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Abstract— Sea surface temperature (SST) prediction is not
only theoretically important but also has a number of practical
applications across a variety of ocean-related fields. Although
a large amount of SST data obtained via remote sensor are
available, previous work rarely attempted to predict future SST
values from history data in spatiotemporal perspective. This letter
regards SST prediction as a sequence prediction problem and
builds an end-to-end trainable long short term memory (LSTM)
neural network model. LSTM naturally has the ability to learn
the temporal relationship of time series data. Besides temporal
information, spatial information is also included in our LSTM
model. The local correlation and global coherence of each pixel
can be expressed and retained by patches with fixed dimensions.
The proposed model essentially combines the temporal and
spatial information to predict future SST values. Its structure
includes one fully connected LSTM layer and one convolution
layer. Experimental results on two data sets, i.e., one Advanced
Very High Resolution Radiometer SST data set covering China
Coastal waters and one National Oceanic and Atmospheric
Administration High-Resolution SST data set covering the Bohai
Sea, confirmed the effectiveness of the proposed model.

Index Terms— Long short term memory (LSTM), sea surface
temperature (SST), spatiotemporal sequence prediction.

I. INTRODUCTION

IN RECENT years, the prediction of sea surface temperature
(SST) attracted increasing attention in various ocean-related

fields [1] such as fisheries [2], global warming [3], and oceanic
environmental protection. Many different methods have been
proposed in attempting to predict SST, with varying degrees
of success. These methods can be classified into two general
categories [4]. One category is known as the numerical model,
based on physics [5]. It makes use of a series of complex
physics equations to describe SST variation rules. These
equations are usually very complicated and demand massive
computational efforts. The other category is related to data-
driven models, based on data analysis. It tries to automatically
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learn SST variation rules from SST data. With more and
more remote sensing SST data collected, stored, processed,
and disseminated by organizations, machine learning methods
such as support vector machines (SVMs) were used to solve
the prediction problem in the past [6]. However, the training
of SVM is time consuming. In case of enough data available,
deep learning outperforms SVM under most circumstances.
And neural network models, such as recurrent neural network
(RNN), are introduced to handle the sequence prediction prob-
lem in many areas. Nevertheless, such RNN-based sequence
prediction models have hardly been used for SST prediction.

Recent advances in RNN models offer some useful ideas
on sequence prediction problems. Long short term memory
(LSTM) architecture, which contributes with an improvement
to the hidden layer of RNN, has been successfully used to
perform various supervised sequence learning tasks, such as
machine translation, caption generation for images, and speech
recognition. The LSTM network uses memory blocks to store
and retrieve information over short or long time periods. The
memory block in turn uses recurrently connected cells to learn
the dependencies between two time frames, and then transfer
the probabilistic inference to the next frame. These techniques
have since been improved, and later approaches provide more
frameworks for temporal learning problems. For example,
Srivastava et al. [7] proposed an encoder–decoder LSTM that
has successfully realized video sequence reconstruction and
prediction. These advances raise some interesting possibilities.
Zhang et al. [8] attempt at using LSTM models to solve SST
prediction problems. To the best of our knowledge, their work
is the first one of using the state-of-the-art sequence predic-
tion method. In their experiments, a fully connected LSTM
(FC-LSTM) architecture is used to model the sequence rela-
tionship and predict SST data. However, SST prediction is
actually a spatiotemporal sequence prediction problem using
historical SST data as input and future SST data as output,
whereas the FC-LSTM model [8] takes only temporal infor-
mation into account. This drawback of the FC-LSTM model
limits the improvement of prediction accuracy. Thus, there is
a large amount of information loss in the prediction process
and the prediction accuracy is hard to be improved.

SST prediction is still a challenging task. Existing LSTM
models [7], [8] generally ignore the spatial information of the
image sequences, resulting in low prediction accuracy. Thus,
a prediction model that could fully exploit the spatiotemporal
information of the image sequences is greatly desired [9], [10].
In our work, we propose a prediction model that combines
the temporal and spatial information, named CFCC-LSTM
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(combined FC-LSTM and convolution neural network) model.
This model is composed of one FC-LSTM layer and one
convolution layer. Our results show that the performance of
the CFCC-LSTM model for solving SST prediction problems
outperforms that of the original FC-LSTM model, and those
of traditional models such as SVM.

The rest of this letter is organized as follows. Section II
presents the innovation of the CFCC-LSTM model and its
workflow. Section III describes the experimental data and
analyzes the results. Finally, our conclusion is drawn in
Section IV.

II. PROPOSED MODEL

Two most important requirements for a machine learning
method are sufficient data and a suitable end-to-end model.
First, we propose a CFCC-LSTM model, aiming at solving
sequence prediction problems, especially for complex SST
images to satisfy the model requirement. Second, we introduce
two typical data sets, the China Ocean data set [11] and
the Bohai Sea data set, to satisfy the data requirement. The
following section describes the innovation of the CFCC-LSTM
model.

A. CFCC-LSTM Model

The innovation of the CFCC-LSTM model is to combine
both the temporal and spatial information. The following
section explains step by step how we accomplish this goal.

1) How to Deal With the Spatial Information: In this letter,
we propose a 3-D grid to handle the spatial information. As
shown in Fig. 1(a), the 3-D grids are composed of a sequence
of patches. Each patch is a matrix of K dimensions, which
consists of one center pixel and K − 1 adjacent pixels. The
adjacent pixels include the nearest neighbor pixels that are the
four pixels surrounding the center pixel in the four cardinal
directions. The nearest neighbor pixels contain local context
and the whole adjacent pixels contain global correlations [12].
Thus, both the local context and global correlation of each
pixel can be expressed and retained by patches with fixed
dimensions. Here, K is fixed as 5×5. The reason is explained
as follows.

The dimension of each patch should be set corresponding
to the prior of the data set. Since the largest dimension of the
images used in our experiments is 600 × 450, the patch can
hardly cover oceanic large-scale features that generally span
thousands of kilometers in horizontal scale. Similarly, since
the highest resolution of the images used in our experiments
is 1/20◦ latitude by 1/20◦ longitude, the patch can hardly
cover oceanic small-scale features that have a horizontal scale
not more than tens of kilometers. As a consequence, the patch
could only cover oceanic mesoscale features. For the two SST
data sets used in our experiments, the minimum region that
each pixel covers is approximately 3 km in latitude and 5 km
in longitude, respectively. Besides, mesoscale often refers to a
span of hundreds of kilometers in horizontal scale. Therefore,
patches with the dimension of 5×5 are the smallest regions to
keep mesoscale spatial information. Thus, our model, which
uses 3-D grids of 5 × 5 × L dimensions as input, is able to

combine the spatial information of the image sequence. And
L represents the sequence length.

2) How to Deal With the Temporal Information: To combine
the temporal information, we use FC-LSTM as the first layer
of our model. LSTM is first proposed in [13]. It is a specific
type of RNN architecture that is explicitly designed to learn
long-range dependencies among sequences.

Thus, it is reasonable and effective to use FC-LSTM as a
method together with 3-D grids to combine the temporal and
spatial information. The FC-LSTM layer is composed of a
series of memory blocks, which in turn consists of a series of
cells. The whole computation of each cell can be defined by
a series of equations as follows:

it = f1(Wi · xt + Hi · ht−1 + Ci · ct−1) + bi (1)

ft = f1(W f · xt + H f · ht−1 + C f · ct−1) + b f (2)

ot = f1(Wo · xt + Ho · ht−1 + Co · ct−1) + bo (3)

gt = f2(Wg · xt + Hg · ht−1 + Cg · ct−1) (4)

ct = it · gt + ct−1 · ft (5)

ht−1 = f2(ct ) · ot · Wh (6)

where W , H , and C are weight matrices from input to gates,
recurrent connections, and cell to gates with its bias terms bi ,
b f , and bo, respectively. There are three kinds of gates: the
input gate it , the forget gate ft , and the output gate ot ; each is
activated by a logistic sigmoid function f1(·) or a hyperbolic
tangent f2(·). The input gate can decide how much input
information enters the current cell. The forget gate can decide
how much information should be forgotten for the previous
memory vector ct−1, and the output gate can decide what
information will be given from the current cell. The cell state
ct is computed using the gated previous state and the gated
input, and it can be overwritten, kept, or retrieved by the three
gates. gt is used to transform the input and previous state to
be taken into account into the current state. Finally, ht is the
output of the cell and it is scaled by a tangent transformation
of the current state. t and t − 1 are the present time and the
previous time, respectively. The following section gives us a
clear track of how our prediction method works.

B. Workflow of the Proposed SST Prediction Method

The workflow of the proposed SST prediction method
is shown in Fig. 1. It is composed of two parts, which
are the preprocessing method as shown in Fig. 1(a) and
the CFCC-LSTM model as shown in Fig. 1(b). The input
sequence is preprocessed to combine the temporal and spatial
information into a set of 3-D grids. Then, these 3-D grids are
sent into CFCC-LSTM to generate predictions.

The CFCC-LSTM model contains two parts: the FC-LSTM
layer and the convolution layer. The FC-LSTM layer takes a
3-D grid as input and outputs a 3-D grid as prediction. And the
dimensions of the predicted grid are the same as the input grid,
as shown in Fig. 1(b). The convolution operation comprises
two processes: the first process is recombination and the
second process is convolution. The goal of the recombination
process is to adjust the organization of the grid. In this process,
the grid is converted into a 25-D vector sequence. Convolution
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Fig. 1. Process of the proposed SST prediction method and its inner structure.
(a) Preprocessing method. (b) Inner structure of the CFCC-LSTM model.

Fig. 2. Comparison between the predicted output and the ground truth for
seven days on China Ocean data set. (a) Predicted SST data for seven days.
(b) Ground truth SST data for seven days. (c) Difference between the ground
truth and the predicted output.

is then applied to the results of recombination. And the 25-D
sequence of dimensions 25 × M × N × L is transformed into
a 1-D sequence with dimensions M × N × L.

In our scenario, both the dimensions of the prediction image
and the input image are M × N . Therefore, CFCC-LSTM is
an end-to-end model.

III. EXPERIMENTS

A. Data Sets

We create two SST data sets covering the China Ocean
and the Bohai Sea, respectively. The first data set is a subset
of the Advanced Very High Resolution Radiometer data set,
which is labeled the China Ocean data set in this letter.
The second data set is a subset of the National Oceanic
and Atmospheric Administration High-Resolution SST data
set, namely, the Bohai Sea data set. The China Ocean data
set contains 600 daily SST images from 2007 to 2012
covering China coastal waters. Each image has dimensions
of 300 × 150 pixels. The Bohai Sea data set used in this letter

contains a total of 12 868 daily patches, and each patch has
dimensions of 16 × 15 pixels. The Bohai Sea is the innermost
gulf of the Yellow Sea on the coast of Northeastern China.
The differences between the two data sets mainly lie in their
resolution and coverage. The resolution of the China Ocean
data set is 1/20◦ latitude by 1/20◦ longitude, while that of
the Bohai Sea data set is 1/4◦ latitude by 1/4◦ longitude. The
China Ocean data set covers the area from 20N to 30N in
latitude and 120E to 131.25E in longitude, while the Bohai
Sea data set covers the area from 37.07N to 41N in latitude
and 117.35E to 121.10E in longitude.

B. Results and Analysis

In this letter, we evaluate the effectiveness of different pre-
diction methods using the root of mean squared error (RMSE)
and the prediction accuracy (ACC). The error formulation and
the performance metric are listed as follows:

RMSE =
√∑n

i=1(Xobs,i − Xmodel,i )2

n
(7)

ACC = 1 −
∑n

i=1

( |Xmodel,i −Xobs,i |
Xobs,i

)
n

(8)

where Xobs,i is observed values and Xmodel,i is modeled values
at location i . i is numbered in the order of row column. n is the
total number of the pixels to be predicted. Here, n = M × N .

Here, RMSE can be regarded as absolute error and ACC
as relative accuracy. The smaller the RMSE the better perfor-
mance we get, while ACC is the opposite. For area predictions,
we use the area average RMSE and area average ACC. The
boldface items in Tables I–VI represent the best performance,
i.e., the smallest RMSE and the largest ACC.

First, we choose the learning rates (lr ) between 0.02 and
0.5, which have the advantage of better convergence. When
lr is smaller than 0.02, there exists the problem of slow
convergence. When lr is larger than 0.5, too early convergence
and no convergence might appear. Second, the reason we
make predictions for 1 day, 7 days, and 30 days in the future
is to verify the proposed model in the case of short-term
prediction, midlong-term prediction, and long-term prediction,
respectively. Besides, it is clear that these time spans of one
day, one week, and one month are closely related to daily life
and industry requirement. Thus, the proposed model could be
more practical. Third, the reason we set the iteration times (i t)
as 50 is intend to shorten the training time, while 100 is intend
to obtain a better convergence. When i t is smaller than 50, it is
difficult to converge. However, when i t is larger than 100, the
increasement in i t can hardly improve the accuracy.

At the beginning, we randomly initialize the weights. We
set lr = 0.5, it = 100, and use four days’ historical SST
data for one-day prediction and 20 for seven-day prediction,
respectively. Then, we carry out experiments using different
i t and different convolution strategies, i.e., using only the FC-
LSTM layer, using the FC-LSTM layer combined with average
convolution, and using the FC-LSTM layer combined with
weighted convolution, respectively.

As shown in Table I, the FC-LSTM layer combined with
weighted convolution achieves the best performance with
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TABLE I

PREDICTION RESULTS (AREA AVERAGE RMSE AND ACC) USING
DIFFERENT CONVOLUTION STRATEGIES AND ITERATION

TIMES ON THE BOHAI SEA DATA SET

TABLE II

PREDICTION RESULTS (AREA AVERAGE RMSE AND ACC) FOR FIVE

DIFFERENT LOCATIONS USING DIFFERENT LEARNING

RATES AND INITIALIZATION CONDITIONS

it = 50. It shows that smaller i t obtains equivalent or even
better results. Besides, the FC-LSTM layer combined with
average convolution achieves higher accuracy and lower RMSE
than with only an FC-LSTM layer. Nevertheless, the FC-
LSTM layer combined with weighted convolution achieves
even higher accuracy than with average convolution. Thus,
we decide to use the FC-LSTM layer combined with weighted
convolution as our model and set it = 50 for our following
experiments.

In order to obtain the best performance, we carry out
experiments with different initializations and lr . We randomly
choose five locations from the Bohai Sea data set, denoted
by p1, p2, . . . , p5 to predict SST values for the next seven
days. First, we carry out experiments on these five locations
to choose a better initialization method from random to fixed
initialization. The top part of Table II shows the results on
five different locations with different initialization conditions.
It can be seen from the results that the best performance is
achieved with the fixed initialization scheme. Then, we carry
out experiments on the same five locations to choose a better
lr from values between 0.02 and 0.5. There is a general trend
that CFCC-LSTM performs better as lr increases. The bottom
part of Table II shows the results using different lr , and it can
be seen from the results that the best performance is achieved
with lr = 0.5. Thus, in the following experiments, we set
lr = 0.5 and fix the initialization weights.

Then, we perform experiments using k days’ historical SST
data to predict the future SST data, i.e., the future one day and
seven days. Here, k represents the number of days used for
prediction. As shown in Tables III and IV, the best k values are
seven for one-day prediction and 20 for seven-day prediction.

TABLE III

PREDICTION RESULTS (AREA AVERAGE RMSE AND ACC) USING
DIFFERENT k ON DIFFERENT DATA SETS

TABLE IV

PREDICTION RESULTS (AREA AVERAGE RMSE AND ACC) USING

DIFFERENT k ON DIFFERENT DATA SETS

TABLE V

PREDICTION RESULTS (AREA AVERAGE RMSE AND ACC) ON THE

BOHAI SEA DATA SET (37.07N TO 41N, 117.35E TO 121.10E)

In order to compare CFCC-LSTM with FC-LSTM, SVM,
and SVR, all of the three methods are tested with our two
data sets. For the FC-LSTM network, we set lr = 1, k = 10,
30, and 120 for one-day prediction, seven-day prediction, and
30-day prediction, respectively. For SVM, we use libSVM for
prediction and perform experiments with MATLAB. For SVR,
we use the RBF kernel for prediction and perform experiments
using the TensorFlow Toolkit [14]. Moreover, the kernel width
for RBF is set as σ = 1.6, which is chosen by cross validation.
For both SVM and SVR, we set k = 7, 20, and 50 for one-
day prediction, seven-day prediction, and 30-day prediction,
respectively. The performances of these methods are shown in
Tables V and VI, respectively.

Possibly the most notable trend may originate from the
bottom rows of Tables V and VI, which shows that CFCC-
LSTM with lr = 0.5 and it = 50 outperforms the existing
models on the two data sets. Its accuracies, i.e., 98.52%,
97.61%, and 96.59% on the China Ocean data set and 99.58%,
98.54%, and 97.62% on the Bohai Sea data set, are sig-
nificantly higher than that of SVM, SVR, and FC-LSTM,
respectively. Also, the long-term prediction stability of the
CFCC-LSTM model outperforms that of the FC-LSTM model
and the SVM method. Its RMSE is close to 50% lower than
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TABLE VI

PREDICTION RESULTS (AREA AVERAGE RMSE AND ACC) ON THE
CHINA OCEAN DATA SET (20N TO 30N, 120E TO 131.25E)

Fig. 3. (a) Accuracy achieved on the China Ocean data set for seven days.
(b) Corresponding RMSE achieved on the China Ocean data set for seven
days.

that of FC-LSTM and SVM for seven-day prediction and
30-day prediction.

Besides, the accuracy achieved on the China Ocean data set
is lower than that achieved on the Bohai Sea data set. The
reason lies in the differences of resolution and area coverage.
It is obvious that the higher the resolution is, the harder is to
generate an accurate prediction. The resolution of the China
Ocean data set is 25 times higher than that of the Bohai Sea
data set, and the regional coverage of the China Ocean data
set is seven times larger than that of the Bohai Sea data set.
Therefore, the accuracy on both the China Ocean data set
and the Bohai Sea data set could verify the robustness of the
CFCC-LSTM model.

To further prove the effectiveness of CFCC-LSTM, we
visualize the seven-day prediction and the ground truth in
Fig. 2. To put things into places in the overall view, there
is high similarity between the prediction that is shown in
Fig. 2(a) and the ground truth that is shown in Fig. 2(b). The
image differences between the ground truth and the prediction
are shown in Fig. 2(c). We invert the black and white for
better visual display. However, when we check the details,
most of the differences are located in the areas where the SST
variation over time is the local maximum. This is because the
SST in these areas changes quite rapidly and is affected by
many factors. Thus, it is hard to get an accurate prediction
according to historical data in these areas.

Fig. 3(a) and (b) gives us a more direct exhibition of the
ACC changing trend and that of RMSE, respectively. Through
the two histograms, we can see the prediction accuracy shows
a downward trend, while the prediction error presents a rising
trend. This is because the prediction difficulty increases over
time, and the prediction error rises correspondingly. More
importantly, the ACC remains above 0.97, and the RMSE

remains below 1.5. Thus, the stability of ACC and RMSE could
verify the effectiveness of our model.

IV. CONCLUSION

In this letter, we improved the SST prediction accuracy
by combining both the spatial and temporal information.
We achieved this goal using a two-part strategy: one 3-D
grid, and the combination of one FC-LSTM layer and one
convolution layer. The 3-D grid constrains the local correlation
and the global coherence of the center pixel. The convolution
layer further encodes the spatial and temporal information for
SST prediction. Our experimental results conducted on two
different SST data sets show that our model achieved the best
performance for SST prediction compared with other methods.

For further work, the spatial information can be encoded
in a more complex way. And the proposed method should
be employed into practical applications, such as ocean front
detection [15], [16] and eddy recognition.
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