrease
the damage on the perovskite layer; we believe that this work will pave for the way to improve the performance and flexibility of
PSCs.
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■ INTRODUCTION

Nowadays, facing with the lack of nonrenewable energy, the
research and development of novel applications for renewable
energy are of importance. Solar cells based on metal-halide
perovskite materials CH3NH3PbX3 (MAPbX3, X = Cl, Br, and
I) have been proposed in the past few years,1,2 and the power
conversion efficiencies (PCEs) of perovskite solar cells (PSCs)
have been rapidly boosted from 3.8% to over 22%,3−14

revealing their commercial application prospect and attracting
more attention for their correlative devices, such as flexible
PSCs.
Compared to the high device efficiencies based on the rigid

PSCs, the PCEs of the flexible PSCs have been improved
steadily.15−17 However, a reliable flexible PSC requests not only
high efficiency, but also excellent mechanical flexibility, which is
mainly reflected in two aspects, the bending durability of
transparent electrodes and active layers. Among the reported
flexible transparent electrodes, indium-tin-oxide (ITO) electro-
des are popularly used, and a maximum PCE of 16% has been
reached based on this electrode.17 However, because of the
brittle nature, ITO electrodes present poor bending resistance,
which cause the serious deterioration of flexible device

performance.18,19 Additionally, the rising cost and the high-
temperature processing of ITO electrodes also hinder their
applications on flexible PSCs.
To avoid the negative affection of flexible ITO electrodes,

various ITO-free transparent electrodes have been introduced
into the flexible PSCs, such as Ag nanowires,20 metal foils,21

highly conductive polymer poly(3,4-ethylenedioxythiophene)-
polystyrene sulfonate (PEDOT:PSS), and graphene.22−26 Li et
al. demonstrated a flexible PSC with a PCE of 14.0% utilizing
an ultrathin silver-mesh/conducting polymer transparent
electrode. Importantly, it showed high durability against
mechanical bending, which maintained a PCE at 95% of its
initial value after 5000 bending cycles with a bending radius of
5 mm.27 Recently, a maximum PCE of 17.3% was reported by
using a graphene transparent electrode, and the PCE was
maintained at 85% of its initial value after bending 5000 times
with a bending radius of 2 mm.26 Although the flexibility of the
PSCs based on different transparent electrodes has been
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improved to different degrees, these transparent electrodes also
suffer various issues that degenerated the device performance or
hindered themselves to be applied in flexible PSCs, such as
poor transmittance or high sheet resistance for metal nanowires
and metal foils,28 poor moisture resistance for PEDOT:PSS,29

and troublesome preparation and transfer processing for
graphene.30 Therefore, it is important to exploit new trans-
parent electrodes with high transmittance, low sheet resistance,
and excellent flexibility for flexible PSCs.
Dielectric−metal−dielectric (DMD) multilayer transparent

electrodes, such as MoO3/Ag/WO3,
31 NiO/Ag/NiO,32 ZnO/

Ag/ZnO,33 SnOx/Ag/SnOx/Bi2O3,
34 and so on, are compet-

itive alternatives to traditional ITO electrodes because of their
low sheet resistance and excellent transmittance, which have
been applied in organic light-emitting diodes and polymer
photovoltaic cells successfully.35,36 In our previous work, WO3/
Ag/WO3 (WAW) electrodes have been introduced into PSCs,
and a flexible PSC has also been tried and achieved a PCE of
8.04%.37 However, it is found that the performance of flexible
devices decreased unexpectedly in the bending test. It is worth
mentioning that the WAW electrode possesses excellent
flexibility, which has been verified during previous studies.38,39

Therefore, the degradation of device performance should be
attributed to the perovskite layers, in which large perovskite
grains would present after spin-coating and annealing processes.
The stress may be mainly concentrated on the larger perovskite
grains under repeated bending, resulting in the separation of
grains and grains and grains and substrates; also, the large
grains are more prone to split into small grains, thus increasing
grain boundaries and traps or defects. In contrast, the smaller
grains contact with substrates tightly in the process of bending
and make the stress more dispersed, reducing the damage on
perovskite layer, which will be more stable under plastic
deformation.
In this work, microstructured WAW multilayer transparent

electrodes have been manufactured by the glancing angle
deposition (GLAD) method.40−42 As the deposition angle

changes, different structures and morphologies of the second
WO3 layers in WAW films have been observed, and a film with
porous, oriented WO3 nanocolumns is acquired at the
deposition angle of 75°. Enhanced device performance has
been achieved by using the microstructured WAW transparent
electrodes, which shows a PCE of 14.91%, increasing by 10.36%
in comparison with the device based on the WAW electrode
with planar structure. Correspondingly, the flexible PSC with
the microstructured WAW electrode shows a PCE of 13.79%,
meanwhile, exhibiting a more excellent bending durability than
the reference device. We believe that this work will pave for the
way to improve the performance and flexibility of PSCs.

■ EXPERIMENTAL SECTION
Fabrication of Transparent Electrodes. The WAW electrodes

applied in this work were deposited by electron beam evaporation
system using GLAD technology, which is schematically represented in
Figure 1a. The glass and PET substrates were cleaned with the mixed
solvent of ether and ethanol before deposition. SiO2 (100 nm), WO3
(35 nm), Ag (10 nm), and WO3 (x nm) were deposited in sequence at
room temperature under the pressure of 2 × 10−3 Pa. The evaporation
rates of WO3 and Ag were ∼0.1 and ∼1 nm s−1, respectively. The
thicknesses of the films were monitored by a thin film deposition
controller (MDC-360C). Here, the thicknesses of the first WO3 layer
and Ag layer were fixed at 35 and 10 nm, respectively, and the second
WO3 films were deposited through GLAD method with the deposition
angles of 0°, 30°, 60°, and 75°, respectively.

Fabrication of PSCs. The PSCs with the structure of WAW/
PEDOT:PSS/MAPbI3/C60/Bphen/Ag were manufactured by using
the one-step solution deposition. CH3NH3I and PbI2 were dissolved in
an hydrous N,N-dimethylformamide at the molar ratio of 1.04:1 and
stirred for several hours in the N2-filled glovebox. A filtered
PEDOT:PSS (Clevios P AI 4083) solution was spin-coated on the
substrate at 2000 rpm for 1 min and then dried at 140 °C for 15 min.
Afterward, the substrate was transferred into a glovebox, the prepared
precursor solution was spin-coated on the substrates, and 300 μL of
chlorobenzene was dropped quickly onto the center of the substrate
during the spin-coating processing to promote the formation of
perovskite crystals; subsequently, the transparent film changed into

Figure 1. (a) Schematic diagram of GLAD technology. (b) Average optical transmittance (450−800 nm) of WAW electrodes under various
deposition angles. (c) Optimized transmittance spectra and (d) sheet resistance of WAW electrodes deposited at different angles.
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glossy MAPbI3 film after the process of annealing at 100 °C for 10
min. C60 (40 nm), Bphen (8 nm), and Ag (100 nm) were deposited
successively on substrates at a pressure of 1.0 × 10−4 Pa in a vacuum
thermal evaporator. The active area of devices was 0.12 cm2. All
measurements were conducted in air without encapsulation.
Characterizations. The thicknesses of the deposited films were

standardized by a surface profiler (XP-1, Ambios, USA). The
transmittance and absorption spectra were obtained using Shimadzu
UV-3101PC spectrophotometer. The reflection spectra were carried
out with PerkinElmer Lambda 1050 UV−vis−NIR spectrophotom-
eters. The sheet resistance of transparent electrodes was measured by
using a four-probe method. Scanning electron microscopy (SEM)
images were obtained using a Hitachi S4800 microscope. Atomic force
microscopy (AFM) measurements were conducted on a Shimadzu
SPM-9700 (Shimadzu Corp., Japan). The optical images were
obtained by optical microscopy (BX51TRF, Olympus, Japan). The
X-ray diffraction (XRD) patterns were performed on a Rigaku D/Max-
2500 diffractometer (Cu Kα, λ = 1.54 Å). The current density and
voltage (J−V) curves and external quantum efficiency (EQE) were
measured using a computer-controlled Keithley 2611 source meter
under AM 1.5G illumination from a calibrated solar simulator with an
irradiation intensity of 100 mW·cm−2 and a lock-in amplifier at a
chopping frequency of 20 Hz under illumination by a monochromatic
light from a xenon lamp, respectively. Electrochemical impedance
spectroscopy (EIS) was measured by a CHI 920 electrochemical
workstation (Shanghai Chenhua Instruments Inc., China). Time-
resolved photoluminescence (PL) was conducted by an Edinburgh
FLS920 spectrometer.

■ RESULTS AND DISCUSSION

To ensure the electrical properties of the WAW electrodes, the
first WO3 layers and Ag layers were deposited as the previous
optimized method by electron beam evaporation system,
whereas only the second WO3 layers were deposited using
GLAD technology, which has been schematic in Figure 1a. To
maximize the transmittance of the WAW electrodes under
different deposition angles, WAW electrodes with different
thickness of the second WO3 layer were prepared as shown in
Figure S1, and Figure 1b shows the average transmittance
(450−800 nm) trends of WAW electrodes as a function of the
thickness of the second WO3 layer deposited at different angles
of 0°, 30°, 60°, and 75°, respectively. As the thickness increases,
the average transmittance values at different deposition angles
all first climb up and then decline. The optimal average
transmittance values of various deposition angles are 91.00
(0°40 nm), 90.61 (30°42 nm), 91.69 (60°63 nm), and
90.68% (75°68 nm), respectively. The corresponding
transmittance spectra in the visible range are plotted in Figure
1c, in which it can be found that the optimized transmittance
curves with different deposition angles are almost uniform,
which would have little affection on the absorption of the active
layers of PSCs. Figure 1d shows the sheet resistances of the
WAW electrodes with different deposition angles as a function
of the second WO3 layer thickness. Under different deposition
angles, all of the sheet resistances increase gradually as the
increasing WO3 thickness, and the sheet resistances (Rsheet) of
the WAW electrode with the optimal transmittance are 11,
11.3, 11.8, and 12.5 Ω/sq at the different deposition angles of
0°, 30°, 60°, and 75°, respectively.
In contrast to the little changes in optical and electrical

properties, the structure and morphology of the second WO3
layers in WAW films have been significantly altered with the
change of deposition angles, which can be observed clearly
from the SEM and AFM images. Figure 2 shows the cross
section and surface SEM images of the WAW electrodes with

the second WO3 films deposited at different angles. For the
WAW0° film, the film surface is homogeneous, smooth, and
dense without cracks (Figure 2b), and the root mean square
(RMS) roughness of this film is 1.33 nm, which has been
indicated from the AFM measurement shown in Figure S2.
When the deposition angle increases to 30°, some small bulges
appear on the film surface (Figure 2d), resulting in a slight
increase in the RMS roughness (1.38 nm). As the deposition
angle increases to 60°, compact WO3 nanocolumns form and
can be observed from the profile SEM image (Figure 2e), the
bulges become bigger and some cracks appear on the film
surface (Figure 2f), which causes increased RMS roughness of
1.69 nm. When the deposition angle is further increased to 75°
(Figure 2g,h), the WO3 nanocolumns become more tilted,
ordered, and scattered in comparison to the WAW60° film.
Furthermore, the cracks on the WAW75° film surface are
much more obvious, and the porous surface leads to larger
RMS roughness of 1.98 nm. Hence, the structure and surface
morphology of the WAW films can be accurately controlled by
adjusting the deposition angle of the second WO3 layer. The
porous WAW75° films would facilitate the penetration of
hole transport material and perovskite layer and effectively
increase the contact areas between hole transport layer (HTL)
and electrodes, enhancing holes extraction and transportation,
thus the PSC performance.
Smooth and dense perovskite films are the prerequisite for

achieving excellent photovoltaic performance.43−45 In our
previous investigations, it has been found that the roughness
of substrates has significant influence on the morphology of
perovskite films as well as the PSC performance. Figure 3a
shows the SEM images of MAPbI3 films prepared on various

Figure 2. Profile and surface SEM images of WAW electrodes with the
second WO3 layers deposited at various angles. (a,b) 0°, (c,d) 30°,
(e,f) 60°, and (g,h) 75°.
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WAW/PEDOT:PSS substrates, and the corresponding size
distribution of these films are plotted in Figure 3b. For the
MAPbI3 films grown on WAW0°/PEDOT:PSS and
WAW30°/PEDOT:PSS substrates, larger crystals can be
seen on the film surface with the main grain size of 240−310
nm. As the deposition angle increases, the grains reduced
gradually, and the grain size mainly decreased to 170−240 nm
at the deposition angle of 60°, and further decreased to 100−
170 nm at the deposition angle of 75°. The change in MAPbI3
grain size can be attributed to the WAW/PEDOT:PSS
substrates with various roughness, which increases from 1.13
nm for WAW0°/PEDOT:PSS to 1.68 nm for WAW75°/
PEDOT:PSS (Figure S2), originating from the microstructure
of WAW electrodes. It is known that a larger roughness would
result in a smaller contact angle for the film with the same
material.46 Also, the contact angle is related to the surface free
energy of the substrate, which has a significant effect on the
nucleation and crystallization of the above films, as described in
the following equation

θΔ = Δ ×G G f ( )heterogeneous homogeneous (1)

where f(θ) = (2 − 3cos θ + cos3 θ)/4, ΔGheterogeneous and
ΔGhomogeneous are the free energies needed for heterogeneous
and homogeneous nucleation, respectively, and θ is the contact
angle between solid and liquid interfaces.47 According to this
equation, smaller contact angle will reduce f(θ), which will
result in smaller ΔGheterogeneous and thus lower the nucleation
barrier and promote the nucleation. Therefore, by comparing
with the WAW0°/PEDOT:PSS substrate, the WAW75°/
PEDOT:PSS substrate possesses larger roughness and thus
smaller contact angle, which will be more facilitated to the
nucleation and growth of MAPbI3; thereby, more crystal
nucleus and smaller grain size are achieved, as shown in Figure
3. Although the crystalline morphology and grain size of the
perovskite films have been obviously implicated by the different
WAW/PEDOT:PSS substrates, the crystal nature and

absorption characteristics of the MAPbI3 films have little
change, as shown in Figure S3.
To reveal the effect of the electrode morphology on the PSC

performance, a series of PSCs based on the various WAW
electrodes with different deposition angles have been prepared
(Figures S4−S6). The cross-sectional structures and the
energy-level diagram of the PSCs are illustrated in Figure
4a,b, respectively. Although the WAW electrode possesses a

high work function of 5.2 eV, matching with the highest
occupied molecular orbital level of MAPbI3, a HTL
PEDOT:PSS with a work function of 5.1 eV has been inserted
between WAW and MAPbI3 to prevent the possible interfacial
reaction and improve perovskite film quality. The wildly used
C60 and Bphen are introduced into the PSCs to act as the
electron transport layer and the hole blocking layer,
respectively. The J−V curves and EQE spectra of PSCs using
optimal WAW electrodes with different deposition angles are
plotted in Figure 5a,b, respectively, and the detailed device
parameters are listed in Table 1. As the deposition angle
increases, the open-circuit voltage (VOC) of these devices based
on various electrodes stays the same value of 0.98 V, whereas
the short-circuit current density (JSC) increases from 19.70 mA/
cm2 for the device with WAW0° electrode to 21.13 mA/cm2

for the device with WAW75° electrode, as well as an
enhanced fill factor (FF) from 0.70 to 0.72, which finally
provide contributions to the PCE promotion from 13.51 to
14.91%, indicating that the application of microstructured
electrode improves charge carriers extracting efficiency and
depresses electron−hole recombination probability.
To further understand the origin of enhanced device

performance by utilizing WAW75° electrode, time-resolved
PL has been measured to study the charge carrier trans-
portation and extraction,11,48 which is shown in Figure 5c. The
PL of the perovskite film deposited on WAW75°/
PEDOT:PSS substrate shows a faster decay than that on
WAW0°/PEDOT:PSS substrate (5.2 vs 10.9 ns), demon-
strating that the more effective carriers transportation and
extraction from the perovskite layer to the microstructured
electrode, which is mainly attributed to the enhanced contact

Figure 3. (a) SEM images of the MAPbI3 films prepared on WAW/
PEDOT:PSS substrates with the second WO3 layers deposited at
various angles. (b) Size distribution of the perovskite grains deposited
on various substrates.

Figure 4. (a) Cross-sectional structures of the PSCs based on WAW
electrodes. (b) Energy-level diagram of various materials utilized in the
PSCs.
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area of HTL and active layer to the porous WAW75°
electrode. EIS is a valid method to investigate the inner RS of
PSCs and the electrical properties of the interfaces can be
obtained by EIS analysis. RS is composed of the Rsheet of the
electrodes and the charge-transfer resistance (RCT) at the
interfaces between various layers.49−51 Figure 5d displays the
Nyquist plots of PSCs with WAW0° and WAW75°
electrode at the same bias of 0.7 V and the RCT values are 685
and 291 Ω for the devices based on WAW0° and WAW
75° electrodes, respectively. The smaller RCT presented in the
WAW75°-based device demonstrates the more effective hole
transportation, which is mainly attributed to its unique
microstructured electrode, thus improved JSC, FF, and PCE
has been realized by utilizing WAW75° electrode. The hole-

only devices display in Figure S7 also verified that the WAW
75° electrode could extract the hole more efficiently.
According to our previous studies, WAW electrodes have

excellent flexibility, which exhibit advantages in flexible polymer
solar cells.38 In this work, WAW electrodes are employed in
flexible PSCs. Figure 6 plots the device performance of flexible
PSCs based on PET/WAW0°and PET/WAW75° electro-
des. Because of similar electrode structure and morphologies as
the rigid substrates (Figure S8), the characteristics of flexible
PSCs based on WAW0° and WAW75° electrodes have
also shown consistent tendency as the rigid devices. Compared
with the flexible WAW0°-based PSC, the WAW75°-based
PSC shows a higher JSC and FF, resulting in a higher PCE

Figure 5. (a) J−V curves and (b) EQE spectra of the PSCs based on various WAW electrodes with the second WO3 layers deposited at various
angles. (c) Time-resolved PL decays of perovskite films on WAW0°/PEDOT:PSS and WAW75°/PEDOT:PSS substrates. (d) Nyquist plots of
PSCs with WAW0° and WAW75° electrodes measured under the dark with a bias voltage of 0.7 V.

Table 1. Performance of PSCs Based on Different WAW Electrodes

angle (deg) VOC (V) JSC (mA/cm2) FF PCE (%) JEQE (mA/cm2) RS (Ω·cm2)

0 0.98 ± 0.01 19.70 ± 0.33 0.70 ± 0.01 13.51 ± 0.57 18.19 ± 0.40 7.38
30 0.98 ± 0.01 20.14 ± 0.36 0.71 ± 0.01 14.01 ± 0.60 18.49 ± 0.39 7.49
60 0.98 ± 0.01 20.55 ± 0.25 0.71 ± 0.01 14.30 ± 0.53 18.79 ± 0.27 6.68
75 0.98 ± 0.01 21.13 ± 0.26 0.72 ± 0.02 14.91 ± 0.76 19.36 ± 0.38 5.81

Figure 6. (a) J−V curves and (b) EQE spectra of PSCs based on PET/WAW0° and PET/WAW75° electrodes. The inset is a photograph of
the flexible PSC based on PET/WAW75° electrode.
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(13.79 vs 12.52%). Moreover, both of the devices have no
obvious hysteresis phenomenon (Figure S9).
Bending durability is an important parameter for evaluating

the flexible devices. For comparing the effect of different WAW
electrodes on device-bending properties, device-bending tests
under different bending cycles were performed. Figure 7 shows

that the device parameters, including JSC, FF, and PCE, changes
under various strains. The strain here can be abbreviated as

ε = D R/2 (2)

where D represents the thickness of the flexible devices and R
represents bending radius. Compared with the thick PET
substrate (130 μm) used in this work, the thickness of the
device fabricated on the PET substrate (∼900 nm) can be
neglected. Therefore, D in the above equation was set to 130
μm. After bending 500 times, the performance parameters of
the two devices exhibited no significant change under a smaller
strain of 0.9%; as the strain increases to 1.3%, the PET/
WAW75° PSCs still show no appreciable deterioration in
device parameters and the JSC, FF, and PCE retain 96.48, 97.90,
and 94.36% of their initial values, respectively, whereas the
performance parameters of PET/WAW0° PSCs show an
apparent reduction and the JSC, FF, and PCE decrease to 94.27,
94.03, and 88.51%, respectively, of their original values under
the same strain. Hereafter, the 1000 consecutive bending tests
were further conducted at different strains, surprisingly, under
the maximum strain of 1.3%, the PET/WAW75° PSCs
merely exhibited a slight deterioration and the JSC, FF, and PCE
maintain 95.00, 95.71, and 90.97% of their initial values
respectively. At the same bending condition, the performance
of the device based on PET/WAW0° electrode degenerated
seriously, and the device parameters of JSC, FF, and PCE
decrease to 86.70, 90.31, and 78.39% of their original values,

respectively. Meanwhile, in Figure S10, the RS increased to 2.2
and 1.55 times of their initial RS for the PET/WAW0° and
PET/WAW75° devices, respectively. For comparison, the
device based on flexible ITO electrode has also been measured
at the equal strain of 1.3% and the PCE drops intensely to 35%
of its initial value after 1000 times bending, which is mainly
attributed to the plenty of cracks on the surface of ITO after
repeated bending, as shown in Figure S11.
To explore the reason for better bending durability of the

flexible PSC based on WAW75° electrode compared with
WAW0° electrode, the SEM images of PET/WAW0°,
PET/WAW75° electrodes, and the perovskite films prepared
on the two flexible substrates were carried out after 1000 times
bending under the strain of 1.3%, which are shown in Figures
S12 and 7b,c, respectively. There is no obvious change for
PET/WAW0° and PET/WAW75° electrodes, which
indicates good bending durability of DMD multilayer trans-
parent electrodes because of the excellent ductility of Ag.
Although there are distinct cracks appearing between perovskite
grains deposited on PET/WAW0°/PEDOT:PSS substrate,
there is almost no obvious change for the perovskite film
prepared on PET/WAW75°/PEDOT:PSS substrate. For
this reason, the WAW0°-based device under severe bending
condition shows the heavily reduced JSC and FF, together with
the sharp increased RS, which finally results in the serious
deterioration in PCE. In contrast, the WAW75°-based
flexible device exhibits excellent bending stability, which
originates mainly from the unique microstructure of WAW
75° surface, dispersing the mechanical stresses under repeated
bending, thus reducing the damage on the perovskite layer. In
addition, relatively smaller perovskite grains induced by
WAW75° electrode might also reduce the formation of
grain boundaries and boundary traps or defects on the
perovskite films under the bending tests. This result provides
a potential application of microstructured electrodes in flexible
PSCs.
Additionally, a Scotch tape test has been conducted to verify

the firmness of WAW electrode. As shown in Figure S13, after
20 times taping, the Rsheet of both WAW0° and WAW75°
electrodes are nearly unchanged, indicating that the WAW
electrodes are firm enough.

■ CONCLUSIONS
In this work, the performance and flexibility of PSCs have been
improved by introducing the microstructured WAW multilayer
transparent electrodes. We obtain tilted, ordered, and porous
WO3 nanocolumns by depositing the second WO3 film of
WAW electrode using GLAD method at the deposition angle of
75°. Compared with the reference WAW0° electrode, the
microstructured WAW75° electrode shows comparative
photoelectrical properties and an enhanced device performance,
resulting from the modified contact between perovskite layer
and WAW electrode, which improved carrier extraction and
thus increased PCE of 14.91 and 13.79% for rigid and flexible
devices, respectively. Simultaneously, the bending stability of
the flexible PSC based on the microstructured WAW75°
electrodes has been improved, which retains 90.97% of its initial
PCE after bending 1000 times under the maximum strain of
1.3%, increasing by 12.58% compared with the device based on
WAW0° electrode. The unique microstructures of the
WAW75° electrode disperse the stress under repeated
bending and induce smaller grains that suppress the boundary
traps or defects formation under plastic deformation, reducing

Figure 7. (a) Changes of device parameters of JSC, FF, and PCE under
various strains. SEM images of MAPbI3 based on (b) WAW0°and
(c) WAW75° electrodes after 1000 times bending.
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the damage on the perovskite layer, contributing to the
enhanced flexibility of device. The microstructured electrodes
proposed in this work exhibit more advantages and greater
potential for flexible perovskite photovoltaics, which will pave
for the way to improve the performance and flexibility of PSCs.
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