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A phase-shifting iterative algorithm is proposed to calibrate the wavefront phase image demodu-
lated from an interferogram generated by quadriwave lateral shearing interferometer. It reduces the
error of the residual slope to RMS < 1.5×10−4λ after calibration. A favorable result was obtained
in the present experiment. We measured a certain wavefront provided by a deformable mirror using
the quadriwave lateral shearing interferometer after calibration. The deviation between the wave-
front graph of the deformable mirror and the wavefront constructed by quadriwave later shearing
interferometer was 2.63%. Our method increases the accuracy and reliability of the reconstructed
wavefront data and has a high practical value, all of which meets the requirement of high-precision
wavefront sensing.
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I. INTRODUCTION

The concept of the quadriwave lateral shearing inter-
ferometry (QWLSI) was proposed in 2000 and is based
on the interference of four tilted replicas of the wave-
front to be analyzed [1–4]. A number of the research into
QWLSI applications began in the next few years. Many
quadriwave lateral shearing interferometers working on
various wavelength had been developed, such as X-rays
[5], extreme ultraviolet [6–8] and infrared wavelengths
from 2 to 16 μm [9,10]. In 2015, a paper reviewed the
recent developments in IR metrology using quadriwave
lateral shearing interferometry and stated that Phasics
has developed wave front sensors compatible with wave-
lengths ranging from 193 nm to 14 μm [11]. There are
some applications in beam quality evaluation, such as
the measurement of the relative piston between two in-
dependent beams [12] and the collective phase measure-
ment of an array of fiber lasers [13]. The QWLSI also has
important applications in the field of microscopy, which
is called quantitative phase imaging (QPI). In 2009, a
research got a lateral resolution up to the microscope
diffraction limit with 300× 400 images and a huge OPD
sensitivity of less than 1 nm and the implementation sim-
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plicity [14]. In 2011, A thermal image of nanostructures
was got by QWLSI [15]. In 2015, a new technique com-
bines quantitative phase images with varying polariza-
tion excitation to create retardance images which called
quantitative retardance imaging (QRI) was described
[16]. The approach was applied to collagen fibers leading
to a birefringence value of (3.4 ± 0.3) × 10−3 and to liv-
ing cells, showing that cytoskeleton can be imaged label-
free. Recently, a new type of randomly encoded hybrid
grating (REHG) for wavefront testing by quadriwave lat-
eral shearing interferometry was proposed [17]. Com-
pared with the modified Hartmann mask (MHM), only
four diffraction orders exist in its diffraction field, and
the quadriwave lateral shearing interferometry is better
achieved. In 2017, a wideband sensitivity-enhanced in-
terferometric microscopy was reported for quantitative
phase imaging in real time by employing two quadri-
wave lateral shearing interferometers based on REHG
with different lateral shears [18].

The QWLSI offers the crucial advantage that it yields
an analyzed wavefront without the use of a reference arm
and consequent time consuming alignment. It combines
fundamental properties, such as the achromaticity the
high resolution, the adjustable sensitivity and dynamic,
to a great versatility. Due to these qualities, the QWLSI
is an excellent candidate to perform high quality wave-
front measurements in hard context. However, theres a

pISSN:0374-4884/eISSN:1976-8524 -359- c©2018 The Korean Physical Society



-360- Journal of the Korean Physical Society, Vol. 72, No. 3, February 2018

Fig. 1. (Color online) Construction of MHM.

problem that cannot be ignored. The problem is that
when a new quadriwave lateral shearing interferometer
was manufactured. There are some inherent errors in
the device, including the etching error of grating and
the position error of internal component. These errors
will reduce the accuracy of phase imaging, and must be
resolved by a means of calibration. The inherent er-
ror of the device will mainly lead to gradient error in
the phase image and phase-shifting algorithm is an ef-
fective means to solve it. Phase-shifting algorithm was
firstly proposed by Kenichi Hibino [19] to compensate
the phase error in nonsinusoidal waveforms. Then a new
phase-shifting algorithm called a double three-step al-
gorithm was developed to reduce the measurement er-
ror of a three-dimensional shape measurement system
[20]. It also had been used in phase-shifting digital fringe
projection profilometry [21], fringe projector based on
beamshaping [22] and 3D phase-shifting fringe projec-
tion system [23].

In this paper, we proposed an improved phase-shifting
algorithm to calibrate the quadriwave lateral shearing
interferometer. A polynomial fitting method is used to
calculate the tilt of the phase image. The obtained tilt
is used as a parameter for phase shifting to compensate
the errors in the phase image. The iterative method
is further used to reduce the residuals to a fairly small
value. This method solves the problem of the device
errors and helps to a higher accuracy phase imaging.

II. PRINCIPLE

Quadriwave lateral shearing interferometry uses a
MHM, which combines a Hartmann mask with a phase

Fig. 2. Fourier spectrum of an interferogram.

chessboard. The MHM divides light into four diffracted
beams, making them interfere with each other. Specif-
ically, the period of phase chessboard is twice as much
as that of the Hartmann mask, and its phase gap be-
tween the adjacent grid is π. The radius of aperture
of the Hartmann mask is 0.67 times of its period. The
structure of MHM is shown in Fig. 1.

If we only consider the (±1,±1) order of the diffracted
beam, the amplitude transmittance of MHM is:
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The propagation of light in space can be represented by
complex amplitude.

A(r) =
√

I(r) exp(i[kr − ϕ(r)]), (3)

where r is the spatial vector, k is wave vector, I is inten-
sity, and ϕ is phase. Each diffraction order was propa-
gated along the direction of the wave vector. Then, the
optical field propagated a distance z along the z-axis.
Because of its free space, diffraction in the premise of
paraxial propagation is negligible; the light field at z is
superimposed at all diffraction orders. The light field
intensity is
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where I0 is the maximum intensity of the interference
pattern in case z = 0, ϕ is the phase of the incident
light, and λ is the wavelength of the incident light.

III. DEMODULATION ALGORITHM

After obtaining the interferogram, we will be able to
demodulate the phase image of the wavefront. We can
calculate the offset of each point to fit the wavefront.
FFT analysis proposed in 1982 by Takeda [24] can also
be used. The Fourier spectrum of Eq. (4) is
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where δ is the Dirac function, F represents the Fourier
transform, i =

√−1.
As shown in Eq. (5), the interferogram spectrum can

be divided into nine parts from the difference of the cen-
ter frequency, corresponding to the nine regions in Fig. 2,
which is located in the center of the zero-order spectrum
corresponding to the incident light intensity distribution.
Ideally, the incident light intensity is constant, which
means the spectral width of the zero-order is 0. The
remaining eight regions represent first-order spectral in-
formation, each center located at

(
± 1

p ,± 1
p

)
,

(
0,± 1

p

)
,

and
(
± 1

p , 0
)
. The first-order spectrum of the interfero-

gram corresponds to the modulated information of the
interference fringes, including the phase gradient of the
incident wavefront. We used a filtering window at fre-
quency domain to extract the first-order spectrum of the
interferogram. Then, we moved the center of the first-
order spectrum to (0, 0) in the coordinates and took an
inverse Fourier transform.
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where F−1 represents the inverse Fourier transform.
A(x, y) in Eq. (6) contains a phase gradient in certain

direction. Then we can obtain a phase gradient in the x
direction.
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where Angle[A(x, y)] means take the phase angle of com-
plex A(x, y). Imag[A(x, y)] means obtain the imaginary
part of A(x, y), and Real[A(x, y)] means obtain the real
part of A(x, y).

Similarly, we got the phase gradient ∂ϕ(r)
∂y by extract-

ing the first-order spectrum, of which the center is lo-
cated at the point

(
0, 1

p

)
. After we got the phase gradi-

ent along both the x axis and the y axis, the phase image
of the wavefront can be rebuilt by the Fourier integral
method. The reconstruction equation is
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Fig. 3. A wrapped wavefront gradient in case of tile (a)
and its proper value (b).

Fig. 4. Flowchart of the iterative calibration algorithm.

IV. PHASE-SHIFTING ITERATION
ALGORITHM

In practice, the interferogram and its Fourier trans-
form are all represented as a matrix of discrete numbers.
MHM usually has an angle of rotation to CCD. There-
fore, the first-order spectrum center tends not to be lo-
cated at the integer coordinate positions. If we directly
select the location of the nearest neighbor of the center to
calculate, it will result in some tilt at the phase gradient,
even resulting a wrapped phase, as shown in Fig. 3.

Using the numeric operation to unwrap the wavefront
gradient will make it difficult to obtain the proper result
in case of the noise. Therefore, we developed an iterative
phase-shifting algorithm to solve this problem. First, se-
lect the nearest neighbor of the spectrum center and take
the operation described by Eq. (6). When the center we
selected is close enough to the actual center, the phase

gradient we got will not be wrapped but will be inclined.
In the next step, we will fit the inclined gradient to pro-
vide a slope. Then, we can determine the offset of the
center from the slope. After several iterations, the cen-
tral location will become quite accurate.

According to the Fourier shift theorem, phase shifting
of a function in the spatial domain will result in transla-
tion in the frequency domain.

F{g(x, y) exp[i2π(fax+fby)]}=G(fx−fa, fy−fb). (9)

According to Eq. (9). We need to multiply an appro-
priate correction at the inverse Fourier transform of the
phase gradient to eliminate the non-integer offset of the
spectrum center . Then, the inclination will be elimi-
nated, and we can get the proper wavefront gradient.

Therefore, we must calibrate the interferometer to pre-
vent a wrong result. The center of the first-order spec-
trum must coincides with the center of the frequency
domain window.

Suppose the incident light is an ideal plane wavefront.
The frequency spectrum of the wavefront is

U(fx, fy) = δ(fx, fy). (10)

If the center of the selected window does not coincide
with the first-order spectrum center. Suppose the offset
is (Δfx,Δfy). Then U ′(fx, fy) = U(fx−Δfx, fy−Δfy).
There will be

∂ϕ′(x, y)
∂x

= 2π(Δfxx + Δfyy). (11)

By Eq. (11), the offset between the center of the selected
window and the center of the first-order spectrum will
cause linear tilt in the obtained phase gradient. Next, a
polynomial fitting method will be used to calculate the
tilt factor. Then the offset will be estimated between two
centers. It should be noted that the arc-tangent function
range is [−π, π]. If the phase gradient didn’t wrap. There
must be

|2π(Δfxx + Δfyy)| < π. (12)

The interferogram is represented as a discrete size M ×
N matrix. Then, the spectrum of the two-dimensional
Discrete Fourier Transform can be expressed as
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where u = 0, 1 · · · , M − 1 and v = 0, 1, 2, · · · , N − 1.
By Eqs. (12) and (13), there will be
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1
2
. (14)

The frequency difference between two adjacent pixels in
the spectrum is

(
1
M , 1

N

)
. The pixel difference between

the selected center and the actual center should be no
more than 0.5.
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Fig. 5. (Color online) Quadriwave lateral shearing inter-
ferometer image (a) and its interferogram (b).

Fig. 6. The relation curve of lk and iteration number.

We can calculate the tilt of the gradient image by using
the polynomial fitting method. Then, the offset value of
the spectrum window center can be fixed. Repeat this
process several times until the remaining tilt is less than
the threshold. The flowchart about the iteration process
is shown in Fig. 4.

V. EXPERIMENTAL RESULTS

The quadriwave lateral shearing interferometer is
shown as Fig. 5(a). It includes an MHM and a CCD.
First, etch the MHM pattern on the photoresist layer
using laser direct writing process. Then transfer the
pattern of the photoresist layer onto a glass substrate
by using the reactive ion beam etching technology. The
aperture period of the Hartmann diaphragm p is 11 μm,
and the CCD pixel size is 5.5 μm. The resolution of CCD
is 2048× 2048, which means the maximum resolution of
phase image is 512×512. Figure 5(b) is an interferogram
obtained by this shearing interferometer.

To verify the calibration algorithm, we use a collima-
tor to generate plane wavefront. Using the calibration
process shown in Section 4, we obtained a series of ex-

Table 1. Contrast of the average of wavefront RMS before
and after calibration.

Iteration RMS before RMS after

number calibration calibration

1000 0.005λ 6.1 × 10−5λ

1000 0.020λ 1.1 × 10−4λ

1000 0.080λ 1.3 × 10−4λ

1000 0.200λ 1.5 × 10−4λ

1000 0.500λ 1.4 × 10−4λ

Fig. 7. A type map of PT111-5 segmented MEMS de-
formable mirror.

Fig. 8. (Color online) Optical path of quadriwave lateral
shearing interferometry experiment.

perimental results. We choose k = 0.8 to do a phase-
shifting iterative experiment. Then, we obtained the
statistics of the residual value lk =

√
(l2x + l2y). As shown

in Fig. 6, when the number of iterations reaches at least
1000, change of lk has been stabilized.

To ensure the validity of the experimental results, we
performed multiple sets of calibration experiments. We
use a series of incremental RMS values of the test and ac-
quire the data in the table. As shown in Table 1, the ex-
perimental results show that the proposed phase-shifting
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Fig. 9. (Color online) Y axis coma with different
RMS obtained by qwariwave lateral shearing interferometer.
(a)0.05λ; (b)0.10λ; (c)0.15λ; (d)0.20λ

Fig. 10. (Color online) Spherical aberration with different
RMS obtained by qwariwave lateral shearing interferometer.
(a)0.05λ; (b)0.10λ; (c)0.15λ; (d)0.20λ

iteration algorithm can reduce the error of the wavefront
gradient RMS to 1.5 × 10−4λ, which meets the require-
ments of the wavefront detection accuracy.

We use 632.8 nm fiber source with 37 units segmented
deformable mirror produced by Iris AO to generate the
wavefront. The maximum stroke of the mirror unit is
8 μm, and the maximum frame rate is 6.5 kHz. The type
of deformable mirror surface is shown in Fig. 7, wherein
each hexagon is a single 4 degrees of freedom mirror unit.

The optical path is shown in Fig. 8.
Each variables in Fig. 8 represents: L0: 632.8 nm fiber

source, S1: 20mm dispersion prism, L1: 10mm lens, L2:
7mm lens, L3: 5mm lens, A1: 5mm diameter pupil aper-
ture stop, M0: MEMS deformable mirror, C1: Contrast
wavefront sensor.

Figures 9 and 10 shows the results of the reconstructed

Fig. 11. Contrast of reconstructed wavefront RMS and
deformable mirror RMS.

Fig. 12. (Color online) Contrast of reconstructed wave-
front (a) and deformable mirror graph (b).

wavefront produced by MEMS.
We use MEMS deformable mirror to produce a rel-

atively RMS from 0.02 - 0.8 range of defocus wave-
front. Figure 11 is the contrast between deformable
mirror RMS and reconstructed wavefront RMS detected
by QWLSI. The linear fitting error is less than 1.5 ×
10−2. Thus, after the iterative algorithm calibration,
our QWLSI gets the reliable phase image.

Finally, we use MEMS deformable mirror to produce
a random wavefront. Figure 12 shows the contrast be-
tween the reconstructed wavefront detected by QWLSI
and the wavefront graph of the deformable mirror. The
covariance between two wavefronts is 2.63%. This is a
quite ideal result considering there’re some deviation in
the non common optical path.

Experimental results showed that the proposed phase
shifting iterative calibration algorithm used by quadri-
wave lateral shearing interferometry can effectively elim-
inate the tilt error. This algorithm improved the cal-
culation accuracy and had important significance and
application value in wavefront sensing and analysis of
interferogram.
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VI. CONCLUSION

A phase-shifting iterative algorithm is proposed to cal-
ibrate the wavefront phase image demodulated from an
interferogram generated using quadriwave lateral shear-
ing interferometry. We take a reverse iteration to pin-
point the location of the first-order spectrum center,
reducing the tilt error brought by the special window.
From the experimental wavefront detection result, we
can summarize that this algorithm improves the accu-
racy of the phase image. So that the QWLSI can achieve
the desired result. The next stage of our research will
focus on the reconstruction algorithm for image restora-
tion of the wavefront. And to meet the high-speed, low
consumption of resources for the purpose of the high-
efficiency precision wave reconstruction algorithm.
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