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Abstract: To obtain a frequency-selective surface (FSS) structure with band-pass and band-stop
spatial filtering functions at low frequency in different time domains, a design method for switching
between band-pass and band-stop responses of the FSS was proposed. It was consisted of mounting
PIN diodes on the miniaturized FSS, which was designed based on a convolution technique, and
utilizing EM/Circuit Co-Simulation for calculations and analysis. It was noteworthy that the
convoluted pattern was not only the filtering structure, but also serves as the feeder. When PIN

diodes were in the ON-state, the parallel LC circuit constituted by the inductance L, of the metallic
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patches and the capacitance C, of the pattern slots represents the band-pass performance of the FSS.
Conversely, the total capacitance C, of the reversed PIN diodes and the gap between the pads in series
with the inductance L, of the metallic patches indicate the occurrence of band-stop performance for the
FSS when the PIN diodes are in the OFF-state. Using a printed circuit board and surface mounting
technology, a prototype of 400 mm X400 mm was fabricated and measured by the free space method.
The simulation and test results indicate that, for a frequency of 2. 45 GHz, the FSS exhibits strong
transmission when the PIN diodes are in the ON-state, whereas a strong reflection is obtained when
the PIN diodes are in the OFF-state. With this method, arbitrary switching of the FSS between band-
pass and band-stop responses is realized, based on electrically controlled PIN diodes, which has a
broad range of prospective applications in the fields of telecommunication, electromagnetic shielding,
and radar stealth.
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Fig. 4 Equivalent LC circuits of miniaturized FSS mounted PIN diodes
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