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Abstract: In the aerospace field, compact optoelectronic platforms (COPs) are being increasingly
equipped on unmanned aircraft systems (UAS). They assist UAS in a range of mission-specific tasks
such as disaster relief, crop testing, and firefighting. However, the strict constraint of structure space
makes COPs subject to multi-source disturbances. The application of a low-cost and low-precision
sensor also affects the system control performance. A composite hierarchical anti-disturbance control
(CHADC) scheme with multisensor fusion is explored herein to improve the motion performance
of COPs in the presence of internal and external disturbances. Composite disturbance modelling
combining the characteristic of wire-wound moment is presented in the inner layer. The adaptive
mutation differential evolution algorithm is implemented to identify and optimise the model
parameters of the system internal disturbance. Inverse model compensation and finite-time nonlinear
disturbance observer are then constructed to compensate for multiple disturbances. A non-singular
terminal sliding mode controller is constructed to attenuate disturbance in the outer layer. A stability
analysis for both the composite disturbance compensator and the closed-loop system is provided
using Lyapunov stability arguments. The phase lag-free low-pass filter is implemented to interfuse
multiple sensors with different order information and achieve satisfactory noise suppression without
phase lag. Experimental results demonstrate that the proposed CHADC strategy with a higher-quality
signal has an improved performance for multi-source disturbance compensation.

Keywords: compact optoelectronic platforms; composite hierarchical anti-disturbance control;
adaptive differential evolution algorithm; phase-lag-free multisensor fusion

1. Introduction

The continuing rapid development of unmanned aircraft systems (UAS) in the aerospace field has
led its essential component, namely optoelectronic platforms, to evolve to a more compact and
flexible type. In this way, they can be applied to a growing number of aerospace applications
at a more compact size and a lower cost, including aviation planning, forest fire prevention,
precision agriculture, disaster relief and public safety, among others [1–4]. Compact optoelectronic
platforms (COPs) serve to isolate various disturbances inside the platform and from the aerospace
environment. System nonlinearity, model uncertainties, carrier movement and other internal and
external disturbances are significant challenges in these kinds of platforms [5–8]. Some composite
disturbances caused by space minimisation may further deteriorate the system control accuracy
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and dynamic performance. The composite disturbances affect the control accuracy and dynamic
performance and further influence the imaging effect of COPs. Therefore, these disturbances must be
compensated for and suppressed.

A wide variety of studies on anti-disturbance have been developed by researchers and
practitioners in different industrial sectors to achieve a better disturbance rejection performance [9].
The anti-disturbance methods can be divided into disturbance suppression methods and disturbance
compensation methods. The disturbance compensation methods include disturbance observer-based
compensation methods and disturbance model-based compensation methods.

The disturbance suppression method aims to design a robust controller such that the system
can maintain stability and good performance in the presence of disturbance and model uncertainty.
The sliding mode control (SMC) is a robust method of controlling nonlinear and uncertain systems that
keeps the systems insensitive and robust to uncertainties and disturbance on the sliding surface [10].
Kinematic and dynamic models of the robot are partly structurally unknown in practice; hence,
an adaptive robust control (ARC) of fully constrained cable driven parallel robots is studied, which does
not require pre-knowledge of the uncertainties upper bounds and linear regression form [11]. A robust
H-infinity output feedback controller is employed to ensure that the dynamic performance of
a system with non-holonomic constraints is considered for control design, where the system is
subjected to model perturbations and external disturbances [12]. However, the design target of these
methods is the convergence of error between command and response, but not targeted compensate
for the disturbances. The effects of the disturbance and the system tracking error are considered
simultaneously. The control performance is limited when the system disturbance is large.

To achieve complete control of disturbance, the disturbance observer-based control (DOBC) is
designed to estimate and compensate for disturbance by filtering the differences between the control
input and the ideal input using the inverse model of nominal plant [13]. The robustness and stability
of DOBC are analysed, and a reaction torque observer-based robust motion control system is proposed
in [14]. The traditional DOBC is designed in frequency domain. To estimate states and disturbance
simultaneously, active disturbance rejection control (ADRC) is designed in time domain, in which
the disturbance and uncertainty are extended as system state, and a state observer is designed [15].
The nonlinear function in ADRC exhibits a good anti-disturbance performance and can improve
the dynamic performance of practical systems [16]. A nonlinear disturbance observer is derived to
overcome the disadvantages of some disturbance observers designed or analysed by linear system
techniques [17]. To solve the mismatched disturbances and uncertainties of the airbreathing hypersonic
vehicle, a nonlinear disturbance observer is employed for fast disturbance estimation and to stabilise
the nominal nonlinear dynamics [18]. The equivalent input disturbance estimator-based control
(EIDEBC) is employed to estimate an equivalent disturbance on the control input channel and avoid
the differentiation of the measured output [19]. An improved EIDEBC approach is presented to increase
the flexibility of the system design and apply the proposed approach to a nonminimum-phase plant [20].
The system disturbances can generally be divided into two categories. One is the internal disturbance
caused by the internal structure, framework movement and other reasons inside the structure, such as
mass unbalance moment, friction, torque fluctuation, wire-wound moment, etc. The other is the
external disturbance caused by external factors from the external environment, such as carrier shaking
and wind winding. The disturbances, model and parameter uncertainties are considered as an
equivalent disturbance in the aforementioned disturbance observer-based compensation methods.
The characteristic and the mechanism of the variety of disturbances are ignored. Therefore, this kind of
disturbance compensation method is unable to compositely compensate for the disturbance. The upper
bound of the equivalent disturbance to be compensated for is relatively large, which brings pressure to
the controller design.

Disturbance model-based compensation methods establish the disturbance model according to
their characteristics and the mechanism influence on the system performance and compensate for them
in the feedforward loop of the controller. Maxwell-slip (GMS) friction-model-based feedforward is
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applied to acquire sufficiently high path and tracking accuracy [21]. The Stribeck friction model [22,23]
and the LuGre model [24,25] have been applied to platforms to compensate for the friction disturbance.
These models can well explain the low speed creep or low speed wobble phenomenon of the platforms.
In [26], torque ripple is extracted using proper filtering and amplification of the estimated motor speed
signal. A new torque ripple minimisation method is also proposed for a switched reluctance motor.
In [27], the analysis of the changing rule of the deflecting angle and the arm of force is introduced
to compensate for the mass unbalance disturbance. A fuzzy Logic-based disturbance compensator
is presented to enhance the tracking performance and contouring accuracy and approximate the
unknown non-matching uncertainty of the system [28]. A non-linear disturbance model estimate
for a measurable disturbance is adapted for the rejection of the disturbance affecting a closed-loop
system via an adaptive neural network compensator [29]. These kinds of methods consider the
characteristics of the disturbance; however, compensating for the external disturbances and other
unmodeled dynamics is difficult. Therefore, when the system suffers from complex disturbances,
the system performance is limited by simply using disturbance model-based compensation methods.

The composite hierarchical anti-disturbance control (CHADC) for complex systems with multiple
disturbances has been proposed by Prof. Guo. It combines the respective advantages of disturbance
compensation and disturbance suppression. The CHADC approach generally employs two layers:
the inner layer, which includes the disturbance observer and the other compensator in the feedforward
path, and the outer layer, which includes the disturbance attenuation controller. In the inner layer,
multiple disturbances are classified and modelled according to their characteristics and the mechanism
influence on the system performance. The disturbances are then targeted, evaluated and compositely
compensated for. Meanwhile, the disturbance attenuation method is applied in the outer layer to
suppress system equivalent disturbances, such as unmodeled dynamics, parameters and structural
uncertainties [30]. The CHADC has been successfully applied in some engineering systems to achieve
a relatively better dynamic performance. In [31], the CHADC method combined with a sliding mode
controller and a disturbance observer has been presented to a quadrotor UAV in the presence of
matched and mismatched disturbances. In [32], to handle the multiple disturbances, the hierarchical
control strategy for a magnetically suspended control moment gyro is established, which includes
a state-space disturbance observer and a robust H∞ strategy. The cooperation of the hierarchical
structure of CHADC guarantees that only a small amount of uncompensated disturbance residual
from the inner layer needs to be compensated for in the outer layer, which makes it easier to design
the controller in the outer layer. Meanwhile, the tracking performance of the system can be further
improved because of the existence of a robust controller in the outer layer.

COPs are widely installed in UAS. To achieve a better imaging effect, COPs have high
requirements on both system control accuracy and anti-disturbance performance. For COPs,
completing all signal transmissions with conducting rings only is not possible because of the strict
constraints of structure space and cost. The signal transmission between shafts is unavoidable
through wires. For a more functional platform, more signal must be transmitted through wires;
thus, wire-wound moment and other related disturbances are magnified on such kind of platforms.
Consequently, for COPs, the identification and modelling of internal disturbance, including
wire-wound moment, are urgent and necessary. The strand overall mechanical behaviour is modelled
according to the Euler–Bernoulli beam theory to build a link between the structural theories for
large-scale analyses of cable structures [33]. Multi-strand wire ropes are physically modelled to predict
the global stiffness of the rope in [34]. However, most of these theories have been made to physically
characterise the mechanical properties of wire ropes. Only a few focused on the specific impact
of high-moment wire-wound disturbance on the accuracy and dynamic performance of COPs and
targeted disturbance compensation and control method.

COPs are subject to multiple external and internal disturbances, model and parameter
uncertainties in the aerospace environment. Motivated by the idea of the CHADC scheme, this
study proposes a composite hierarchical anti-disturbance control strategy for COPs. In the inner layer,



Sensors 2018, 18, 3190 4 of 25

it combines a feed-forward inverse model compensation based on parameter identification with the
adaptive mutation differential evolution (MDE) algorithm and a finite-time nonlinear disturbance
observer to compensate for multiple disturbances. The role of the feed-forward inverse model
compensation is to estimate and compensate for the modellable internal disturbance. The finite-time
disturbance observer aims to compensate for the effect of the external disturbance in finite time. In the
outer layer, a non-singular terminal sliding mode (NTSM) is applied to attenuate disturbance and
realise a high dynamic performance. Through composite disturbance estimation and compensation,
the NTSM controller may take a smaller value for switching gain without sacrificing the disturbance
suppression effect and chattering reduction. This hierarchical structure not only simplifies the design
method, but also improves the control performance of the system. In particular, a phase lag-free
low-pass filter (phase lag-free LPF) is practically applied to obtain a high-quality signal without
phase lag instead of LPF. To interfuse multisensor information, the phase-lead information in the
measured signal of a higher-order sensor is used to revise the phase lag in an LPF. Combined with this
signal fusion method, the proposed CHADC can more effectively improve the control performance of
the system. In addition, the stability of the disturbance compensator and the feedback controller is
demonstrated.

This paper is organised as follows: we shall first briefly discuss the motion model of COPs
in Section 2; the composite hierarchical anti-disturbance control strategy for COPs and the phase
lag-free multisensor fusion are introduced in Section 3; the experiments are performed to verify the
effectiveness of the proposed approach, with the results being discussed in Section 4; and finally,
the conclusions are presented in Section 5.

2. Modelling of the Compact Optoelectronic Platform

The axes of the COP frame are decoupled, with each degree of freedom being a typical motion
control servo system. The outer frame of the compact platform driven by a DC motor was investigated
herein. Figure 1 presents the platform system configuration with a motor-driven mechanism-load
model. The mathematical model analysis of the platform is as follows:
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Figure 1. Platform system configuration.

The motor stator of COPs is embedded in the carrier, indicating that the stator and the carrier
are fixed as a rigid body. Meanwhile, the motor rotor is connected with the outer frame through the
structure part. The rotor and the frame can be considered as completely rigid when the stiffness of the
structural parts is large enough. Carrier shaking disturbance is coupled with the control plant through
the motion between the motor stator and the rotor.
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The system dynamic equations can be expressed as follows:

Rai + La
di
dt

+ Ke θ̇m = ua, (1)

Mout = Kti, (2)

Jm θ̈m + Bm θ̇m = Mout + Mdi + Mde, (3)

where θm is the rotation angle; Ra is the armature resistance; La is the armature inductance; ua is
the armature voltage; Ke is the back-EMF coefficient; Mout is the motor output torque; Kt is the
electromagnetic torque constant; Jm is the rotating inertia; Bm is the damping coefficient; Mdi is the
internal disturbance moment, including friction moment, wire-wound moment, mass unbalanced
moment, unmodeled error, etc.; and Mde is the external disturbance moment, including wind
disturbance, carrier shaking and other disturbances from the aerospace environment or the
UAS motion.

The following equation for Mout can be obtained from Equations (1) and (2):

Mout =
Kt

Ra
(ua − Ke θ̇m − La

dMout

dt
). (4)

Therefore, according to Equations (3) and (4), the electromechanical model of the COPs is:

Jm θ̈m + Bm θ̇m =
Kt

Ra
(ua − Ke θ̇m − La

dMout

dt
) + Mdi + Mde. (5)

Armature inductance is generally relatively small in COPs. Consider the dynamics induced by
armature inductance as part of the internal disturbance, the order of control plant as Equation (5)
could be reduced and simplified. Setting Jp = Ra Jm/Kt, Bp = (RaBm + KeKt)/Kt, U = ua,
Minta = Ra Mdi/Kt − La

dMout
dt , Mext = Ra Mde/Kt, Mta = Minta + Mext, the differential equation of

the platform can then be presented as:

Jp θ̈m + Bp θ̇m = U + Mta, (6)

where Jp and Bp are practical model parameters.
Model and parameter uncertainties ∆J , ∆B can be found between the system nominal model and

the practical model, as shown in (7).
Jp = (1 + ∆J)Jn

Bp = (1 + ∆B)Bn
(7)

where Jn and Bn represent the system nominal inertia and the damping coefficient, respectively.
The model and parameter uncertainties can be equivalent to a part of the equivalent internal
disturbance. The differential equation of the COP is then rewritten as follows:

Jn θ̈m + Bn θ̇m = U + Mt, (8)

where Mt = Mint + Mext and Mint = Minta−∆J Jn θ̈m−∆BBn θ̇m refer to equivalent internal disturbance,
including model and parameter uncertainties.

The system motion equation can be expressed as follows:
ẋ1 = x2

ẋ2 = −Bn

Jn
x2 +

1
Jn

U +
1
Jn

Mt
(9)

where x1 = θm, x2 = θ̇m are the system state variables.
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3. Control Strategy Design of Composite Hierarchical Anti-Disturbance Control

The CHADC control strategy can be divided into two layers: the inner layer that is the disturbance
compensation method and the outer layer that is the disturbance suppression method. Composite
disturbance compensators, including inverse model compensation and finite-time disturbance observer,
were applied herein to evaluate and compensate for multiple disturbances. NTSM control in the
feedback control loop is introduced to attenuate disturbance. The required switching gain of the NTSM
is normally larger than the upper bound of the disturbances. The upper bound of the disturbances is
not easy to determine; hence, the switching gain may be selected as large enough, which will lead to
system chattering. The composite disturbance compensator may reduce the influence of disturbance on
the feedback control loop; thus, the switching gain of the NTSM must be larger than the upper bound
of the disturbance compensation error only, and the system chatting will be effectively reduced. At the
same time, a robust feedback controller may further quickly attenuate disturbance. The hierarchically
anti-disturbance structure for multiple disturbances has good anti-disturbance ability.

3.1. Composite Disturbance Identification, Modelling and Compensation

A feed-forward inverse model compensation based on parameter identification with an MDE
algorithm and a finite-time nonlinear disturbance observer were applied herein to compensate for
the multiple disturbances of COPs. The role of the feed-forward inverse model compensation is to
estimate and compensate for the modellable internal disturbance. The finite-time disturbance observer
aims to compensate for the effect of the external disturbance in finite time.

3.1.1. Internal Disturbance Identification, Modelling and Compensation

Internal disturbances, including friction moment, wire-wound moment, mass unbalanced
moment, unmodeled error, etc., result in large residual errors and deteriorate the platform performance.
An overly simplistic model cannot accurately represent the disturbance characteristics of the system.
Thus, characterizing the behaviours of the internal disturbances in COPs is highly desirable.

(a) Internal Disturbance Modelling

A traditional disturbance observer was applied on a COP under a static and relatively stable
environment to characterise and evaluate the internal disturbance behaviour. The DOBC, which was
proposed by Prof. Ohinishi, estimates the equivalent disturbance and uses it as an offset input signal
to compensate for the disturbance.

Figure 2 shows the curve of the velocity response and the estimated disturbance. The disturbance
of the platform is complex. Various factors will affect the system performance.
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Figure 2. Curve of velocity response and estimated disturbance of a COP.
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The estimation capability of DOBC is related to the bandwidth of its low-pass filter according to
the design principle of the disturbance observer. The disturbance observation result is more accurate
when the motion frequency of the system is lower. The COP reciprocates under a 2◦/s low-speed
triangular wave position command in a range of ±150◦ to obtain more accurate internal disturbance
characteristics in the whole motion area of the platform. Meanwhile, the whole test was conducted
in a static and relatively stable environment to avoid the influence of the external disturbance on the
system. In this way, the motion of the system is primarily affected by the internal disturbance, which is
independent of the external disturbance and the high-frequency attenuation of disturbance observer
estimation. Figure 3 depicts the curve of the position response and the estimated disturbance under
this circumstance. A certain regular sine/cosine relationship can be observed between the position
response and the disturbance.
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Figure 3. Diagram of triangular position response and estimated disturbance of a COP.

The impact of wire-wound friction on the motion control precision for the COP will be exaggerated
because a large number of wires must be placed in a restricted space for signal transmission. Figure 4
shows the side elevation drawing of a COP. As can be noted from the figure, a large number of wires
must be used for the signal transmission between the shafts. Subjected to tension and torsion of the
wire rope strands, the dynamic performance of the platform is directly affected.

Shafting

Wire ropes

Figure 4. Side elevation drawing of a COP.
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The motion of wire rope strands can be simplified as the torsion problem of wire ropes around
the equilibrium point. Wire-wound force is generated under the influence of shock excitation when
the shaft begins to move with the wire rope strands. The differential equation of the motion can be
expressed as follows:

Jwα̈ + cwα̇ + kwα = 0, (10)

where Jw, cw, kw refer to the wire rope moment of inertia and the damping and stiffness coefficients,
respectively. α represents the small angle of the wire rope strands that deviate from the
equilibrium position.

Setting 2n0 = cw
Jw

, ωw0 = kw
Jw

, the characteristic equation of Equation (10) can be converted into:

α̈ + 2n0α̇ + ω2
w0α = 0. (11)

The general solution of the differential equation in Equation (11) is

α = c1eβ1t + c2eβ2t, (12)

where c1 and c2 are arbitrary constants, β1, β2 = −n0 ±
√

n2
0 −ω2

w0. Three types of motion exist
according to the values of n0 and ωw0: large damping, small damping and critical damping. Figure 3
shows that the wire-wound motion of the COP belongs to the motion with a small damping, that is,

n0 < ωw0. Then, β1, β2 = −n0 ± j
√

ω2
w0 − n2

0.
According to Euler’s formula,

eiσ = cosσ + isinσ, (13)

Equation (12) can be transformed into

α = Awe−n0tsin(
√

ω2
w0 − n2

0t + φw), (14)

where Aw, n0, ωw0, φw is related to the parameters in Equation (10) and the initial state of the
wire-wound motion. Awe−n0t can be approximated as a constant A when n0 is small.

The wire-wound moment Mw can be described as follows according to Hooke’s law:

Mw = kwα. (15)

The position angle x1 is proportional to time t when the system is moving at a constant speed
x2 = q0, then x1 = q0t in the zero-initial state. Substituting Equation (15) into (14), the relationship
between the disturbance moment and the frame motion angle x1 can be obtained as follows:

Mw = Akwsin(

√
ω2

w0 − n2
0

q0
x1 + φw). (16)

Setting a1 = Akw, a2 =

√
ω2

w0−n2
0

q0
, a3 = φw, Equation (16) can be rewritten as follows:

Mw = a1sin(a2x1 + a3), (17)

where a1, a2, a3 are wire-wound parameters to be identified.
Figure 3 shows that the disturbance of the COP can be seen as the sum of the sinusoidal

wire-wound moment Mw and the Coulomb friction moment Mc:

Mint = Mw + Mc, (18)
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Mc is associated with velocity x2, which can be described as:

Mc =


b1, i f x2 > 0

b2, i f x2 < 0

0, else

(19)

where b1, b2 are the Coulomb friction parameters to be identified, and they can be obtained from the
mean of the estimated disturbance at different velocity directions.

(b) Disturbance Identification based on Adaptive Mutation Differential Evolution Algorithm (MDE)

According to Equation (17), a1, a2, a3 are the three parameters to be identified. The classical
parameter identification methods include the step response method, frequency response method
and least square method, among others. The system identification methods develop all the time as
the system becomes more and more complex, and the system demands for a more accurate model.
The MDE algorithm is one of the differential evolution(DE) identification algorithms, which is a kind
of stochastic optimisation algorithm based on swarm intelligence [35]. The problem of nonlinear
identification is converted into an optimisation problem in the parameter space. It is a simple
and efficient global optimisation algorithm. The parameter in the early stage can keep individuals
diversifying because of the introduction of an adaptive mutation factor, thereby avoiding a premature
convergence. The mutation factor is also gradually reduced to obtain the optimal solution.

The basic steps of this algorithm to identify and optimise the parameters in Equation (17) are
as follows:

Group Initialization.

If Dg parameters are to be identified in the friction model, the expression of the i-th individual
Xgi in the group is shown in Equation (20). In this study, Dg = 3.

Xgi(0) = xgi(1), xgi(2), ..., xgi(Dg) (20)

where Xgi(0) refers to the i-th individual in generation 0. xgi(j) is a random, uniformly initialised real
number in the range [Lowj, Upj].

Xgi(j) = Lowj + rand(Upj − Lowj) (21)

where i = 1, ..., NP, j = 1, ..., Dg, Lowj and Upj are the lower and upper bounds of the jth
parameter range, respectively. NP is the group size. Function rand generates uniformly distributed
pseudorandom numbers in the range [0, 1].

Differential Mutation.

The vector difference of two random individuals is scaled and combined with the individual
vector to be mutated, as in Equation (22).

Vi(tg) = Xgbest(tg) + F(Xgp(tg)− Xgk(tg)) (22)

where tg is the generation number; e1 = Xgp(tg)− Xgk(tg) is the differential variable; and p 6= k. F is
the mutation factor. An adaptive scaling factor is adopted as follows to avoid a premature algorithm:

λ = e
(1− Gm

Gm+1−G )

1 , (23)

F(e1) = F02λ, (24)
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where Gm is the maximum number of iterations; G is the current number of iterations; and F0 is
the basic mutation factor. 1 ≤ G ≤ Gm, then 1− G ≤ (1− Gm

Gm+1−G ) ≤ 0. F = 2F0 when G = 1,
such that the model parameters in the early stage can keep individuals diversifying to avoid premature
convergence. F decreases as the number of iteration G increases to maintain the optimal solution from
destruction. In the iteration process, the violated individual will be randomly regenerated within
the boundary range to ensure that the generated mutation vector satisfies the boundary constraint
[Lowj, Upj] for every individual.

Crossover Operation.

The binomial crossover operation is presented as follows:

Ugi(j)(tg) =

{
Vi(j)(tg) i f rand < CR or j = jrand

Xgi(j)(tg) otherwise
(25)

where jrand is a random integer between [1, Dg], and CR is a crossover probability.

Competition Operation.

Compared to the new individuals generated by difference variation and cross operation Ui(j)(tg)

with target individual Xgi(j)(tg) from generation tg, the better one goes into the next generation.
The competition operation for the minimisation problem is presented as:

Xgi(tg) =

{
Ui(tg) i f f (Ugi(tg)) < f (Xgi(tg − 1))

Xgi(tg − 1) otherwise
(26)

where f (•) is the adaptive function.
f (•) is chosen herein as:

f (•) = (
1

ng

ng

∑
k=1

(youtw −Mw)
2)1/2 (27)

where ng is the number of samples, and youtw is the measurement disturbance output, w = 1, 2, ..., ng.
The decision criteria are the minimum value of the root-mean-square error (RMS) between the
measurement output and the estimated output from the optimisation identified model with the
measurement input. Thus, the identification problem is transformed into the optimisation problem of
the parameter space.

(c) Inverse Model Compensation

According to the abovementioned analysis, the internal disturbance is associated with frame
motion states x1, x2. For a closed-loop control system, the error between the control commands and
the system response is little if the robust feedback controller in the outer layer works. Therefore,
the system performance can be improved by modelling the internal disturbance using position and
velocity commands instead of motion response and applying the inverse model in a feedforward
loop to compensate for the internal disturbance. A careful design strategy is essential in a feedback
approach to avoid instability. Meanwhile, the effectiveness of the feedforward compensator depends
on the accuracy of the applied inverse model. The design goal of the inverse model compensation is
as follows:

uci = −Mint, (28)

where uci refers to the control output of the inverse model compensation.
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3.1.2. Finite-Time Disturbance Observer

For a COP, the ideal motion equation of the controlled frame without disturbance can be
expressed as: 

ẋn1 = xn2

ẋn2 = −Bn

Jn
xn2 +

1
Jn

us
(29)

where xn1, xn2 are the ideal system position response and the velocity response, respectively. us is the
control output of the feedback controller NTSM.

The error between the expected position response xn1 and the real position response x1 is defined
as follows:

e = xn1 − x1. (30)

According to the design principle of disturbance observer(DOB) in the RIC structure [36],

uRIC = gJn ė + gBne. (31)

where uRIC is the estimated disturbance, and g is the equivalent filter bandwidth of the
disturbance observer.

However, a linear filter cannot effectively compensate for the nonlinearity, and the
finite-time convergence of error cannot be guaranteed. A nonlinear element is introduced into
Equation (31) herein:

Fn(e, α) = |e|αsgn(e), 0 < α < 1, (32)

where sgn(•) is the standard signum function.
Fn(e, α) is a nonlinear function that varies with the error between the expected response and

the practical response. The key point lies in properly designing Fn(e, α) such that the disturbance
observer with the finite-time characteristic obtains a faster rate of convergence and a smaller phase lag.
It possesses a nonlinear merit, where its gain is substantial compared to the small error, and because of
which, the control error converges fast. However, its gain is small for big errors, and because of which,
the DA converter will not be saturated in practical applications. The nonlinear characteristic of Fn(e, α)

enhances the dynamic performance of the controller and speeds up the system convergence.
Define u f n as the output of the nonlinear function Fn(e, α). The finite-time disturbance observer

based on the RIC structure can then be redesigned as follows:

ucd = gJnu̇ f n + gBnu f n, (33)

where ucd is the output of the finite-time disturbance observer and refers to the evaluated disturbance
by the finite-time disturbance observer.

The control output with disturbance compensation can be expressed as follows:

U = us + uci + ucd, (34)

The feedforward loop does not affect the system stability; hence, the stability analysis of the
composite disturbance compensation method is equivalent to the analysis of its feedback loop.

Considering only the feedback loop of the disturbance compensation, the system motion equation
can be expressed as follows: 

ẋ1 = x2

ẋ2 = −Bn

Jn
x2 +

1
Jn
(ucd + Mt)

(35)

The control output of the finite-time disturbance observer ucd is defined as Equation (33).
Define the input of the control plant, including disturbance, as U∗, then U∗ = ucd + Mt.
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Define a deformation disturbance Mde f as the deformation of Mt, and Mt = gJn Ṁde f + gBn Mde f .
Note that if Mt is bounded, then Mde f is also a bounded disturbance, and defined as |Mde f | ≤ d∗g.

Furthermore, since ucd can be expressed as Equation (33); hence, the effect of disturbance Mt on
the control plant can be considered as the effect of disturbance Mde f on the disturbance compensation
loop. In this manner, the feedback loop can be transformed, and the transformed system motion
equation can be expressed as follows: 

ẋ1 = x2

ẋ2 = −Bn

Jn
x2 +

1
Jn

u∗cd,
(36)

The new output of the finite-time disturbance observer u∗cd can be written as follows:

u∗cd = gJn(u̇ f n + Ṁde f ) + gBn(u f n + Mde f ). (37)

The input of the control plant, including disturbance U∗c , is:

U∗c = u∗cd

= (gJnu̇ f n + gBnu f n) + (gJn Ṁde f + gBn Mde f )

= ucd + Mt

= U∗.

(38)

According to the above-mentioned analysis, the system motion equation in Equation (35)
is equivalent to the system motion equation in Equation (36). Therefore, the stability of the
compensation system could be equivalently proven by discussing the stability of the closed-loop
system in Equation (36).

Define an intermediate variable xtemp = u f n + Mde f . Equation (37) could then be rewritten
as follows:

u∗cd = gJn ẋtemp + gBnxtemp. (39)

Based on Equations (36) and (39), the equivalent relationship can then be obtained as follows:

x2 = gxtemp

= gu f n + gMde f .
(40)

Based on Equations (30), e = xn1 − x1. e refers to the error between the expected output angular
xn1 and the practical output angular x1. ė = ẋn1 − ẋ1 = ẋn1 − x2. According to Equations (32) and (40),
the error e based equivalent equation could then be written as follows:

ė = −g|e|αsgn(e)−Meq + ẋn1, (41)

where Meq = Mde f /g is the equivalent disturbance and |Meq| ≤ d∗, ẋn1 is expected system angular
velocity. When the system is expected to be stationary, its expected angular velocity ẋn1 is zero.
When the expected velocity ẋn1 6= 0, it is assumed to be bounded, and |ẋn1| ≤ X.

The error between the expected output and the practical output is caused by multiple disturbances
including external disturbances, internal disturbances, model and structure uncertainties. When the
multiple disturbances are evaluated and compensated, the error e will converge to be zero, and then
the practical output will track expected output. It means that the estimated and compensated
disturbance by the proposed finite-time disturbance observer will approach practical disturbance.
Therefore, the finite-time convergence of the proposed disturbance observer can be proved by the error
convergence of the equivalent closed-loop system.
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The definitions and the theorems are presented as follows to prove the finite-time stability of the
system [37]:

Definition 1. (Finite-time stability) Considering the system

ẋ = f (x), x ∈ Ua ⊆ Rn, f (0) = 0, (42)

where f : Ua → Rn is a continuous function of the open region of Ua, and the open area Ua contains the
origin point. The solution of the system x = 0 is finite-time stability if and only if the system is stable
and converges in finite time. The finite-time convergence is ∀x0 ∈ U0 ⊂ Rn. If a continuous function
T(x) : U0 → (0,+∞) exists, the solution of Equation (42) satisfies the following: when t ∈ [0, T(x0)],
x(t, x0) ∈ U0 and limt→T(x0)

x(t, x0) = 0. x(t, x0) = 0 when t > T(x0).

The finite-time stability requires not only the stability of the system, but also the finite-time
convergence. The Lyapunov stability criterion for finite-time control systems is:

Theorem 1. Considering the system in Definition 1, suppose that a continuous differentiable function V :
U → R exists and satisfies the following conditions:

(1) V is a positive definite function;
(2) the arithmetic number c and a satisfy c > 0 and a ∈ (0, 1), respectively. The open neighbourhood containing
the origin U0 satisfies U0 ⊆ U. If the following condition is established,

V̇(x) + cVa(x) ≤ 0, x ∈ U0 (43)

then, the system shown in Equation (42) is finite-time stable. If U = U0 = R, and V(x) is radial unbounded,

then the system is globally finite-time stable. In addition, the convergence time T satisfies T ≤ V(x(0))1−a

c(1−a) .

The Lyapunov function is defined as follows:

V =
1
2

e2 (44)

Substituting Equation (44) into Equation (43), we obtain:

V̇ + cVa = eė + c(
1
2

e2)a (45)

Let a = (1 + α)/2, a ∈ (0, 1), then

V̇ + cVa = eė + c(
1
2

e2)a

= e(−g|e|αsgn(e)−Meq + ẋn1) + c(
1
2
)

1+α
2 e1+α

≤ −g|e|1+α + |e||Meq|+ |e||ẋn1|+ c(
1
2
)

1+α
2 |e|1+α

≤ −g|e|1+α + |e|1+αd∗ + |e|1+αX+ c(
1
2
)

1+α
2 |e|1+α

= −|e|1+α(g− d∗ −X− c(
1
2
)

1+α
2 )

(46)

Therefore, if g ≥ d∗ +X+ c( 1
2 )

1+α
2 , then

V̇ + cVa ≤ 0 (47)
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According to Theorem 1, as long as the conditions in Equations (48) and (49) are guaranteed,
the system in Equation (41) is global finite-time stable. The system control error will converge to zero

in finite time, and converge time satisfies T ≤ V(e(0))1−a

c(1−a) .

a = (1 + α)/2 (48)

g > d∗ +X+ c(
1
2
)

1+α
2 (49)

The proposed method also has the following characteristics in the problem of anti-disturbance ability:

Theorem 2. Let c1 be an arbitrarily small constant. The error between the expected output and practical output
in Equation (41) will be stabilised into a region Q in finite time, where

Q = e : |e| ≤ ( d∗+X+c1
g )1/α

Proof. Select a continuous differentiable Lyapunov function as in Equation (44). The following
equation after differentiation can be obtained:

V̇(x) = eė = −g|e|1+α − eMeq + eẋn1

≤ −|e|(g|e|α − d∗ −X)
(50)

The final convergence domain of the proposed controller is defined as:

Ω ∝ (
d∗ +X+ c1

g
)1/α, 0 < α < 1, ∀c1 > 0. (51)

For arbitrary e ∈ R−Q, |e| > ( d∗+X+c1
g )(1/α). According to Equation (50), for arbitrary e ∈ R−Q,

V̇ ≤ −c1|e| < 0. (52)

The analysis above proved that the error between the expected output and practical output of the
equivalent closed-loop structure will converge to the stabilised region Q in finite time. The practical
control output will track the expected output and then the estimated disturbance by the proposed
finite-time disturbance observer will approach practical disturbance. The finite-time convergence of
the proposed disturbance observer is proved.

3.2. Phase Lag-Free Sensor Filter

The position or velocity signal is employed as a feedback signal to realise the closed-loop control.
The performance of the closed-loop control system depends on the sensor signal-to-noise ratio (SNR).
The COP is restricted by the installation space and cost, and the sensor measurement accuracy is
limited. For the low SNR sensor, LPFs are commonly used to improve its SNR. However, the associated
phase lag will degrade the performance of the whole system.

A traditional LPF is widely used as:{
ẋ f 1 = −g f x f 1 + g f x1

y f = x f 1.
(53)

where xlp f is the filtered state; y f is the filter output; and g f determines the cut-off frequency of
the filter.
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However, its phase response in Equation (54) shows that the phase lag problem will be introduced
by Equation (53). The higher the signal frequency ω, the more obvious the signal phase lag
after filtering.

ϕ(ω) = 6 L(jω) = −arctan(
ω

g f
) (54)

The phase lag of the filtered signal is unavoidable compared to the original signal because of the
existence of a first-order inertial element in the LPF. A higher-order sensor could be used to obtain
“phase lead” information.

The phase lag-free LPF [38] with a higher-order sensor can achieve satisfactory noise suppression
without a significant phase lag, as in Equation (55). For the low-cost COP, the realisation of motion
control with a higher performance can be guaranteed by multisensor fusion. This method is established
based on pole-zero cancellation, which has a significant meaning in physics.

ẋ f 1 = −gx f 1 + gx1

ẋ f 2 = −gx f 2 + ẋ1

y f = x f 1 + x f 2.

(55)

where x1 f , x2 f are the filter states of the phase lag-free LPF.
Figure 5 shows the composite disturbance compensation method in the inner layer of the proposed

control strategy CHADC with the phase lag-free LPF.
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Figure 5. Control strategy of the composite disturbance compensation method in the inner layer.

3.3. Disturbance Suppression Control Strategy Based on Non-Singular Terminal Sliding Mode

After the disturbance compensation in the inner layer, the equivalent control plant of the outer
controller is presented as follows: 

ẋ1 = x2

ẋ2 = −Bn

Jn
x2 +

1
Jn

us +
1
Jn

Ms
(56)

where Ms refers to the disturbance residual of the disturbance compensation method in the inner layer.
The new state variables of the position error and its derivative are defined as follows:

xe1 = xc − x1, xe2 = ẋe1, where xc is the expected position command. The control target of NTSM
herein is to design the NTSM controller us, such that the position error xe1 → 0.
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The state space of the outer layer can be expressed as:
ẋe1 = xe2

ẋe2 = ẍc +
Bn

Jn
x2 −

1
Jn

us −
1
Jn

Ms
(57)

A non-singular terminal sliding mode method(NTSM) is designed to achieve good performances,
such as fast convergence, better tracking precision and robustness to disturbance. The sliding
surface [39] is designed as follows:

s = xe1 +
1
β

xp/q
e2 , (58)

where β > 0, p and q are the positive odd integers and 1 < p/q < 2.
The terminal sliding mode controller can be designed as:

us = Jn(ẍc +
Bn

Jn
x2 + lsgn(s)− β

q
p

x2−p/q
e2 ). (59)

Assumption 1. The disturbance Ms is bounded, and a constant k > 0 satisfying 0 < |Ms
Jn
| ≤ k exists.

We can then reach the following theorem:

Theorem 3. If Assumption 1 holds, under the control law (59), the control error of COPs converges to zero in
finite time if the switching gain satisfies l > k.

Proof. Choosing Lyapunov function V = 1
2 s2 and taking the derivative of it along with Equation (57) yield:

V̇ = sṡ = s(xe2 +
1
β

p/qxp/q−1
e2 ẋe2)

= s(xe2 +
1
β

p/qxp/q−1
e2 (ẍc +

Bn

Jn
x2 −

1
Jn

us −
1
Jn

Ms))

= s(xe2 +
1
β

p/qxp/q−1
e2 (ẍc +

Bn

Jn
x2 −

1
Jn

Jn(ẍc +
Bn

Jn
x2 + lsgn(s)− β

q
p

x2−p/q
e2 )− 1

Jn
Ms))

= s(− 1
β

p/qxp/q−1
e2 (lsgn(s) +

1
Jn

Ms))

≤ − 1
β

p/qxp/q−1
e2 l|s|+ 1

β
p/qxp/q−1

e2 |Ms

Jn
||s|

= − 1
β

p/qxp/q−1
e2 |s|(l − |Ms

Jn
|)

(60)

1 < p/q < 2, β > 0, p, q are positive odd numbers; hence, p/qxp/q−1
e2 > 0, and |Ms

Jn
| ≤ k < l.

Therefore, it has V̇ ≤ 0 for s 6= 0.
The existence of the sliding mode is guaranteed from the abovementioned analysis. The states

reach the terminal sliding manifold s = 0 from any initial condition in finite time.
When s = 0, Equation (58) could be transformed into

xe1 +
1
β

xp/q
e2 = 0. (61)

Considering ẋe1 = xe2, Equation (61) could be written as follows:

xe1 +
1
β

ẋp/q
e1 = 0. (62)
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Equation (62) is a fractional differential equation. The analytic solutions of many fractional
differential equations are known to be expressed by some special functions, and solving the analytic
solutions of some other fractional differential equations is impossible. However, discussing the
convergence of the state xe1 in Equation (62) is possible by evaluating the convergence time of the
fractional differential equation. If the convergence time can be obtained, the state in the fractional
differential equation could converge to zero in finite time.

Equation (62) could be transformed as x−q/p
e1 ẋe1 = −βq/p. Supposing that tini is the time costed

from s(0) 6= 0 to s(tini) = 0, the convergence time from s(0) 6= 0 to xe1(t f inal) = 0 can be described as
Equation (63).

t f inal = tini +
p

βq/p(p− q)
|xe1(tini)|1−q/p. (63)

Therefore, the position error will converge to zero along the sliding surface s in finite time t f inal .
The control target of the NTSM can be achieved.

4. Experimental Results and Discussion

4.1. Implementation of the Experimental System

Practical experiments were implemented to verify the performance of the proposed system.
Figure 6 illustrates the composition of the experimental system, while Figure 7 shows a photograph of
the experimental devices. The compact platform was composed of a DC motor, a two-axis encoder,
a three-axis gyroscope, motor drivers, sensor acquisition, control circuit, etc. The inner and outer
frames were orthogonal to each other in the structural design; hence, the motion coupling between
them was small enough be ignored. The inner frame of the two-axis platform was fixed, and the outer
frame was taken as an experimental subject herein. In the experiments, the algorithms were realised
by programming in an ARM-based (STM32F407) embedded system. The sampling time was 1 ms.
All programs were scheduled in C language. Table 1 lists the other parameters.

STM32

 ARM-based  embedded system

DA

 Sensor 

acquisition

Displayer

PC

RS232

 

Carrier

Compact Optoelectronic Platform

Encoder

Motor

Frame

Driver

Gyro External 

disturbance

Internal 

disturbance

Controler

Power

CHADC

Phase lag 

free LPF

Figure 6. Experimental configuration.

Table 1. The experiment parameters.

Parameters Symbols Values

Nominal mass Jn 0.0021667 [kg m2]
Nominal damping Bn 0.15 [N s/m]

Filter cutoff frequency gdis 50 [rad/s]
Nonlinear parameter of finite-time DOB α 0.9
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Table 1. Cont.

Parameters Symbols Values

Amplitude output limit Voutmax 8.5 [V]
Cutoff frequency of sensor filter g 62.8 [rad/s]

Proportional gain of PID Kcp 4
Integral gain of PID Kci 8

Derivative gain of PID Kcd 0.04
Switching gain of NTSM l 400

Control parameter of NTSM β 60
Non-singular parameter of NTSM p/q 5/3

power supply

Program based on 

keil uvision5

Real-time data output 

display and storage 

via RS-232

Compact platform

Emulator

Figure 7. Experimental setup.

4.2. Experimental Results and Discussions

4.2.1. Sensor Data Processing

The position signal was noisy because of cost constraints and signal interference. Two sets of
experiments were performed to verify the effectiveness of the phase lag-free LPF.

First, shake the COP and make it do sinusoidal motions with different frequencies and amplitude
values. Acquire and compare the original position signal, LFP filtering signals and phase lag-free
filtering signal (Figure 8). Compared with the LPF algorithm, the phase lag-free LPF algorithm had
less influence on the signal phase while simultaneously improving the signal SNR. It is more beneficial
in achieving high performance control and disturbance suppression of the control system.

In the second experiment, the PID feedback control was applied to the COP. The experiment
consisted of three cases. In case 1, the position signal was the initial signal from the position sensor.
In case 2, the position signal was filtered by the LPF. In case 3, the position signal was filtered by
the phase lag-free LPF with high-order sensor information. Figure 9 shows the comparison results.
The effect of the signal phase lag on control precision was more significant when the system control
bandwidth was low. Figure 9 shows an obvious control overshoot when LPF was used. This was
caused by the additional phase lag in the controlled plant. A better control performance was achieved
when a phase lag-free LPF was applied. In all subsequent experiments, the feedback data were filtered
through the phase lag-free LPF.
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Figure 8. Comparison of initial and filtered signals.
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Figure 9. Closed loop performance comparison of initial and filtered signals: (a) With initial signal;
(b) With traditional LPF singal ; (c) With phase lag-free LPF signal.

4.2.2. Internal Disturbance Model Identification

According to the test data shown in Figure 3, three parameters in Equation (13) were identified
and optimised based on the platform of MATLAB R2012b. Table 2 shows the parameters of the MDE
algorithm. Figures 10 and 11 the parameter convergence processes and the optimal parameter fitting
results when the velocity of the COP was greater than 0 or less than 0, respectively. The convergent
speed of the parameter identification process based on the MDE algorithm was fast. The three nonlinear
parameters can be identified within 150 generations. The identification internal disturbance model is
presented in Equation (64). The model can be applied for inverse model compensation.

Table 2. The parameter of adaptive mutation differential evolution algorithm.

Parameters Symbols Values

Number of Decision Variables Dg 3
Population Size Np 30

Crossover Probability CR 0.9
Basic mutation factor F0 0.5

Maximum number of iterations Gm 500
Bound of Scaling Factor 1 [Low1, Up1] [−1, 1]
Bound of Scaling Factor 2 [Low2, Up2] [−5, 5]
Bound of Scaling Factor 3 [Low3, Up3] [−0.5, 0.5]
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Figure 10. Parameter identification and optimization when velocity > 0: (a) Parameter convergence;
(b) Optimal fitting.
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Figure 11. Parameter identification and optimization when velocity <0: (a) Parameter convergence;
(b) Optimal fitting.

Mint =


0.61024sin(0.020617x1 + 0.24054)− 0.8376 ẋ1 > 0

0.87623sin(0.020467x1 + 0.13307) + 0.6827 ẋ1 < 0

0 else

(64)

4.2.3. Finite-Time Disturbance Observer

Figure 12 demonstrates the system step response of the platform with and without the proposal
finite-time disturbance observer. The PID controller with the proposal finite-time disturbance observer
provided a faster response convergence rate and a smaller overshoot. The convergence time during
the position response converging to −2± 0.01 was reduced from 1.89 s to 0.91 s, and the overshoot
was reduced from 0.55 degree to 0.062 degree.



Sensors 2018, 18, 3190 21 of 25

14.5 15 15.5 16 16.5 17 17.5
−2.6

−2.4

−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

Time(s)

A
ng

le
(d

eg
re

e)
Position command
Position response

(a)

16.5 17 17.5 18 18.5
−2.6

−2.4

−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

Time(s)

A
ng

le
(d

eg
re

e)

Position command
Position response

(b)

Figure 12. Step response comparison: (a) Without finite-time disturbance observer; (b) With finite-time
disturbance observer.

4.2.4. Disturbance Compensation Performance under Multiple Disturbances

Figure 13 illustrates the experimental control error of the system compensators under internal
disturbance with finite-time DOB, inverse model compensation controller and the proposed composite
disturbance compensator with inverse model compensation and finite-time DOB. A PID controller
with the same parameters was applied in the feedback loop. According to these results, all controllers
effectively compensated for the internal disturbance. The control error of the proposed composite
disturbance compensator was the smallest.
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Figure 13. Control error of different disturbance compensation method under internal disturbance:
(a) finite-time DOB; (b) inverse model compensation; (c) proposed composite disturbance compensator.

Furthermore, when working in a practical environment, the COP also suffers from external
disturbance, including wind disturbance and carrier shaking. An additional simulated wind
disturbance was imposed on the system to investigate the comparative performance of different
compensators with multiple disturbances. Figures 14 and 15 show the experimental results, where a
single inverse model compensation controller cannot compensate for the external disturbance, and the
proposed composite disturbance compensator can achieve the fastest disturbance evaluation and the
lowest control error compared with the other two methods.
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Figure 14. Disturbance Estimation of different disturbance compensation method under external and
internal disturbance: (a) finite-time DOB; (b) inverse model compensation; (c) proposed composite
disturbance compensator.
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Figure 15. Control error of different disturbance compensation method external and under internal
disturbance: (a) finite-time DOB; (b) inverse model compensator; (c) proposed composite disturbance
compensator.

The abovementioned experimental results indicated that the proposed composite disturbance
compensator evidently had obvious advantages. The proposed method can effectively evaluate and
compensate for the influence of the internal and external disturbances on COPs in a finite time.

4.2.5. Performance of the Proposed CHADC for COPs

A set of contrast experiments between the traditional PID feedback controller with the composite
disturbance compensation method and the proposed CHADC algorithm was implemented to validate
the proposed composite hierarchical anti-disturbance control method on COPs.

Figures 16 and 17 show the position responses, disturbance estimation and control error of
the COPs under PID + composite disturbance compensator and the proposed CHADC control
schemes, respectively. They also present that the control error (RMS) of the proposed CHADC
method compared with that of the PID + composite disturbance compensator was reduced from
0.020285 degree to 0.0060092 degree. The maximum fluctuation of the position under the proposed
CHADC method was smaller when the same external disturbance load was added, and the position
command changed direction.
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Figure 16. Performance of PID feedback control with proposed disturbance compensation method:
(a) Control command and response; (b) Disturbance estimation; (c) Control error.
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Figure 17. Performance of proposed CHADC controller: (a) Control command and response;
(b) Disturbance estimation; (c) Control error.

5. Conclusions

In the aerospace field, more and more compact optoelectronic platforms are being applied
to unmanned aircraft systems to complete various tasks, such as automatic guidance and search.
Aimed at solving the multi-source anti-disturbance problem, a composite hierarchical anti-disturbance
controller with phase lag-free multisensor fusion was developed herein. The composite disturbance
compensator in the inner layer was combined with a finite-time disturbance observer and internal
disturbance modelling, identification and compensation with the MDE algorithm. The pre-identifiable
internal disturbance was compensated for by the MDE-based internal disturbance compensator.
The external disturbance was evaluated and compensated for by the finite-time disturbance observer.
In the meantime, a non-singular terminal sliding mode control was introduced in the outer layer
of the proposed CHADC strategy to improve the dynamic response and disturbance attenuation
performances. By multisensor fusion, the phase-lead information of a higher-order sensor was adopted,
and the filtered information without phase lag was achieved. Stability and performance analyses
were conducted. The experiments on a COP were implemented to verify the validity of the proposal.
The results highly agreed with the theoretical work and demonstrated that the proposed method
achieves a satisfactory multiple disturbance rejection and a robust performance.
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