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Graphene exhibits extraordinarily strong coupling to light 
owing to its unique linear and gapless two-dimensional band 
structure that hosts massless Dirac fermions1,2. The wide 

band linearity results in a unique spectral response ranging from 
terahertz and infrared to visible and ultraviolet. The corresponding 
optical absorbance is a constant universal value of 2.3% for a sus-
pended graphene monolayer3,4. Gate tuning of the carrier density, 
and hence the chemical potential (or Fermi level), modifies both 
intraband and interband transitions in graphene, and allows control 
of its optical properties in selected spectral regimes, leading to many 
promising applications in optoelectronics and photonics1,2,5–9.

The very strong linear response in such regimes suggests that the 
nonlinear optical response of graphene could also be exceptionally 
strong and promising for optoelectronic applications10,11. As second-
order nonlinearity in graphene is electric-dipole forbidden because 
of inversion symmetry, the third-order nonlinear optical response 
becomes dominant. Indeed, third-harmonic generation (THG)12–15, 
four-wave mixing (FWM)16,17, optical Kerr effect18–21, self-phase 
modulation22,23, two-colour coherent optical injection of current24 
and even high-harmonic generations25 can be readily observed in 
graphene. However, the reported values of the third-order nonlin-
ear susceptibilities appear to vary by more than six orders of mag-
nitude (see Supplementary Table 1). It is not yet clear how such a 
wide variation comes about despite differences between the nonlin-
ear processes studied and the experimental conditions employed. 
A unified understanding of the nonlinear optical response of gra-
phene is needed, and is crucial for future design of graphene-based 
nonlinear photonic devices6,22. It will also provide a salient platform 

for study of the third-order nonlinear optical response of massless 
Dirac fermions that exist in other novel materials such as topologi-
cal insulators26 and Dirac and Weyl semimetals27.

For a better understanding of the third-order optical response of 
graphene, we must know how it varies with input frequencies with 
respect to the chemical potential. Tuning the input frequencies or 
the chemical potential can move a third-order nonlinear process 
in and out of one-, two- or three-photon resonances, and provide 
detailed information about the nonlinear process. Few such experi-
ments have been reported, although they have been suggested in 
theoretical work28–32. Very recently, degenerate four-wave mixing in 
graphene-covered SiN waveguides with ion-gel gating was experi-
mentally studied33.

Here, we report an experimental study of the third-order non-
linear optical response of ion-gel-gated graphene. Our focus is on 
THG and FWM, but the extension to other third-order processes 
is straightforward. The ion-gel gating allowed us to controllably 
tune the chemical potential over a sufficiently large range such that 
one-, two- and three-photon resonances could be selectively turned 
on or off for a given set of input frequencies. We found that THG 
and sum-frequency FWM in the heavily doped graphene could be 
much stronger (~30 times) than in undoped graphene, while dif-
ference-frequency FWM behaved just the opposite, and exhibited a 
strong divergence of nonlinearity towards the degenerate FWM in 
undoped graphene. Our experimental results matched well with the 
theoretical calculation following refs 28,29. Thus, this study provides a 
firm basis for comprehension of third-order nonlinear optical pro-
cesses in graphene and graphene-like Dirac materials.
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Graphene with massless Dirac fermions can have exceptionally strong third-order optical nonlinearities. Yet reported values 
of nonlinear optical susceptibilities for third-harmonic generation (THG), four-wave mixing (FWM) and self-phase modula-
tion vary over six orders of magnitude. Such variation likely arises from frequency-dependent resonance effects of different 
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tuning to adjust the doping level and vary the resonant condition. We find that THG and sum-frequency FWM are strongly 
enhanced in heavily doped graphene, while the difference-frequency FWM appears just the opposite. Difference-frequency 
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nonlinearity. The results are well supported by theory. Our full understanding of the diverse nonlinearity of graphene paves the 
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Shift of chemical potential by gate tuning
For gate tuning of the chemical potential, we adopted the ion-gel gat-
ing method using the field-effect transistor structure with graphene 
supported by fused silica9,34,35, as depicted in Fig. 1a. This device 
structure enabled us to measure the linear and nonlinear optical 
responses of graphene at room temperature and monitor in situ the 
chemical potential μ versus the gate voltage Vg. Figure 1b plots the 
graphene resistance as a function of Vg. At Vg ≈  0.9 V, the resistance 
is maximum, indicating that graphene is at the charge neutral point 
(CNP, μ =  0). Away from the CNP, the resistance decreases and μ 
shifts to positive or negative values accordingly.

To extract the chemical potential μ as a function of Vg, we mea-
sured the transmittance spectra of the gated sample at normal inci-
dence36. The spectra at different Vg normalized against the one at 
VCNP are shown in Fig. 1c. As described in Fig. 1d, the interband tran-
sitions should be suppressed by Pauli blocking for photon energy 
ħω0 <  2|μ|, where ω0 is the angular frequency of light, resulting in 
a step-like transmission spectrum if the temperature and damping 
effects are neglected. At finite temperature and with proper damp-
ing factors, the spectrum is broadened into a shoulder-like one, as 
seen in Fig. 1c. We could use the Kubo formula to fit each spectrum 
and deduce |μ| from the fitting (described in the Supplementary 
Information)36. The deduced |μ| as a function of Vg is plotted in Fig. 
1b. The result agrees well with that (red curve in Fig. 1b) predicted 
from an ion-gel-gated graphene device with a capacitance of 2.5 μ 
F cm−2 (see the Supplementary Information). The uncertainty of |μ| 
so obtained was ± 10 meV. Ion-gel gating permitted us to tune |μ| 
from 0 to ~0.9 eV (ref. 9), corresponding to a tuning of the carrier 
density of graphene from 0 to ~6 ×  1013 cm−2.

Experiment on THG
The linearly polarized femtosecond laser at 1,566 nm (ħω0 =  0.794 eV) 
was used to excite THG of ion-gel-gated graphene at normal  

incidence, as described in the Methods. Two representative output 
spectra taken in the reflected direction at μ =  0 and μ =  − 0.74 eV 
are shown in Fig. 2a. The former shows a THG peak at 2.381 eV 
superimposed on a broad background, which is absent in the latter. 
The broad background is known to be due to ultrafast photolumi-
nescence arising from Auger-like scattering of one-photon excited 
carriers37. It disappears when 2|μ| is larger than ħω0 so that the one-
photon excitation is Pauli blocked. While the THG peak was readily 
observable at all μ (Fig. 2b), its intensity exhibits shoulder-like rises 
as 2|μ| moves over ħω0 and 2ħω0 and reaches a maximum strength 
of ~30 times that of μ =  0, as seen from the curves plotted in Fig. 2c 
for four different input wavelengths: 1,300 nm (0.956 eV), 1,400 nm 
(0.888 eV), 1,566 nm (0.794 eV) and 1,650 nm (0.753 eV). As will be 
explained more clearly later, these shoulder-like features arise from 
stepwise switching off of resonant transitions in graphene when 
|μ| increases: one-photon, two-photon and three-photon resonant 
transitions are switched off successively when 2|μ| becomes larger 
than ħω0, 2ħω0 and 3ħω0 (unfortunately, the last step could not be 
reached in our experiment). Note that without graphene on the sub-
strate, THG from the ion-gel-gated fused silica was not observable.

The dependence of THG on input/output polarization is gov-
erned by the D6h structural symmetry of graphene. We found that 
if the normally incident input was linearly polarized and the analy-
ser for the reflected THG was set at an angle θ with respect to the 
input polarization, the observed THG output was proportional to 
cos2θ. Figure 2d presents two examples of THG versus θ taken at 
μ =  − 0.89 eV with input polarizations along and perpendicular 
to the source–drain direction (Fig. 1a), respectively. In another 
measurement, we set the output analyser parallel to the input 
polarization and rotated them together with respect to the sample 
about its surface normal. The observed THG was isotropic, inde-
pendent of the azimuthal rotation (Fig. 2e). Both results can be 
understood knowing that the third-order nonlinear susceptibility  
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Fig. 1 | Tuning of chemical potential in graphene by ion-gel gating. a, Schematic of an ion-gel-gated graphene monolayer on a fused silica substrate 
covered by ion-gel and voltage biased by the top gate. The source and drain electrodes on graphene with voltage VDS applied are for resistance 
measurement. b, Measured graphene resistance (R) as a function of gate voltage Vg (black curve), the peak of which refers to the CNP or zero chemical 
potential (μ =  0). The red squares and curve are 2|μ| versus Vg deduced from the transmittance spectra in c and calculated for the graphene device with 
a fitted ion-gel capacitance of 2.5 μ F cm−2 (discussed in the Supplementary Information), respectively. c, Transmittance spectra of graphene gated at 
different Vg −  VCNP, normalized against the one gated at VCNP. Spectra from left to right correspond to Vg −  VCNP changed from 0 to − 3.2 V in steps of 0.2 V. 
The transmittance increases when 2|μ| >  ħω0. d, Linearly dispersed electronic bands of graphene around the CNP showing that tuning of μ enables Pauli 
blocking of interband transitions when 2|μ| >  ħω0.
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element, χxxxx
(3) , of graphene is responsible for the THG (see the 

Supplementary Information).

Experiment on FWM
FWM with two input frequencies ω1 and ω2 (ω1 >  ω2) is a more gen-
eral process than THG, but the effect of shifting μ to switch resonant 
transitions on and off is similar. Four FWM processes, described 
in Fig. 3a, are considered here: two sum-frequency mixings (SFM) 
with output at 2ω1 +  ω2 and ω1 +  2ω2, and two difference-frequency 
mixings (DFM) with output at 2ω1 −  ω2 and 2ω2 −  ω1. In our experi-
ment, we chose ħω1 =  1.195 eV (1,040 nm) and ħω2 =  0.956 eV 
(1,300 nm), which generated SFM outputs at 3.346 eV (371 nm) 
and 3.107 eV (400 nm), and DFM outputs at 1.434 eV (867 nm) and 
0.717 eV (1,734 nm). The last DFM output was outside our spec-
tral detection range. To study this process, we slightly shifted ħω2 
to 0.994 eV (1,250 nm) to generate DFM (2ω2 −  ω1) at 0.794 eV 
(1,566 nm). The observed spectra taken at μ =  0 and μ =  − 0.73 eV 
for the four mixing processes are displayed in Fig. 3b–d, showing 
the respective spectral peaks.

The SFM peaks are much stronger at |μ| =  0.73 eV than at μ =  0, 
but the DFM peaks show the opposite trend. The SFM processes 
are expected to be quite similar to THG, exhibiting a shoulder-like 
rise as 2|μ| approaches ħω1 and ħω2 (individual shoulders merge 
into one because of broadening). This is seen for the ħ(ω1 +  2ω2) 
process in Fig. 3e. The curve shows another rise as 2|μ| approaches 
2ħω1, 2ħω2 and ħ(ω1 +  ω2). Unfortunately, the top of the rise cannot 
be seen because it was outside the tuning range of |μ|. The DFM 
processes behave oppositely: at μ =  0, the output is strong, but as 

2|μ| moves towards ħω1, ħω2, ħ(2ω1 −  ω2) or ħ(2ω2 −  ω1), it shows a 
step-like drop, as seen in Fig. 3e for the 2ω1 −  ω2 process and Fig. 3f 
for both DFM processes.

Theoretical understanding and comparison with 
experiment
To understand the observed μ-dependences of THG and FWM in 
graphene in depth, we resort to the theory developed by Cheng et 
al.28,29. The analytical expression of the third-order nonlinear suscep-
tibility, χ(3), generally has 8 terms for THG and 24 terms for the FWM 
processes studied here38,39. In our case, χ(3) of graphene is dominated 
by contributions from interband transitions; with the gapless, lin-
early dispersed band structure, each term in χ(3) can only have a single 
resonance at either ωi = 2vF|k| or |ωi ±  ωj| = 2vF|k| or |2ωi ±  ωj| = 2vF|k| 
that provides the resonant enhancement. Here, ωi and ωj refer to 
the input frequencies, which can be either ω1 or ω2 in practice, vF 
is the Fermi velocity in graphene and k is the electron wavevector 
in the first Brillouin zone. The abovementioned resonances can be 
switched off by Pauli blocking if 2|μ| becomes larger than ħωi, |ħωi 
± ħωj| and |2ħωi ± ħωj|, respectively. It is expected that switch-off of 
resonances will introduce characteristic changes of χ(3).

Mathematically, we can write a single resonant term in χ(3) in 
the form of ∫ Δ μ

ω − ∣ ∣
kdA k n k

v k
( ) ( , )

2
2

FI
, where A(k) is the product of transition 

matrix elements and off-resonance denominators, ωI is the input 
frequency or frequency combination on interband resonant transi-
tion and Δ n(k, μ) is the difference of Fermi distributions of elec-
trons between valence and conduction bands. The dependence of 
χ(3) on μ is through Δ n(k, μ), which has a derivative ∂ Δ n(k, μ) / ∂ 
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Fig. 2 | Gate-controlled THG from graphene and its polarization patterns. a, Measured THG spectra by a normally incident femtosecond input pulse at 
1,566 nm from graphene gated at μ =  0 (black curve, magnified by 15 times) and μ =  − 0.74 eV (red curve). The broadband background of the black curve 
comes from up-converted photoluminescence due to rapid carrier–carrier scattering following one-photon interband excitation. b, Measured spectra 
versus 2μ and photon energy showing strong dependence of THG at 2.381 eV with μ. The spectra in a correspond to the signal variation following the 
black and red dashed lines. c, THG signal as a function of 2μ generated by different input wavelengths: 1,300 nm, 1,400 nm, 1,566 nm and 1,650 nm. The 
corresponding incident laser fluences were 3.14, 3.68, 2.86 and 1.54 J m−2, respectively. Curves are normalized for comparison. Dots are experimental data 
and curves are guides for the eye. Red and blue arrows mark the shoulder and maximum regions, respectively. d,e, Illustration that a linearly polarized 
input generates a linearly co-polarized THG output (with μ =  − 0.89 eV). In d, THG output through an analyser is plotted as a function of angle θ between 
the analyser axis and the input polarization set along (black) and perpendicular to (red) the source–drain directions. In both cases, the experimental data 
(dots) can be well fit by a cos2 θ curve. In e, with the analyser axis parallel to the input polarization and rotating together azimuthally with respect to the 
sample, the THG output appears isotropic.
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μ ~ δ(|μ|− vF|k|) at T ~ 0 K. We then have ∂ χ(3)(μ) / ∂ μ ∝  
μ ω− ℏ

1
2 I

. 
As P πδ μ ω= + −ℏ

μ ω μ ω− ℏ − ℏ
i (2 )1

2
1

2 I
I I

 for 2μ ~ ħωI, with P and δ 
denoting the principal value and delta function, respectively, we 
find χ μ ω π μ ω∝ ∣ −ℏ ∣ + −ℏln i H[ 2 (2 )](3)

I I  as 2μ moves across ħωI, 
where H(2μ −  ħωI) is the Heaviside step function, equal to 0 for 
2|μ| <  ħωI and 1 for 2|μ| > ħωI, and μ ω∣ −ℏ ∣ln 2 I  exhibits a divergent 
peak at |2μ| =  |ħωI|. The full mathematical derivation of χ(3) for gra-
phene, including contributions from both interband and intraband 
transitions, has been worked out by Cheng et al.28, which is sketched 
in the Supplementary Information. We have carried out calculation 
following their theory to compare with our experimental results.

Consider THG first, which is the simplest among all third-order 
processes. The analytic expression of Cheng et al. has a concise 
form 
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. The three G terms in the brackets  
describe switching off of one-, two- and three-photon resonant 
transitions as 2|μ| moves over ħω0, 2ħω0 and 3ħω0, as illustrated in 
Fig. 4a. Note that the signs of the first and third terms for one-pho-
ton and three-photon resonant transitions are opposite to that of the 
second term for two-photon resonant transition. When 2|μ| <  ħω0, 
all three terms contribute to χxxxx

(3) , but they nearly cancel each other,  
leaving χxxxx

(3)  very small. With ħω0 <  2|μ| <  2ħω0, one-photon reso-
nant transition is blocked and ~ω

μ
ℏ

∣ ∣( )G 0
2

0 ; imperfect cancellation 

of the ω
μ

ℏ
∣ ∣( )G 2

2
0  and ω

μ
ℏ
∣ ∣( )G 3

2
0  terms leads to a significant positive 

value of χxxxx
(3) . With 2ħω0 <  2|μ| <  3ħω0, the value of χ∣ ∣xxxx

(3)  increases 
further as both one-photon and two-photon resonant transitions are 
blocked with ~ω

μ
ℏ

∣ ∣( )G 0
2

0  and ~ω
μ

ℏ
∣ ∣( )G 02

2
0 . Finally, for 2|μ| >  3ħω0, 

all resonant transitions are blocked, leaving again a vanishingly small  
χxxxx

(3)  from nonresonant contributions. The calculated μ-dependence 
of χxxxx

(3)  with ħω0 =  0.956 eV is plotted in Fig. 4b.
While the analytic expression captures the essence of the THG 

response, the detailed shape of the curve is far from reality because 
resonant damping and finite electron temperature effects have been 
neglected. For better comparison with experiment, we include the 
finite electron temperature (Te) effect on Δn(μ) and proper resonant 
damping factors (Γe =  0.2 ×  |μ| eV (ref. 40) and Γi =  0.5 meV (ref. 29) 
for interband and intraband resonances, respectively) in the calcu-
lation (Fig. 4c). Both have the effect of smearing out the sharp fea-
tures, making the calculated spectrum comparable with experiment. 
As described in detail in the Supplementary Information, the quasi-
equilibrium electron temperature Te can be very high if interband exci-
tations of electrons is strong41,42. This happens when the one-photon 
transition is allowed (2|μ| <  ħω0); for an incident fluence of 3.14 J m−2 
from a 200 fs pulse, Te reaches about 2,100 K. However, if the one-pho-
ton transition is blocked (2|μ| >  ħω0), the electron temperature rise is 
negligible, and Te remains essentially at the room temperature (300 K). 
The temperature effect on THG actually is not very significant because  
χ∣ ∣xxxx

(3)  is small in the range of 2|μ| <  ħω0 (Supplementary Fig. 1).
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Similar discussion can be applied to FWM. The third-order 
susceptibility χxxxx

(3)  for the two-colour SFM (2ω1 +  ω2 and ω1 +  2ω2) 
increases with |μ| as for THG, but there are five resonant transitions 
for each SFM process, including: the one-photon transitions at ħω1 
and ħω2, two-photon transitions at 2ħω1 (or 2ħω2) and ħ(ω1 +  ω2), 
and three-photon transition at ħ(2ω1 +  ω2) (or ħ(ω1 +  2ω2)). Figure 
5a shows the calculated χxxxx

(3)  versus μ for ω1 +  2ω2 SFM at zero tem-
perature and without resonant damping. The characteristic features 
around the five specific values of μ are clearly seen. The expres-
sion of χxxxx

(3)  for SFM is given by Supplementary equation (3-4). 
Again, the terms for two-photon transitions have opposite sign with 
respect to the terms for one- and three-photon transitions, leading 
to a much weaker χ∣ ∣xxxx

(3)  when 2|μ| <  ħω1 and ħω2. Given the finite 
electron temperature and resonant damping effects, resonances due 
to one-photon and two-photon transitions are greatly smeared, as 
shown in Fig. 5b. Similar to the THG case, the effect of high Te for 
2|μ| <  ħω1 (assuming ω1 >  ω2) is not very significant in SFM. The 
theoretical simulation reasonably agrees with the experimental 
result plotted in Fig. 5b.

In sharp contrast to SFM, the DFM processes (2ω1 −  ω2 and 
2ω2 −  ω1) show opposite μ-dependence with the output strongest 
at μ ~ 0. The expression of χxxxx

(3)  for DFM is the same as that for 
SFM except for a flip of sign on ω1 or ω2 (see the Supplementary 
Information). Pauli blocking occurs at 2|μ| >  ħω1 and ħω2 for one-
photon transitions, 2|μ| >  2ħω1 (or 2ħω2) and ħ(ω1 −  ω2) for two-
photon transitions, and 2|μ| >  ħ(2ω1 −  ω2) (or ħ(2ω2 −  ω1)) for 
three-photon transition. The corresponding characteristic features 
can again be seen in the calculated χxxxx

(3)  versus μ (Fig. 5c for the 
2ω1 −  ω2 DFM process). Note that the feature at 2|μ| =  ħ|ω1 −  ω2| is 
present, but is very weak and hardly visible in Fig. 5c, because it is 
described by a ω ω

μ
ℏ ∣ − ∣

∣ ∣( )G
2

1 2  term with a coefficient proportional 
to (ω1 −  ω2)3. Increase or decrease at each step of the change depends 
on the sign of the frequency factor associated with each type of 
transition. It is seen that for the 2ω1 −  ω2 DFM process, there are 

three terms in the equation for χxxxx
(3)  that have the frequency factor 

(ω1 −  ω2)2 in the denominator. They contribute dominantly to χxxxx
(3)  

when 2|μ| <  ħω2, especially if ω2 is close to ω1, and yield a large step 
change when each term drops off at a specific value of |μ| because 
of Pauli blocking of the specific type of resonant transitions. The 
exceptionally large χxxxx

(3)  for DFM is in strong contrast to the very 
weak χxxxx

(3)  for SFM. Inclusion of the finite electron temperature and 
resonant damping effects in the calculation of χxxxx

(3)  as a function of 
μ again smears out the peaks and spreads out the curve. In this case, 
the effect of high Te for 2|μ| <  ħω1 (assuming ω1 >  ω2) is more signif-
icant; as |μ| decreases towards zero, it causes χ∣ ∣xxxx

(3)  to increase less 
and spread out more (Supplementary Fig. 2). The calculated curve 
of χ∣ ∣xxxx

(3)  versus μ agrees fairly well with the experimental results, as 
shown in Fig. 5d and Supplementary Fig. 2.

We note that as long as 2|μ| <  ħω1 or ħω2, the 2ω1 −  ω2 and 
2ω2 −  ω1 DFM would appear divergent through the frequency fac-
tor (ω1 −  ω2)−2 as ω1 approaches ω2 (Supplementary equation (3-6) 
or (3-7)). One therefore expects that degenerate FWM including 
self-phase modulation would be extraordinarily strong in undoped 
graphene (μ =  0). This was not noticed in the early pioneering 
work of Hendry et al.16. To experimentally verify such a behav-
iour, we measured DFM of 2ω1 −  ω2 with μ close to zero, ω1 fixed 
at 1.195 eV (1,040 nm), and ω2 tuned from 0.956 eV (1,300 nm) to 
1.11 eV (1,120 nm). As shown in Fig. 5e, χxxxx

(3)  for DFM increased 
by approximately three times as Δ ω =  ω1 −  ω2 decreased and agrees 
fairly well with the theoretical calculation. We expect a more rapid 
rise of DFM if DFM at smaller Δ ω could be measured.

We adopted the scheme of ref. 12 to measure the average output 
power of THG and FWM and estimated the value of χ∣ ∣xxxx

(3)  for the 
processes (see the Supplementary Information). We found for THG 
at ħω0 =  0.956 eV and 2|μ| <  ħω0, χ∣ ∣ = . ± . × − −1 9 0 3 10 m Vxxxx

(3) 19 2 2.  
This value is very close to the theoretical value of 
χ∣ ∣ = . × − −1 0 10 m Vxxxx

(3) 19 2 2. In comparison, our value is about two 
to three orders of magnitude smaller than that of Kumar et al.12, 
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but consistent with the recent work of Woodward et al.15, assuming 
2|μ| <  ħω0 was satisfied in their experiments. For DFM, our experi-
mental value of χ∣ ∣xxxx

(3)  is also close to the theoretical one as seen in 
Fig. 5e. It is seen that the measured values of χ∣ ∣xxxx

(3)  for THG and 
FWM in undoped graphene varies by about three orders of mag-
nitude, and it could be further enhanced by another few orders if 
FWM moves towards degeneracy.

Conclusions
We have demonstrated that the third-order nonlinearity of gra-
phene is exceptionally large and can be varied by orders of magni-
tude with the help of gate-controlled doping or shift of the chemical 
potential. The results can be understood from a unified theory on 
FWM in graphene. It is now possible to well predict the dependence  

of the third-order nonlinear responses of graphene on input fre-
quencies and doping level. The understanding can be extended 
to other nonlinear optical processes in graphene, such as effective 
second-order processes43–45, and even high-order harmonic genera-
tion25. In general, the optical nonlinearity of linear-band materials 
with the chemical potential close to the Dirac or Weyl point tends 
to diverge in cases where input frequency combination approaches 
zero. The resulting giant nonlinearity of such materials, particularly 
graphene, can be of great use in future optoelectronic devices6.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41566-018-0175-7.
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Fig. 5 | Theoretical calculations of μ-dependent χ(3) and comparison with experimental data for FWM from graphene. a,b, Calculated χxxxx
(3)  for ω1 +  2ω2 

SFM at T =  0 K with no resonant damping (a) and at finite temperature with damping (b). c,d, Calculated χxxxx
(3)  for 2ω1 −  ω2 DFM at T =  0 K with no resonant 

damping (c) and at finite temperature with damping (d). ħω1 =  1.195 eV and ħω2 =  0.956 eV. Corresponding experimental data (blue squares) are presented 
in b and d for comparison. The electron temperatures used in the calculation are Te =  300 K for |2μ| >  ħω1 and Te=  1,550 K and 1,750 K for μ =  0, respectively. 
The damping parameters are the same as those in Fig. 4c. e, Calculated ∣ ∣χxxxx

(3)  for DFM at 2ω1 −  ω2 from undoped graphene (μ =  0) as a function of Δ ω 
(=  ω1 −  ω2) at T =  0 K with no damping showing divergence towards Δ ω = 0. Blue squares are experimental data with ω1 fixed at 1,040 nm and ω2 tuned 
from 1,120 nm to 1,300 nm, with incident fluences of 1.0 J m−2 and 0.95–1.33 J m−2, respectively.
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Methods
Device fabrication. Single crystalline46,47 or polycrystalline48 graphene monolayers 
used in the experiment were grown by chemical vapour deposition and transferred 
onto fused silica substrates. Source, drain and gate electrodes (50 nm Au and 5 nm 
Cr) were patterned through a dry stencil mask by electron beam deposition. All the 
electrodes were wire-bonded to a chip carrier for electrical control. Ion-gel gating 
was achieved by uniformly applying freshly prepared ion-gel solution onto the 
graphene devices, and further drying in a glove box filled with high-purity argon 
gas. The ion-gel solution was prepared by dissolving 16.7 mg of poly(styrene-b-
ethylene oxide-b-styrene) (PS-PEO-PS) and 0.5 g of 1-ethyl-3-methylimidazolium 
bis(trifluoromethylsulfonyl)imide ([EMIM][TFSI]) into 1.82 ml of dry 
dichloromethane. PS-PEO-PS, [EMIM][TFSI] and dry dichloromethane were 
purchased from J&K Scientific. Experimental results of THG and FWM from 
single crystalline and polycrystalline graphene, as well as exfoliated monolayer, 
were found to be very much the same.

Characterization and measurement. The device characterization and 
experimental measurement were conducted in sample scanning optical 
microscopes that combined with femtosecond laser systems and an electrical 
transport setup. During the whole measurement, the graphene device was 
maintained in a dry nitrogen environment at room temperature. The CNP of 
graphene was determined by its maximum resistance in response to Vg as shown 
in Fig. 1b. A Fourier transform infrared spectrometer (VERTEX 70) was used to 
measure the transmittance spectra of gated graphene, from which μ was deduced 
as described in the main text and in the Supplementary Information.

For THG measurements, a linearly polarized femtosecond laser beam (MaiTai 
HP and Inspire Auto, Spectra Physics) tunable from 345 to 2,500 nm was focused 
and normally incident on graphene through a microscopic objective (100× , 
numerical aperture 0.95, Nikon), and the reflected THG signal was collected. The 

sample sitting on a nano-positioning stage enabled us to locate defect-free areas 
on the sample. A single-photon counting silicon avalanche photodetector (Perkin-
Elmer) or a fibre-coupled spectrograph equipped with a liquid-nitrogen-cooled 
silicon charge-coupled device (Princeton Instruments) was used to detect the 
THG signal after proper filtering. The detailed optical arrangement is depicted in 
Supplementary Fig. 3a. For measurement of the polarization-dependent azimuthal 
pattern of THG measurement (displayed in Fig. 2d,e), the transmitted THG 
geometry was adopted with the setup sketched in Supplementary Fig. 3b.

For FWM measurements, a different femtosecond laser system (Insight 
Deepsee, Spectra Physics) was used, which could simultaneously produce two 
beams of different wavelengths at a repetition rate of 80 MHz, one tunable from 700 
to 1,300 nm and the other fixed at 1,040 nm. The two beams were sent collinearly 
on the sample at normal incidence through a scanning optical microscope and the 
reflected FWM signal was detected. For the DFM signals in Fig. 3d,f (blue dots), 
the spectra were recorded by a fibre-coupled spectrograph equipped with a liquid-
nitrogen-cooled InGaAs array detector (PyLoN-IR, Princeton Instruments).

Data availability. The data that support the plots within this paper and other 
findings of this study are available from the corresponding authors upon 
reasonable request.
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