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Research Article

Dielectrophoretic choking phenomenon of a
deformable particle in a
converging-diverging microchannel

The translational motion of small particles in an electrokinetic fluid flow through a con-
striction can be enhanced by an increase of the applied electric potential. Beyond a critical
potential, however, the negative dielectrophoresis (DEP) can overpower other forces to
prevent particles that are even smaller than the constriction from passing through the
constriction. This DEP choking phenomenon was studied previously for rigid particles.
Here, the DEP choking phenomenon is revisited for deformable particles, which are ubiq-
uitous in many biomedical applications. Particle deformability is measured by the particle
shear modulus, and the choking conditions are reported through a parametric study that
includes the channel geometry, external electric potential, and particle zeta potential. The
study was carried out using a numerical model based on an arbitrary Lagrangian-Eulerican
(ALE) finite-element method.
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1 Introduction

Precise control of the motion of small particles is one of the
most essential pursuits of microfluidics, which has vast ap-
plications in chemical research and biomedical studies [1, 2].
Many advances have been made in topics associated with
this goal, including dielectrophoresis [3,4], hydrophoresis [5],
magnetophoresis [6–8], and inertial methods [9–11]. Dielec-
trophoresis has drawn particular attention due to its precise-
ness and appropriateness for biological particles [12–15]. It
results in translational motions of particles due to either in-
duced electrical dipoles (in viruses, particles, polymer beads,
cells, etc.) or native electrical dipoles (in proteins, etc.) in an
electric-field gradient.

Particles in microfluidic devices go through many ge-
ometrical changes, including curved channels and constric-
tions, and experience a variety of DEP forces. In fluids flowing
through a constriction or a converging-diverging channel par-
ticles experience a negative DEP force due to a direct-current
(DC) electrokinetic flow, which retards the translational mo-
tion of particles going into the constriction. With increases
in the electric potential applied to the electroosmotic flow,
the phoretic motion of the particles would be enhanced, but
the DEP retardation is increased as well. Due to its quadratic
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growth with the increase in electric potential, the DEP retar-
dation can surpass other effects to block particles near the
entrance of the constriction. Particles even smaller than the
throat of the constriction are thus prevented from passing
through it.

This DEP choking phenomenon has been observed both
numerically [12, 13] and experimentally [16, 17]. The phe-
nomenon can be used for particle trapping, concentration,
and sorting. Previous numerical work has reported conditions
for the DEP choking phenomenon for rigid particles. How-
ever, there is still limited understanding of the DEP chok-
ing phenomenon for deformable particles in a converging-
diverging microchannel. In many biomedical applications,
particles can be compliant, and the DEP choking criterion
for rigid particles is not applicable. Particles that are expected
to be blocked from passing the constriction may still pass
through it, resulting in failure in a microfluidic operation. Ad-
ditional parametric studies on the DEP choking phenomenon
are required for deformable particles.

In this study, an arbitrary Lagrangian–Eulerian (ALE)
finite-element method was employed to simultaneously ac-
count for the particle-fluid-electric field interactions [18–20]
that are associated with the DEP choking phenomenon for
particles with an elastic modulus. A parametric study was
performed to investigate the DEP choking phenomenon of
the deformable particles for the first time in a converging-
diverging microchannel. Based on the ALE method, the
parametric region for the DEP choking phenomenon was
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Figure 1. A 2D schematic of the circular particle DEP movement in
a converging-diverging microchannel. The origin of the Cartesian
coordinate system (x, y) is located at the center of the channel
throat with the smallest cross section.

obtained for particles with different shear moduli, among
other parameters.

2 Materials and methods

2.1 Mathematical model

Two-dimensional simulations can consistently and efficiently
capture the essential physics of electrokinetic flows in mi-
crochannels [21–23]. Thus, this study considers a two-
dimensional (2D) micro-channel with a uniform inlet section,
a converging-diverging constriction, and a uniform outlet
section, as shown in Fig. 1. The contraction part of the
converging-diverging channel is generated by two symmetri-
cal triangles. An electric potential is applied externally from
inlet AJ to grounded outlets EF and to the incompressible
Newtonian fluid in domain �f. An electric field E is gen-
erated in the domain by the external potential and induces
the electrokinetic motion of a hyper-elastic particle �p sus-
pended in the fluid. The thin-EDL approximation is applied
because the electric double layer (EDL) thicknesses adjacent
to the charged particle and the channel wall are very thin in
comparison to the particle radius and the channel widths [24].

The electrical potential � in the domain � f can be de-
scribed by the Laplace equation:

∇2� = 0 in � f (1)

The local electric field E can be calculated from the electric
potential �:

E = −∇� in � f (2)

Since a potential bias is applied across the microfluidic
chip, the boundary conditions for � on the right and left
boundaries of the microchannel are:

� = �0 on AJ (3)

and

� = 0 on EF (4)

The solid boundaries include the channel wall (�w) and
particle surface (� p) and are electrically insulating, which
yields:

n · ∇� = 0 on �w and � p, (5)

where n is a unit outward normal vector.
The Reynolds number in the microchannel is very

small, and the conservation of momentum and mass can be
described by the Stokes and the continuity equations [25,26]:

� f
∂u
∂t

= ∇ · [−pI + �(∇u + ∇uT)] in � f (6)

and

∇ · u=0 in � f (7)

where � f and � are the density and the viscosity of fluid,
respectively, u and p are the velocity vector and the hydrody-
namic pressure, I is the unit tensor, and ∇uT is the transpose
of the velocity gradient ∇u. An open boundary condition is
specified at the inlet AJ and the outlets EF:

∇ · [−pI + �(∇u + ∇uT)] = 0 on AJ and EF (8)

The Smoluchowski slip boundary condition for Newto-
nian electroosmotic flow (EOF) is applied on the charged
channel wall:

u = uw = ε f �w

�
(I − nn) · ∇� on �w , (9)

where uw is the fluid velocity on the channel wall, and ε f and
�w are the fluid permittivity and the zeta potential of the chan-
nel wall, respectively. The velocity upon the particle consists
of two parts: (i) the Smoluchowski slip velocity arising from
the particle surface charge and (ii) the velocity of the particle
motion. The boundary condition on the particle surface is
then:

u = up = ε f �p

�
(I − nn) · ∇� + ∂S

∂t
on � p , (10)

where �p is the zeta potential of the particle, and S is the
displacement of the deformable particle caused by the particle
deformation and movement, which is governed by:

� p
∂2S
∂t2

− ∇ · �(S) = 0 in �p (11)

Here, � p is the density of the deformable particle, and
� (S) is the Cauchy stress in the solid phase, which is consid-
ered as a function of the displacement of the particle.

The force on the particle–fluid interface consists of hy-
drodynamic and electrokinetic stresses:

�p · np = � f · n f + �E · n f (12)

� f = −pI + �(∇u + ∇uT) (13)

�E = ε f EE − 1

2
ε f (E · E)I (14)

where �p , � f , and �E are the total stress tensor on the particle
surface, the hydrodynamic stress tensor, and the Maxwell
stress tensor, respectively.

In the simulations, the particle is considered as an in-
compressible Neo–Hookean material expressed as:

Ws = 1

2
G0(IC − 3) (15)
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�(S) = J −1PFT (16)

P = ∂Ws

∂∇X S
(17)

C =FTF (18)

F = ∇S+I (19)

Here, Ws is the energy density function, G0 is the shear
modulus of the hyperelastic particle, IC= tr(C) is the first
invariant of the right Cauchy–Green tensor, F is the deforma-
tion gradient tensor, J is the determinant of the deformation
gradient tensor F, J = 1 for the incompressible Neo–Hookean
material, and P is the first Piola–Kirchhoff stress.

The half width of the throat b, the zeta potential of
the channel wall �w , and the electrophoretic velocity U∞ =
(ε f 	w/�)(	w/b) are used as the characteristic length, charac-
teristic electric potential, and characteristic velocity to nor-
malize the governing equations, respectively. Based on the
system of governing Eqs. (1)- (19), the electric field E and the
time t are scaled by b/((ε f 	w/
)(	w/b)) and �w/b. Thus, the
governing system is nondimensionalized to:

Re
∂u∗

∂t∗ = −∇∗ · [−p∗I + (∇∗u∗ + ∇∗u∗T)] in � f (20)

∇∗u∗ = 0 in � f (21)

∇∗2�∗ = 0 in � f , (22)

Re
� p

� f

∂2S∗

∂t∗2 − ∇∗ · �(S∗) = 0 in �p (23)

where u∗, p∗ and �∗ are the dimensionless velocity, pressure,
and electrical potential, respectively.

2.2 Numerical method and code validation

The density � f and the dynamic viscosity � of the Newtonian
fluid are set to 1000 kg/m3 and 0.001 Pa · s. The particle den-
sity � p is set to be the same as the density of the fluid � f .
The permittivity ε f is chosen as 7.08 × 10−10 F/m, and the
uniform zeta potential of the wall�w is equal to −80 mV.
The converging-diverging section of the channel is symmet-
ric, and Lb = Lc = 400 �m with respect to the throat where
the cross section is minimal, while the width of the throat is
b = 27.5 �m. The particle moves from left to right.

The governing systems of equations are solved using
the commercial finite element package COMSOL (version
4.3a, www.comsol.com) coupled with MATLAB in a high-
performance cluster. The coupled system of the hydrodynam-
ics, electrical field, and particle dynamics is solved simulta-
neously. The finite-element mesh deforms while following
the motion of the particle in the ALE method, and its quality
is reduced as the particle moves in the microfluidic channel.
There are more than 20 000 total elements with a minimum
of 100 elements positioned adjacent to the particle surface

based on rigorous mesh-refinement tests. The mesh element
quality is a dimensionless quantity between 0 and 1, where 1
represents a perfectly regular element in the chosen quality
measure, and 0 represents a degenerated element. The COM-
SOL computations include the default mesh quality measures
method [27], which was used in this simulation. Before the
mesh quality decreases below 0.7 out of a maximum 1.0 when
the particle moves, the domain of the system is re-meshed
with the current position of the particle. The computational
process is restarted after the solution is mapped to the new
mesh.

We also compared the numerical predictions with the
results from Ai and Qian [13] for the electrophoresis of a
spherical particle in a converging-diverging channel with a di-
mensionless electric field intensity E∗ = 17.19. This intensity
is calculated by dividing the dimensionless electric potential
difference between the inlet and outlet over the dimensionless
length of the entire microchannel. The zeta potential ratios
� = 0.4 (� = �p/�w). To simulate a rigid particle, we used an
extremely large value for the shear modulus, G = 2000 Pa. As
shown in Fig. 2, the numerical predictions with the present
method (solid line) are in good agreement with those of Ai
and Qian (symbols).

3 Results and discussion

In this section, the particle movement with different shear
moduli is presented to show the DEP choking phenomenon
for deformable particles. A parametric study was performed
to investigate the effects of the shear modulus in relation to
the critical dimensionless width w∗ and the dimensionless
electric field intensity E∗. The electric field and zeta potential

Figure 2. Critical non-dimensional particle radius a* for the DEP
choking regions as a function of the non-dimensional width w* of
the converging-diverging channel. Choking occurs in the region
above each bounding curve. The particle with a shear modulus
of G = 2000 Pa can be regarded as a rigid particle (E* = 17.19, � =
0.4). The triangle symbol and solid line represent the numerical
solution from Ai and Qian [13] and the numerical results from the
present model, respectively.
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Figure 3. Particles with (A) G = 200 Pa and (B) G = 10 Pa moving
in the converging-diverging channel. E* = 17.19, � = 0.4, w* =
3.68, a* = 0.5. The non-dimensional x coordinates of the particle
position in blue, green, red, and magenta are -9, -5, 0, and 5. (C)
The ratio of the major (x-direction) to minor (y-direction) axis of
the particle for G = 10 (circle) and 200 (square) Pa. E* = 17.19,
� = 0.4, w* = 3.68, a* = 0.5.

ratio versus the particle size were also studied to show the
feasibility of particle manipulation based on the DEP choking
phenomena for different zeta potential ratios and particle
sizes.

3.1 The DEP choking phenomenon

Figure 3 shows the particle shape at different stream-wise
positions along the microchannel for shear moduli of G = 10
and 200 Pa. The applied dimensionless electric field intensity
is E∗ = 17.19, the potential ratio is � = 0.4, the dimension-
less width is w∗ = 3.68, the dimensionless particle radius is
a∗ = 0.5, which correspond to a point in the DEP choking
region for a rigid particle in Fig. 2. The non-dimensional
x-coordinates of the particle position in blue, green, red, and
magenta indicate −9, −5, 0, and 5. The simulation results
show that the deformable particle with a shear modulus of
G = 10 Pa passes through the throat, while a more rigid par-
ticle with a shear modulus of G = 200 Pa is blocked at the

constriction entrance. A more compliant particle with a low
shear modulus deforms itself into an elliptical shape to over-
come the adverse DEP effect to pass the constriction. As
it moves toward the throat, it is squeezed gradually in the
ydirection, passes through the entire constriction, and recov-
ers its circular shape. However, a more rigid particle with
G = 200 Pa is much less compliant and does not deform
enough to pass the constriction.

Figure 3C shows the degree of particle deformation by
the ratio of the major axis to the minor axis of the particle
for two different values of G. For the more compliant parti-
cle (G = 10 Pa), deformation or flattening increases as the
particle approaches the constriction before its shape is grad-
ually recovered. For the less compliant particle (G = 200 Pa),
the deformation is less conspicuous, and it stops before the
particle enters the throat of the channel due to the choking
phenomenon. Thus, the results shown in Fig. 3 reveal that
high deformability allows the particle with low shear modu-
lus to pass through the throat, while the more rigid particle
without sufficient deformation experiences DEP choking.

The DEP force along the center line of the channel will
retard the particle moving into the channel center by affect-
ing the total force, so it is reasonable to study the total force
on the particle. Due to the different shapes, there is differ-
ent net force in the same location, including the DEP and
the hydrodynamic force on the particles that push the par-
ticle downstream in the channel. The x-component of the
non-dimensional total force is computed for each of the two
different shapes to demonstrate that the net force on the
particles depends on the shape of particle. The position of
particles in theydirection is set to the center of the channel.
Figure 4 illustrates the non-dimensional force, which shows
a gradual decrease as the particle approaches the constriction.
The non-dimensional force for the circular particle decreases

Figure 4. Non-dimensional total force F* applied on circular and
elliptical particles with same the same area in the converging-
diverging channel. E* = 20, w* = 4, gamma = 0.4, a* of the circular
particle is 0.5, and the ratio of the non-dimensional long axis to the
short axis of the elliptical particle is 2. The red line with the circular
symbols and the green line with the square symbols represent
the circular and elliptical particles, respectively.
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Figure 5. Non-dimensional velocity component u* in the x direc-
tion of particles with shear moduli of G = 10, 20, 200 Pa when they
are moving from the left to the right in the converging-diverging
channel. E* = 17.19, � = 0.4, w* = 3.68, a* = 0.5. The red line with
the circular symbols, the blue line with triangular symbols, and
the green line with the square symbols represent particles with
shear moduli of G = 10, 20, and 200 Pa, respectively.

to negative values before the constriction throat. Thus, it is
expected that the circular particle will not advance into the
throat. Using this mechanism, particles with different shear
modules can be separated.

The particle’s translational velocity magnitude indicates
whether the DEP choking phenomenon exists. The differ-
ence in the streamwise translation velocity of a particle is
induced by the difference of the net force on the particles
due to the shear modulus. The streamwise translation veloc-
ity difference of particles is shown in Fig. 5 in the xdirection
for the more rigid particle with G = 200 Pa gradually de-
creases to zero before the center of the throat, resulting in
DEP choking. The translational velocities for the deformable
particles with G = 10 Pa and G = 20 Pa decrease initially
but increase back as the particles take on a squeezed elliptical
shape.

Before the center of the throat, the DEP force on the
particle retards its motion into the converging part of the
channel. After the narrowest part of the throat, the DEP force
promotes its motion out of the diverging part of the channel.
The particles are thus accelerated in the diverging section with
higher velocity than they have in the symmetric converging
section. The deformed particles recover their circular shape as
they pass through the throat, after which the particle velocity
exhibits little dependence on the shear modulus, as shown
in the magenta color position of Fig. 3B for G = 10 Pa and
G = 20 Pa.

3.2 Channel width versus shear modulus

No matter how large the particle size and the electric field
intensity are, it is impossible for straight uniform microchan-
nels to induce the DEP choking phenomenon. The nonuni-
formity of the electric field caused by the constriction ratio

Figure 6. Critical non-dimensional width w* of the converging-
diverging channel for the DEP choking regions as a function of
the shear modulus G of the particle. The choking occurs in the
region above each bounding curve. E* = 17.19, � = 0.4, a* = 0.5.

is the essential reason for the DEP choking phenomenon.
Figure 6 illustrates the critical non-dimensional width w* of
the converging-diverging channel for the DEP choking region
as a function of the shear modulus G of the particle. The chok-
ing occurs in the region above each bounding curve. Here, the
applied dimensionless electric field intensity is E∗ = 17.19,
the potential ratio is � = 0.4, and the dimensionless particle
radius is a∗ = 0.5.

The results indicate that a particle with low shear modu-
lus requires a higher constriction ratio in order to generate a
higher nonuniformity of the electric field for the DEP chok-
ing. The result also shows that the DEP choking force on a
particle with low shear modulus is less than that of a par-
ticle with high shear modulus under the same constriction
ratio. Therefore, sequential converging-diverging channels
with different constriction ratios can be designed to selec-
tively trap cells with different shear modulus, which is an im-
portant marker of the condition of biological particles such
as cells. They can then be separated from complex mixtures
based on their different shear modulus. This is a prerequisite
step for many biological analyses. Using the same principle,
a suitable constriction ratio can be used to separate cells with
a chosen shear modulus when the dimensionless electric
field intensity and other parameters are chosen for particular
applications.

3.3 Electric field versus shear modulus

The magnitude of the applied electric field intensity influ-
ences the nonuniformity of the electric field. When other
parameters are the same, the nonuniformity of the electric
field increases with the magnitude of the electric field inten-
sity. Figure 7 shows the DEP choking regions of deformable
particles according to the external electric field, and the chok-
ing region is above the line. Here, a potential ratio of � = 0.4
is employed for the dimensionless particle radius a∗ = 0.5

C© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.electrophoresis-journal.com
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Figure 7. Critical non-dimensional electric field E* of the
converging-diverging channel for the DEP choking regions as a
function of the shear modulus G of the particle. The choking oc-
curs in the region above each bounding curve. w* = 3.68, � = 0.4,
a* = 0.5.

and the non-dimensional width w∗ = 3.68. It is consistently
shown that the choking region expands as the particle shear
modulus increases. The particles with low shear modulus re-
quire higher electric field intensity for the DEP choking. It
is demonstrated that particle sorting according to the shear
modulus can be achieved by adjusting the applied voltage be-
tween the inlet and the outlet of a microchannel with a fixed
geometry.

Figure 7 shows that the absolute value of the function
between the external electric field and the particle shear
modulus decreases when the shear modulus of the parti-
cle increases. When the particle shear modulus is low, the
absolute value of the value is very large. The value then grad-
ually decreases to zero after the shear modulus increases to
a certain level. The phenomenon shows that the sensitivity
of the deformability of the flexible particle to the electrical
field increases when the particle shear modulus decreases.
In the other words, there is less difference in the electrical
intensity for distinguishing a particle with a different shear
modulus when the shear modulus is low. Thus, the choking
phenomenon can easily be used for sorting particles with a
lower modulus by the converging-diverging channel.

3.4 Electric field versus particle size

Smaller particles require larger electric field intensity for DEP
choking. Similarly, low-modulus particles require larger elec-
tric field intensity for DEP choking. Figure 8 shows the re-
gions for DEP choking of particles with G = 10 Pa and 200 Pa
in an electric field E∗ versus the particle size a∗ for a zeta po-
tential ratio of � = 0.4 and constriction ratio of w∗ = 5.9. The
red line with the circular symbols and the green line with the
square symbols represent the particles with shear moduli of
G = 10 and 200 Pa, respectively. For both cases, the required
electric field E∗ for the DEP choking approaches infinity as
the particle radius a∗ approaches zero. As the particle size

Figure 8. Critical non-dimensional particle radius a* for the DEP
choking regions as a function of the non-dimensional electric field
intensity E*. The choking occurs in the region above each bound-
ing curve. � = 0.6, w* = 5.9. The red line with the circular symbols
and the green line with the square symbols represent particles
with shear moduli of G = 10 and 200 Pa, respectively.

Figure 9. Critical zeta potential ratio � for the DEP choking regions
as a function of the non-dimensional particle radius a*. The chok-
ing occurs in the region above each bounding curve. E* = 17.19,
w* = 5.9. The red line with the circular symbols and the green line
with the square symbols represent particles with shear moduli of
G = 10 and 200 Pa, respectively.

increases, E∗ decreases. E∗ of the particle with G = 10 Pa is
higher than that of the particle with G = 200 Pa. The criti-
cal electric field increases as the particle modulus decreases,
which is consistent with the results in Fig. 7. Hence, parti-
cles with identical size but different shear modulus can be
separated effectively by adjusting the electric field intensity.

3.5 Particle size versus zeta potential ratio

Figure 9 shows the DEP choking region for the particle size a∗

versus the zeta potential ratio � for particles with G = 10 Pa
and 200 Pa, an electric field of E∗ = 17.19, and a constriction

C© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.electrophoresis-journal.com
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ratio of w∗ = 5.9. It is consistently shown that the choking re-
gion decreases with the decreasing shear modulus. If the zeta
potential ratio is positive, the particle and the channel wall are
negatively charged. As a result, the particle electrophoresis
retards the particle moving toward the converging-diverging
channel. Thus, for both particles, the total driving force that
pushes the particle to the center decreases as the zeta poten-
tial ratio increases until it vanishes at 1.

When the zeta potential ratio decreases from a positive
value to a negative value, the net retarding force on both
particle surfaces with G = 10 Pa and G = 200 Pa decreases. As
the negative zeta potential accelerates the particle motion, the
critical particle size for the DEP choking increases gradually
to 1 when the zeta potential ratio � decreases. However, the
net retarding force on the particle surface with G = 10 Pa
decreases faster than that of the particle with G = 200 Pa
due to the deformation of the particle. Thus, the result once
again illustrates that the converging-diverging microchannel
can be used for sorting and trapping particles with different
shear moduli.

4 Concluding remarks

The DC DEP choking phenomenon of deformable particles
through a converging-diverging microchannel was quantita-
tively studied using a transient ALE finite-element method
and thin-EDL approximation. A parametric study was per-
formed to investigate the DEP choking phenomenon, includ-
ing the channel width versus the shear modulus, the electric
field intensity versus the shear modulus, the electric field
versus the particle size, and the particle size versus the zeta
potential ratio. The particle movement process obtained by
the simulation shows that a more compliant particle with low
shear modulus deforms into a nearly elliptical shape to over-
come the adverse DEP effect and pass the constriction. The
parametric study revealed that a deformable particle needs
higher nonuniformity of the electric field, higher particle size
ratio, and higher zeta potential ratio for the DEP choking of
particles through a nonuniform microchannel to occur. Thus,
the results suggest a design range of the geometry for parti-
cles with different shear moduli for particle choking, which
could be used for particle sorting, trapping, and concentra-
tion, among other applications.
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