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An improved adaptive preprocessing method for TDI 
CCD images* 
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In order to achieve high quality images with time-delayed integration (TDI) charge-coupled device (CCD) imaging 

system, an improved adaptive preprocessing method is proposed with functions of both denoising and edge 

enhancement. It is a weighted average filter integrating the average filter and the improved range filter. The weighted 

factors are deduced in terms of a cost function, which are adjustable to different images. To validate the proposed 

method, extensive tests are carried out on a developed TDI CCD imaging system. The experimental results confirm 

that this preprocessing method can fulfill the noise removal and edge sharpening simultaneously, which can play an 

important role in remote sensing field. 
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Unlike conventional charge-coupled device (CCD), the 
time-delayed integration (TDI) CCD is a kind of linear 
array photoelectric detector, which implements charge 
accumulation by superposition mode[1]. It has advantages 
of high sensitivity, high dynamic range and low noise. 
Therefore, TDI CCD is applied widely in aerospace 
photography, remote sensing, industry measurement and 
other fields[2,3]. Especially in remote sensing field, it can 
make the aerospace camera lighter and smaller, due to its 
high sensitivity. 

There are many kinds of noises interfering the TDI 
CCD imaging system, such as photon shot noise, dark 
current noise, electric and thermal noise, and so on[3]. 
The images acquired by the system will contain the 
noises above, leading to the affection of their final 
display quality, but high-quality images possess more 
abundant information and higher value. Consequently, 
we usually apply some preprocessing methods to 
improve the display quality by denoising and edge 
sharpening. 

At present, there are many preprocessing methods, 
which can be divided into two categories. One is based 
on spatial domain, for example, the adaptive noise 
smoothing filter, Wiener filter, bilateral filter, and so 
on[4-7]. The other is based on transform domain, including 
discrete wavelet transform (DWT), discrete cosine 
transform (DCT), block-matching and three-dimensional 
(BM3D) filter, etc[8-10]. By contrast, the former is easier 
to be implemented with no transform. They can smooth 

the noise effectively, but most just try to preserve the 
edge information in the image, unable to enhance it. 
Although an algorithm combining the bilateral filter and 
the unsharp masking filter can sharpen the edges, 
presented in Ref.[6], the resultant images are not 
satisfactory due to its sensitivity to the noise, producing 
the overshoot and undershoot artifacts. 

Therefore, a preprocessing method in spatial domain, 
called improved adaptive low-pass (IALP) filter, is 
proposed to implement the image denoising and edge 
enhancement. It is a kind of weighted average filter, 
which integrates the average filter and the improved 
range filter with advantages of low complication, easy 
implementation and strong practicability. Its working 
principle is similar to that of Wiener filter, which is 
based on the minimum mean square error (MMSE) 
theory. 

Wiener filter is one of the classical algorithms in 
spatial domain. Its filtering principle is 
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where g[m,n] is the intensity of pixel at [m,n] and 
[ , ]g m n  is the average intensity of pixels in the M×N 

window centered at [m,n]. 2

nσ  and 2

Iσ represent the 

variances of the noise and the actual image, respectively. 
Through analyzing Eq.(1), we can see that Wiener filter 
is an edge-preserving smoothing filter with advantage of 
good adaption, but its lack lies in that it just tries to 
preserve the edges, instead of enhancing them. Besides, 
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it needs to calculate the variance 2

nσ , but the accurate 
noise variance is usually determined through a lot of 
experiments[11-13]. It is difficult to implement an accurate 
and efficient processing algorithm. 

To further improve the performance of the filter, firstly, 
we introduce an improved range filter proposed in Ref.[7]. 
A conventional range filter is a kind of low-pass Gaussian 
filter, whose weighted factor can be expressed as 
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where [ ]0 0,m n  is the central pixel of the window, 

{
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}]N , and 2

rσ  is the variance of the Gaussian filter. It 

can be seen that the range filter gives higher weight to 
pixels that are similar to the center pixel in gray value. If 
we add a variable 0 0[ , ]m nε , an offset of the central pixel 

[ ]0 0,m n , Eq.(2) becomes 
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Then we can see that the filter gives higher weight to 
pixels that are similar to the intensity 

( )0 0 0 0[ , ] [ , ]g m n m nε+ . That is the principle of the 

improved range filter, which can be applied to the edge 
sharpness implementation. According to the analysis 
above, we can construct the IALP filter based on the 
average filter and the improved range filter. Its principle 
can be expressed as 

'

r
ˆ [ , ] [ , ] [ , ]g m n a g m n b g m n= × + × ,            (4) 

where r [ , ]g m n  is the output of the improved range 

filter for pixel [m,n]. The parameters a and b are the 
weighted factors. They should be normalized and 
adjustable according to different image data, for example, 
a flat patch or a high variance one. 

To achieve the goals above, we seek a solution to 
determine the reasonable weighted factors. Specifically, 
we minimize the following cost function in the window 

0 0[ , ]m nΩ  to minimize the difference between 'ˆ [ , ]g m n   

and [ , ]g m n : 
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where ϵ is a regularization parameter. We will discuss its 
specific meaning in the following part. Eq.(5) is a linear 
ridge regression model and its solution can be given by 
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Consequently, taking Eq.(6) into Eq.(4), we can obtain 

the formula: 
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We can achieve the weighted factors according to the 
image variance 2

Iσ  and the parameter ϵ, independent of 
2

nσ , unlike Wiener filter. Once we know the output 

of r [ , ]g m n  , we can perform the image filtering by 

means of Eq.(7). 
The specific calculation expression of r [ , ]g m n  is  
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where h[m,n;k,l] is the response at [m,n] to an impulse at 
[k,l]. Its definition is 
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where
0 0,m nr  is a normalization factor that assures that the 

filter preserves average gray value in constant areas of 
the image. 

To sharpen the edges in the image, we need to choose 
a reasonable offset [ ]0 0,m nε . If [ ]0 0, =m n MEANε −  

0 0[ , ]g m n , where MEAN denotes the average intensity of 

pixels in 
0 0,m nΩ , the output r 0 0[ , ]g m n  will shift towards 

the MEAN, resulting in a blurred image. If 

0 0 0 0[ , ]= [ , ]m n g m n MEANε − , the output r 0 0[ , ]g m n   will 

shift away from the MEAN to sharpen the image. Therefore, 
we set the offset as 0 0 0 0[ , ]= [ , ] ,m n g m n MEANε − and 

Eq.(3) can be rewritten as 
'

r 0 0[ , ; , ]W m n m n =  

]2

0 0

2

r

[ [ , ] (2 [ , ] )
exp

2

g m n g m n MEAN
σ

 − × − − 
  

.    (11) 

The performance of the IALP filter can be analyzed in 
two cases according to Eq.(7). 

Case 1: "edge region." The image changes a lot within 

0 0,m nΩ . The variance 2

Iσ  is far bigger than ϵ , 2
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in the image. 
Case 2: "uniform region." The variance 2

Iσ  is far 

smaller than  , 2

Iσ <<  , and we can get
2

1

2

I

0
σ

σ
≈

+ 
  

and
2

I

1
σ

≈
+



 , so 'ˆ [ , ] [ , ]g m n g m n≈  . That means it turns 

out to be an average filter to smooth the noise in the image. 
More specifically, the parameter  is a criterion that 

determines an edge region or a uniform one. The regions 
with variance 2

Iσ  much smaller than  are smoothed, 
whereas those with variance much larger than  are 
enhanced. The effect of  in the IALP filter is similar 
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to the range variance 2

rσ , both of which determine 

where an edge region is, which should be enhanced. 
They are equivalent, so we can set 2

r=σ  . 

Consequently, the IALP filter is able to smooth the 
noise and enhance the edges in the image simultaneously. 
In addition, there is no need to calculate the variance of 
the noise 2

nσ , compared with Wiener filter, which can 

obviously reduce the amount of experiments and 
computation. In order to further emphasize the expected 
effect of smoothing or edge sharpening, we introduce the 
parameter k, then Eq.(7) turns out to be 

2
' I

r2 2

I 1

ˆ [ , ] [ , ] [ , ]
kg m n g m n g m n

k k
σ

σ σ
= × + ×

+ +


 
,  (12) 

where k is a non-negative number. If k>1, the function of 
edge sharpening will be enhanced with that of smoothing 
decreasing, else, on the contrary. Then we can apply the 
IALP filter to process images in terms of Eq.(12). A TDI 
CCD imaging system is developed and its main technical 
specifications are indicated in Tab.1. 

Tab.1 Technical specifications of the imaging system 

Items Specifications 

Spectral range 450—800 nm 

Pixel size 8.75 μm×8.75 μm 

Spatial pixels 4 096 

Optional stages 8,16,32,48,72,96 

PGA (programmable gain amplifier) 0—36 dB  

 
Then we employ the imaging system to acquire multiple 

images with different targets, and choose two of them with 
size of 256×256 pixels to validate the performance of the 
proposed method. The M×N window should be appropriate 
in size. If it is too small, it will not be able to cover most of 
the edge transitions. On the other hand, if it is too big, it 
might increase the computation and consume a lot of time. 
So a 7×7 window is chosen, which satisfies all the 
considerations. The standard deviation (STD) σr of the 
improved range filter determines how selective the filter is 
in choosing the pixels that are similar enough in gray value. 
In our experiments, σr is set to 2. So the parameter =2  
and we set k=2 in the following tests to obtain a better 
edge-sharpening image. Fig.1 is the raw image for target1 
"building", which is restored by Wiener filter and IALP 
filter, respectively, as shown in Fig.2 and Fig.3. The gray 
level distributions for edge C are depicted in Fig.4. 

Compared with Fig.1 visually, Fig.2 preserves the 
major edge information effectively, instead of enhancing 
it. Fig.3 shows that the edges have been sharpened 
clearly. Fig.4 presents the gray level distributions for 
edge C under three conditions. It can be seen that the 
gray scale gradient of the edge restored by IALP 
increases effectively, bigger than that of the original, by 
appropriate adjustment of the gray level. However, the 
gray scale gradient decreases in the image restored by 
Wiener. Thus the proposed method can sharpen the edge 
information. We can analyze the data enclosed in the 
boxes A and B, size of 25×25 pixels, representing the 

uniform region and the edge region. The comparison 
results are reported in Tab.2. 

 
Fig.1 The raw image for target1 

 

Fig.2 The image for target1 restored by Wiener filter 

 
Fig.3 The image for target1 restored by IALP filter 

 
Fig.4 The gray level distributions for edge C 
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Tab.2 The comparison results for image of target1 

Box A (digital number) Box B (digital number)
Objects Average 

intensity 
Standard 
deviation 

Average 
intensity 

Standard 
deviation

Raw data 14.04 0.30 39.37 27.24 
Data 

restored by 
Wiener filter 

14.01 0.12 39.30 26.48 

Data 
restored by 
IALP filter 

14.01 0.12 39.33 28.59 

 
We can see that the average intensities restored by the 

two methods are nearly the same as the raw data, because 
both filters have performed the normalization processing. 
Compared with the raw data, the STDs for Wiener filter and 
IALP filter in box A decrease, indicating the effect of 
smoothing, and they are close to each other. For the STD in 
box B, the image data restored by Wiener filter is smaller 
than the raw data, due to the edge preserving. Unlike Wiener, 
the STD of the image data restored by IALP is bigger than 
that of the raw data, indicating the effect of edge sharpness 
and illustrating the analysis above. 

Then we use another image to further validate the 
proposed method. Fig.5 is the raw image for target2 "beach". 
Fig.6 and Fig.7 are the restored images by Wiener filter and 
IALP filter, respectively. The distributions of the gray level 
for edge F are shown in Fig.8. 

 
Fig.5 The raw image for target2 

 

Fig.6 The image for target2 restored by Wiener filter 

 

Fig.7 The image for target2 restored by IALP filter 

 

Fig.8 The gray level distributions for edge F 

Similarly, we can see that Fig.6 just preserves the 
major edge information without enhancing it, compared 
with Fig.5, whereas the edges have been sharpened 
clearly in Fig.7. The gray scale gradient of the edge F 
restored by IALP is bigger than that of the original, as 
shown in Fig.8. The data enclosed in the red box D and E 
are analyzed, size of 25×25 pixels, representing the 
uniform region and the edge region. The results are 
presented in Tab.3. 

 
Tab.3 The comparison results for image of target2 

Box D (digital number) Box E (digital number)

Objects Average 

intensity 

Standard 

deviation 

Average 

intensity 

Standard 

deviation

Raw data 14.00 0.38 35.16 12.04 

Data 

restored by 

Wiener filter

13.97 0.18 35.52 11.45 

Data 

restored by 

IALP filter 

13.98 0.18 35.20 13.40 

 
It shows that the average intensities restored by the 

two methods are nearly the same. The STDs for Wiener 
filter and IALP filter in uniform region decrease 
significantly. However, for the STD in edge region, IALP 
filter is bigger than that of the raw data. The STD data in 
Tab.2 and Tab.3 describe the performance of both filters 
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quantitatively, including the ability of smoothing in 
uniform region and that of sharpening in edge region. By 
comparing the data, we can see that the IALP filter is 
nearly the same with Wiener filter in the aspect of noise 
smoothing, but it can achieve better enhancement 
performance than Wiener. By combining all the analysis 
results, we can draw the conclusion that the IALP 
method is an effective filter integrating the functions of 
both smoothing and edge sharpening. 

A preprocessing method, IALP filter, is proposed in 
this paper. It is a weighted average filter integrating the 
average filter and the improved range filter. Its weighted 
factors are adjustable to process different images, 
deduced by a cost function. Compared with conventional 
preprocessing methods, it can exhibit nice properties of 
noise smoothing and edge enhancing simultaneously. 
Through abundances of experiments on the developed 
imaging system, the performance of the proposed 
method is demonstrated with advantages of low 
complication, easy implementation and strong 
practicability. It can play an important role in remote 
sensing field to achieve high signal-to-noise ratio and 
high definition image data. 
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