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Abstract: Disease diagnosis can be performed based on fusing the data acquired by multiple medical
sensors from patients, and it is a crucial task in sensor-based e-healthcare systems. However, it is a
challenging problem that there are few effective diagnosis methods based on sensor data fusion for
atrial hypertrophy disease. In this article, we propose a novel multi-sensor data fusion method for
atrial hypertrophy diagnosis, namely, characterized support vector hyperspheres (CSVH). Instead
of constructing a hyperplane, as a traditional support vector machine does, the proposed method
generates “hyperspheres” to collect the discriminative medical information, since a hypersphere is
more powerful for data description than a hyperplane. In detail, CSVH constructs two characterized
hyperspheres for the classes of patient and healthy subject, respectively. The hypersphere for the
patient class is developed in a weighted version so as to take the diversity of patient instances
into consideration. The hypersphere for the class of healthy people keeps furthest away from the
patient class in order to achieve maximum separation from the patient class. A query is labelled by
membership functions defined based on the two hyperspheres. If the query is rejected by the two
classes, the angle information of the query to outliers and overlapping-region data is investigated to
provide the final decision. The experimental results illustrate that the proposed method achieves the
highest diagnosis accuracy among the state-of-the-art methods.

Keywords: multi-sensor data fusion; support vector hypersphere; computer-aided diagnosis;
trial hypertrophy

1. Introduction

Cardiovascular disease is a class of dangerous and troublesome diseases that involve the
development of myocardial infarction coronaries, peripheral arterial disease, cerebrovascular disease,
cardiomyopathy, heart failure, and endocarditis, etc. It has been the leading cause of death
globally [1-3]. According to the statistics by the World Health Organization (WHO) [4], 17.5 million
people die each year from cardiovascular diseases, an estimated 31% of all deaths worldwide.
More than 75% of cardiovascular diseases deaths occur in low-income and middle-income countries.
In particular, approximately 3 million Chinese people die from cardiovascular diseases every year,
accounting for 40% of all causes of death [5]. Cardiovascular disease deaths resulted in a 4.79 year loss
of life expectancy in the Chinese population [5].
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The number of patients suffering from cardiovascular disease is increasing dramatically. This leads
to a sharp contradiction between the ever-increasing number of patients and limited medical resources.
Computer-aided diagnosis (CAD) is a potential solution to alleviate such a contradiction, and it has
constantly attracted more and more attention since being proposed [6-9].

In their technical details, these CAD approaches belong to the sensor data fusion community [10],
as the approaches make diagnoses based on fusing the data that is acquired by medical sensors from
people. Nowadays, sensor-based e-healthcare systems are attracting increasing attention from both
academic and industrial communities. They provides the interpretation of medical images or the
reference diagnosis results for clinical staff based on the sensor data from patients. Taking advantage
of the considerable development in machine learning algorithms, sensor data fusion has witnessed a
widening and deepening of applications in various cardiovascular disease diagnoses [11-13]. However,
it is a pity that among the numerous diagnosis approaches based on sensor data fusion, those able to
effectively address atrial hypertrophy diagnosis are missing. The underlying reason for this is that
labelled atrial hypertrophy data are lacking. This causes a serious problem for most learning algorithms
because their good performance depends heavily on sufficient training data. For example, supervised
learning algorithms based on statistics can derive information concerned with data distribution and
density with a large amount of training data.

From the literature, neural networks (NNs) [14-16] and support vector machine (SVM) [17-19]
can solve atrial hypertrophy disease detection. NNs are powerful tools in nonlinear classification and
regression, but the formulation of a concrete NN imposes huge and unexpected computational costs
in defining the number of layers, the number of neurons in each layer, and the activation functions,
etc. Therefore, between these two approaches, SVM is preferred. SVM computes the support vectors
based on which a hyperplane is defined to maximize the separation between two classes. Recently,
SVM has played an important role in computer-aided diagnosis for cardiovascular diseases including
atrial hypertrophy [20-25], because it has good generalization performance, a compact structure and a
solid theoretical basis. A number of SVM-based works have been proposed in recent years. However,
as the practical data to be processed gets confusing, SVM encounters bottlenecks.

The first bottleneck lies in SVM’s hardship in labelling the data within the overlapping margin.
SVM is a binary classifier, and it generates the separating hyperplane within the margin between
two classes. This means SVM depends completely on the margin between two classes. To the
overlapping classes, the margin is covered by data in a mess. It is difficult for SVM to construct a
cutting hyperplane that can hold the maximum classification margin. However, it is notable that current
medical data may not follow a given distribution, and the difference between patient information and
healthy people’s information is getting more and more ambiguous. That is to say, the margin between
the patient class and health class is blurred. Consequently, the behavior of SVM is affected by such
a data environment. Another bottleneck of SVM is the negligence in handling outliers or novelties.
In other words, SVM is not equipped with customized steps to process outliers. In the atrial data, this is
a conspicuous issue, because as time goes by the physiological data of patients definitely become ever
more complex. Even if two patients suffer from the same disease, there would be a sharp gap between
their medical records. It is normal that a patient would exhibit an individual medical record that does
not follow the typical characteristics. All these cases correspond to outliers or overlapping-region data,
and special steps are required to derive discriminative information from them.

Recently, a diagnosis approach based on sensor data fusion was presented in [25], a locally
discriminant SVM (LDSVM) for atrial hypertrophy diagnosis. As an assembling approach, LDSVM
consists of SVM and k-Nearest Neighbors (kNN). The former is trained in advance and the latter is
started when the confidence of the decision of the SVM is below a threshold. The underlying idea
of LDSVM is to append a classifier to modify the unpleasant initial decision. However, there are
some problems encoded with LDSVM. Firstly, as [25] indicated, the scenarios when the initial SVM
decision fails usually involve datasets with overlapping classes. In such cases, KNN works in the
overlapping regions based on a metric derived from the SVM hyperplane function. However, it should
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be noted that SVM is not good at addressing the overlapping classes, which implies that the hyperplane
function produced by SVM would be biased. This leads to a distorted metric on which kNN works,
and consequently, poor modification decisions. Secondly, the confidence threshold brings an increase
in computational cost, and there is no heuristic for specifying such a parameter. Thirdly, LDSVM
ignores the existence of outliers. It is known that medical data are often of high diversity, which means
that on the one hand, the margin between the patient group and health group becomes more and more
blurred; on the other hand, there exist outliers that are far away from the main occupied regions. If a
diagnosis approach ignores the above two aspects, the diagnosis decision will be undesired.

Focused on above issues, in this paper we propose a novel approach for atrial hypertrophy
diagnosis, and the approach is named characterized support vector hyperspheres (CSVH). CSVH
takes the characters of atrial data (acquired from medical sensors) into consideration and develops
two individual hyperspheres for the health class (consisting of the medical records of healthy people)
and the patient class (consisting of the medical records of patients), respectively. The hypersphere
of the patient class is formulated by a weighted schema, with the aim to identify outliers and
overlapping-region data, and consequently, to collect well-defined class information. The hypersphere
of the health class keeps furthest away from the patient class hypersphere, with the aim of obtaining
the maximum separation between the two groups. When a query arrives, it is labelled according
to membership functions defined based on the two hyperspheres. If the query is rejected by the
two classes, the angle information between the query and outliers as well as the overlapping-region
data is investigated to provide the further decision. To upgrade efficiency, CSVH is equipped with
data-adaptive parameterization heuristics.

Instead of constructing a hyperplane as SVM does, CSVH generates hyperspheres to collect
the discriminative information, because it is believed that a hypersphere is more powerful for data
description than a hyperplane. Moreover, CSVH upgrades the common hypersphere model to the
weighted version and the furthest-away version. That assists CSVH in revealing more inner-class
information, learning more inter-class difference, and simultaneously allows it to be less affected by
outliers and unpleasant data around blurring margins.

The remainder of this paper is organized as follows. Section 2 introduces the experimental data
for this study. The idea, procedure and the implementation details of the proposed CSVH are proposed
in Section 3. Section 4 discusses the experimental results on benchmark datasets and atrial data. Finally,
conclusions and ongoing work are summarized in Section 5.

2. Materials

Two real electrocardiogram datasets acquired from medical sensors were used in this study.
They are the The Massachusetts General Hospital-Marquette Foundation (MGH/MF) [26,27] and
Fantasia [27,28] datasets. There are 250 patient instances in the MGH/MF dataset, and there are
40 healthy people instances in the Fantasia dataset. In both datasets, each instance consists of three
files: an annotation file, electrocardio data file and a medical history file. Among them, the second
file contains electrocardio curves, which were to be investigated. To obtain a fair comparison, we
employed the sampling method in [25] to derive vectors from the electrocardio curves. That is, we chose
five heartbeats from the electrocardio curve of one instance to represent the cardiac information.
Each heartbeat was described by a fifty-dimension vector. The entries of such a fifty-dimension vector
are fifty voltages sampled from the corresponding heartbeat curve. Of course, these fifty voltages were
rescaled for normalization.

For atrial hypertrophy, there exists a number of patient records that do not exhibit classical
symptoms, i.e., that do not have the classical medical indices of atrial hypertrophy. It is also quite
possible that a healthy person shows similar atrial hypertrophy symptoms. This creates great difficulty
in providing an accurate diagnosis. It is known that these non-classical data serve as outliers or
overlapping data. Thus outliers and overlapping data exist, though the exact number of these is
hard to obtain. In Figure 1, we provide 2 dimensions (15th dimension and 39th dimension) of all the
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dimensions to briefly show the outliers or overlapping samples. The blue triangles indicate the patient
sample, and the green dots indicate the sample of healthy people.

0.71

» Patient data
- Health data

0.6

39th dimension
© o o o
N W )|

©
—

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

15th dimension

Figure 1. 2 dimensions of all the dimensions to briefly show the outliers or overlaps in the atrial
hypertrophy datasets.

3. Methods

3.1. The Outline of the Proposed CSVH Approach

The CSVH approach consists of two phases: the training phase and the labeling phase.

In the training phase, two characterized hyperspheres for two classes are constructed. Motivated
by the observation that the distribution of patient class data for atrial hypertrophy is diverse,
the hypersphere of the patient class is equipped with a data-adaptive weighted schema, with the aim
to strengthen the presence of outliers and overlapping-region data. Simultaneously, based on the fact
that the health group data are relatively denser than the patient data, the hypersphere of the health
group keeps furthest away from the patient class, with the aim of obtaining the maximum separation
between the two groups.

In the labeling phase, two membership functions are defined based on the two hyperspheres, and
they provide the degree of belonging query to the two classes. When a query arrives, its belonging
degree to the two classes is first computed. If the two degrees are close enough, the angle information
between the query and outliers as well as the overlapping-region data are investigated to refine the
membership decision.

The CSVH steps are outlined as follows.
Training phase:

(1) Preprocess training of the atrial sensor data.
(2) Construct the weighted hypersphere for the patient class, and obtain a, R?, and OsetP.
(3) Construct the furthest hypersphere for the health class, and obtain b, Z2, and OsetH.

where a is the hypersphere center of the patient class, and b is the hypersphere center of the health class;
R and Z are the two hypersphere radii; OsetH is the set including outliers and the overlapping-region
data of the health class, and OsetP is the set including outliers in the patient class.

Labeling phase:

(4) For query Q, compute its hypersphere-wise membership degrees to two hyperspheres, G,(Q)
and G,(Q).
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(6) If I Gu(Q) — Gp(Q) | > ¢g, label Q as the class with higher membership.
6) If | G,(Q) — Gp(Q)l < g, label Q based on the information of the outlier and
overlapping-region data.

where G,(Q) and Gj,(Q) are two membership functions; ¢g is the threshold to determine whether Q is
rejected by the two classes.

3.2. Characterized Hypersphere of the Patient Class

The diversity in a distribution of patient data requires CSVH to construct a weighted hypersphere
to identify the unpleasant data (including outliers and overlapping-region data). For this reason,
the formulation of the hypersphere and inner-class data are equipped with large penalty coefficients.
This ensures that the hypersphere can cover this data and can develop a well-defined data description
of the patient class. Other unpleasant data are equipped with small penalty coefficients, to highlight
their presence.

The weighted hypersphere of the patient class is modeled based on the containing
hypersphere [9,29] and constructed through optimizing the following objective:

min R2 + C;E, & )

s.t. Hgo(xi) —aH2 <R*+§, >0

where N, is the size of the patient class; ¢ is the nonlinear map from the input space to the feature
space; ¢; is a slack variable; a is the hypersphere center; R is the hypersphere radius; and C is a penalty
coefficient of the slack variable. Introducing a Gaussian kernel k(x;, x;), the final objective is thus:

. <N N,
mmzileﬁiﬁjk(xir xj) - Zi:p1ﬁik(xi/ X;) ()
NP
s.t.0< ,31' < Cir Zi:l i = 1
where B; is a Lagrange multiplier.
The hypersphere center a is computed as:
N
a=2X, 7 Bip(x;) ®)

The hypersphere radius is computed by adopting a support vector in the following
distance formula:

2 2

R =lo(x) al’ } "
= k(x,x) =257 Bik(x, x;) + £; 1 BiBjk(xi, xj)

The data with B; = C; and ¢; > 0 are outliers and overlapping-region data. They constitute the
set OsetP.

Then, consider the parameterization of the penalty coefficient C;. For outliers, they are of large
distance to their nearest neighbors. Based on that fact, we consider the distance between x and its
nearest neighbor, and let that distance serve as the penalty factor:

€L = exp(—||o(x:) = ¢ (inear) | ) ©)

where X;,,,, is the nearest neighbor of x;. The further xj,,,, is from x;, the more probable x; is to be an
outlier, and a relatively small penalty coefficient is required. Notice that the distance is computed in
the feature space. Introduce a Gaussian kernel, and we have:
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Cli = eXP(Zk(xi/ xinear) - 2) (6)

For overlapping-region data, some of the neighbors would come from the other class. Therefore,
we investigate the ratio of neighbors of the own class to those of the other class. Such a ratio works as
another penalty factor, defined as:

_ |OTHER|

C2; = exp( OWN]|
1

) @)
where OTHER; and OWN; are the sets of neighbors of x; belonging to the other class and own class of
x;, respectively. |-| computes the cardinality of the set. The higher the ratio of | OTHER| to |OWN |,
the more probable that x; is in the overlapping-region data, and consequently, a relatively small penalty
factor is required.

Combine the above two factors to form the penalty coefficient customized to x; as:

1
C = E(Cli + C2i> (8)

3.3. Characterized Hypersphere of the Class of Healthy Subjects

The hypersphere of the health class is characterized by the maximum separation from the
hypersphere of the patient class. To keep the furthest distance between the two hyperspheres,
the distance between the two hypersphere centers is investigated. Inspired by [30], CSVH constructs
the hypersphere of the health class that keeps furthest away from the origin of the feature space, and
then maps the hypersphere center of the patient class to the origin to realize the maximum separation
between the two hyperspheres.

3.3.1. Rough Model of the Furthest Hypersphere

To keep the hypersphere furthest away from the origin of the feature space, an appendix term is
added to the original objective:
min Z2—17||b||2+CZf\i’llfji 9)

st.|lo(x) —b|? <22+, & >0

The meanings of ¢, ; and C are the same as above. b and Z are the center and radius of the
furthest hypersphere, respectively. N}, is the size of the health class. The parameter # determines the
importance of | 151 |2 (the distance from b to the origin of the feature space) to the model formulation.
Denote ; as a Lagrange multiplier, and then the final objective is:

. 1 N N,
min ﬂzi,jh:17i')’jk(xir xj) - Zi:hl’Yik(xi/ x;) (10)

st.0< 9 <C Ny =1

3.3.2. Refined Model of the Furthest Hypersphere

We mapped the hypersphere center of patient class, a, to the origin of the feature space. If a is
viewed as the origin, then the new axes can be formed. The problem then turns to constructing the
common hypersphere for the health class in the space spanned by the new axes. In that new space,
there exists a new nonlinear map that is used in the formulation of the hypersphere. The nonlinear
map under the new axes is denoted as ¢’. We considered modifying the original Kernel function k to a
new version k’:
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= (p(x) —a) - (¢(y) —a)
= ¢(x) - 9(y) —a-p(x) —a- p(y)+][a]|®
= k(x,y) —2a- p(x)+|lal*

(11)

where ¢’ is the nonlinear map. As mentioned before, a = } 8;¢(x;), (i =1 ... Np). Therefore, k" is
given by:
N, N, N,
K (x, y) =k(x,y) — Zi£1,3ik(xi/ x) — Zizppgik(xi/ y)+ Zl-leﬁ,-ﬁjk(xi, xj) (12)

Replace k with k" in (10), and the furthest hypersphere is obtained.

3.3.3. Parameterization of Balance Coefficient

7 is the balance coefficient to tradeoff “72” and “— 1 1b| 12” in Formula (9). These two terms

essentially determine the volume and separation of the hypersphere for the health class. In this paper,
it is derived from the approximate distribution information of the health class in the feature space:

(13)

where s = mean{ /2 — 2k’ (x;,x;)|i,j =1... Ny}

The motivation for the above parameterization is as follows. s computes the average distance
among health class members in the feature space, basically indicating the compactness of the health
class. If s is high, it implies that the members of health class are scattered within a large area. In that
case, the term “Z?” should be strengthened to ensure the tight volume of the health class hypersphere
and consequently foster the separation between the two hyperspheres. Thus, a small 7 is required.

Alternatively, if s is low, it implies that the distribution of the health class is relatively dense. In other
words, in that scenario, the separation should be emphasized rather than the hypersphere volume.
That is, term “— | b1 12" should be highlighted, and a large 7 is required.

3.4. Labeling Phase

With the two hyperspheres in hand, we labelled the query according to its position with respect
to two the hyperspheres. Here, CSVH takes the presence of outliers and overlapping-region data into
consideration, and develops the membership functions in the below versions:

12

G(Q) = exp(- 121D 1L, (14)
— bl

G(Q) = oxp(- 11T, (15)

where P? = mean{||p(x,) — a|[*|x, € OsetP}, H* = mean{||¢(x,) — b||*|x, € OsetH}.
If 1G4(Q) — Gp(Q)! > eg, Q is labelled as the class member with higher membership values.
The threshold g is specified adaptively as some percentage of the larger membership values:

eq = max{G,(Q),G,(Q)} - 10% (16)

If it is typical that 1G;,(Q) — Gp(Q) | < gg, that fact corresponds to two cases. The one is that
the query is far away from two classes, which implies that the query is relatively near to the outliers.
In this case, labelling the query according to the information of the outliers is reasonable. The second
case is that query is located within the margin between the two classes. That means the query is close
to the overlapping-region data. In that case, the local information of the overlapping-region data is of
discrimination ability to label the query. Therefore, CSVH searches for the most analogous one from
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OsetP and OsetH that is of the smallest angle with Q. Denote the most analogous one as QA, which is
defined as:
QA = max,{< ¢(Q) - ¢(x) >|x € OsetP U OsetH } (17)

Then, Q is labelled as the same class as QA. Therein, the inner product <¢(Q)-¢(x)> computes the
Cosine values of the angle between Q and x in the feature space. With the different kernel functions in
the patient and health classes, QA is computed by:

(18)

QA = maxx{ k(Q,x) (if x € OsetP) }

K(Q,x) (if x €& OsetH)

4. Results and Discussion

In this section, we describe the design of the experiments to test the performance of the proposed
method, then we present and analyze the experimental results. The experiment environment was
Windows 10 with MATLAB R2011b. The kernel function involved in the support vector approaches
used the Gaussian kernel. The parameters involved in the experiments, such as the scale of the
Gaussian kernel function and penalty coefficients were set by 10-fold cross-validation. Before applying
CSVH to atrial hypertrophy data, we ran it on benchmark data to verify its validation and performance.

4.1. Experiments on Synthetic Datasets

In this subsection, two two-dimensional synthetic datasets, an exclusive OR (XOR) dataset and a
crossing line dataset, are described. They are shown in Figures 2 and 3. The aim of introducing two
such datasets is to simulate the complex distribution of medical data. In the experiments, for CSVH,
class 1 was viewed as the patient class and class 2 was viewed as the health class. Here, besides
CSVH, we conducted SVM [18,19]; local discriminative SVM (LDSVM) [25]; two SVM variants,
multi-weight vector projection support vector machines (MVSVM) [31]; twin support vector machines
(TWSVM) [32]; as well as a neural network, named as NN1. NN1 has three layers, including an input
layer, a hidden layer and an output layer. The numbers of neurons in these three layers are two, five,
and one, respectively. The activation functions of the three layers were: f1(x) = x, f2(x) = tansig(x), and
f3(x) = x. An error back propagation algorithm (BP) [33], was employed to adjust the weights of NN1.
For LDSVV, it consisted of an offline SVM piece and an online kNN piece. The kNN piece tuned its
neighborhood size, say k, with the parameterization heuristic reported in [25]. Table 1 records the
average training classification accuracy and testing classification accuracy over 10 dependent runs.
In each run, 20% of the data were sampled randomly as training data. The accuracy is the percentage
of samples that were correctly classified, and it equals the ratio of the number of samples which were
correctly classified to the size of samples. In other words, TP, TN, FP, and FN denote the number of
true positives, the number of true negatives, the number of false positives, and the number of false
negatives, respectively; the accuracy is defined as:

TP+ TN
TP+TN+FP+FN

Accuracy =

From Table 1, we find that CSVH and TWSVM generated better results than the other classifiers.
TWSVM worked well on the training data, and CSVH behaved well over the testing data. TWSVM
seeks two hyperplanes that cross two classes through solving two quadratic optimization problems,
which helps it to collect comprehensive structure information for the training data and produce high
accuracy over the training data. CSVH learns the difference information between two classes and
takes the outliers as well as overlapping-region data into consideration through constructing two
customized hyperspheres. This enables CSVH to obtain the discrimination information carried by both
dominated data and outliers, which benefits its generalization ability on testing data. The CSVH’s
behavior verified the validation and performance of CSVH. MVSVM shares a similar spirit to TWSVM,
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but it generates two hyperplanes through solving two eigenvalue problems, which implies that the
solution of MVSVM is not as good as that of TWSVM.
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Figure 3. Cross plane dataset.

Table 1. Classification accuracy of the two datasets (%).

. XOR Dataset Crossing Line
Classifier
Training Testing Training Testing

NN1 95.2 93.5 97.7 97.6

SVM 95.7 93.6 96.9 96.2

LDSVM 96.1 94.2 97.1 96.5

MVSVM 96.3 93.9 97.4 96.0

TWSVM 97.3 96.3 98.3 97.0

CSVH 96.9 96.3 98.1 97.4

To further evaluate the quality of the two membership functions, G,(Q) and G,(Q), we took
(Gp(Q), Gx(Q)) as the coordinates of Q, and plotted the coordinates of the data coming from the
crossing line dataset on a planar system, as shown in Figure 4. For comparison, we considered
MVSVM and TWSVM. MVSVM and TWSVM label a query according to the distance of the query
to two hyperplanes. Therefore, for these two classifiers, we took (d1(Q), 42(Q)) as the coordinates
of Q, where d1(Q) and d»(Q) represent the distance values of Q to the centers of class 1 and class 2,
respectively. The corresponding planar coordinate systems of MVSVM and TWSVM are shown in
Figures 5 and 6.

It can be observed that the coordinates of Figure 4 are clustered more densely than those of
the other two figures. This indicates that the membership values provided by CSVH are of higher
indication ability and consequently, that the membership functions are of stronger discrimination
ability in detecting reasonable labels than those of MVSVM and TWSVM. From Figures 5 and 6, we
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can see that TWSVM shows higher performance than MVSVM, since the coordinates generated by
TWSVM are gathered more closely than those gathered by MVSVM.
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Figure 4. Characterized Support Vector Hyperspheres: membership values.
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4.2. Experiments on Benchmark Datasets

This subsection utilizes benchmark datasets of UCI Machine Learning Repository [34] for
empirical tests. Table 2 reports the average testing classification accuracy over 10 dependent runs,
where in each run, 20% of the data were sampled randomly as training data, and the remaining 80%
data were tested. We also list the standard deviation after the average clarification accuracy.
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Table 2. Comparison of accuracy (%).

Dataset NN1 SVM MVSVM TWSVM LDSVM CSVH
Blood transfusion 81.5+£39 82.0+£3.1 83.1+42 84.0 £2.6 83.7 £3.7 849 +4.1
Ionosphere 92.6 £3.1 948 £4.7 94.1 £5.1 95.7 £4.3 95.0 £4.1 953 £3.0
Breast Cancer 953 £28 96.0 £ 3.6 95.7 £ 4.3 96.5 £ 34 96.6 = 3.8 974 £29
SPECTF heart 93.1 £3.6 932+41 93.7 £3.1 972 +£3.0 95.1 £44 97.3 £34
Liver 72.6 £ 3.8 746 £42 741 +42 750+£29 744 +£28 75.7 2.7
Australian 852 +4.1 86.2 £3.3 87.0+£3.6 879 £35 873 +43 87.7 £35
Diabetes 751 £35 753 £39 762 £2.6 784 +42 772 £3.6 781 +3.1

From Table 2, it is easy to reach a similar conclusion as set out in Section 4.1. Among the
six classifiers, CSVH and TWSVM work best, and in the remaining cases, LDSVM, SVM and MVSVM
follow them in turn. For the involved UCI datasets, there are common margins between the two
classes, which allow SVM and LDSVM to bring all potentialities into full play to generate the qualified
cutting hyperplane. Moreover, LDSVM presents higher accuracy than SVM, owing to its additional
kNN component to refine the less confident decisions. In this section, MVSVM is competitive with
SVM. MVSVM constructs crossing hyperplanes that could collect more discrimination information
than the cutting hyperplane generated by SVM. However, MVSVM’s implementation depends on
eigenvalue problems, which bring less computational cost, in exchange for decreased solution quality.
In Table 2, NN1 follows the other classifiers.

The standard deviations are listed to show the stability of the classifiers. If the standard deviation is
taken into consideration, CSVH has the narrower changing range than the other classifiers. This implies
that the proposed CSVH is more stable than other classifiers.

We then verified whether there is statistically significance in the difference among the performance
of the different classifiers. We employed a statistical test, the Friedman test [35], to conduct statistical
performance analysis among the comparing classifiers. Table 3 lists the Friedman statistics Fr values
for each dataset at the significance level « = 0.05. For the configuration of Table 3, the corresponding
critical value is 2.422. As shown in Table 3, all the Friedman statistics Fr are greater than the critical
value. This means that at a significance level of o = 0.05, the null hypothesis that all the comparing
classifiers perform equivalently is clearly rejected, in other words, there is a statistically significant
difference in accuracy among the classifiers for each dataset.

Table 3. Fr values of the Friedman test among the accuracies for each dataset (significance level

o =0.05).
Dataset Fr
Blood transfusion 44.8571
Ionosphere 36.1714
Breast Cancer 39.9429
SPECTF heart 45.8857
Liver 41.0286
Australian 32.7429
Diabetes 41.2571

4.3. Experiments on Atrial Hypertrophy Datasets

For this section, two real electrocardiogram atrial hypertrophy datasets, MGH/MF [26,27] and
Fantasia [27,28], acquired from medical sensors were adopted. The description of the data is presented
in Section 2.

Existing solutions to atrial hypertrophy, including NNs, SVM, LDSVM, and the proposed CSVH,
were evaluated. Moreover, the two SVM variants mentioned above, MVSVM and TWSVM were also
included. As a binary classification tool, they fulfil the separation between the patient and health
classes. To further ensure a fair comparison, we followed the NN specification in [33]. The NN
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described in this section is named NN2. NN2 has three layers. The numbers of neurons in the input,
hidden, and output layers were 50, 10, and one, respectively. The activation functions of these three
layers were the proportional function, tansig() function, and proportional function, respectively. In the
experiments, some instances were selected randomly from two real datasets, and their corresponding
vectors formed the experimental training subset. The vectors of the remaining instances formed the
testing subsets.

Firstly, we observed the performance of the various approaches in the training subsets with
the balanced sizes of the two classes. We denoted the size of all instances as N, and we selected
p-N instances to form the training subset, with p = 0.2, 0.4, and 0.6, respectively. In each training
subset, the ratios of patient instances and healthy people instances were half and half. Table 4 reports
the average testing classification accuracy as well as the standard deviation over 10 independent
runs. According to Table 4, CSVH achieved higher accuracy than the other approaches. In the last
section, CSVH exhibited a little advantage over TWSVM in the benchmark datasets, which verified
the validation of CSVH. However, in the atrial hypertrophy datasets, CSVH exhibited an obvious
improvement over TWSVM. This verified the advantage of CSVH for handling atrial hypertrophy
diagnosis over the peer approaches. CSVH was followed by LDSVM, TWSVM, SVM, MVSVM, and
NN2 in turn. The outperformance of CSVH is attributed to the formulation of the two characterized
hyperspheres. CSVH takes the characters of the two classes into consideration to strengthen the
diversity of patient instances through generating a weighted hypersphere, and to pursue the maximum
separation between healthy people instances and patient instances through keeping the furthest
distance between two hyperspheres. This enables the resulting membership functions to be encoded
with the discrimination information that is customized to the two classes. In addition, rejection cases
are handled by CSVH through computing the angle between the query and outliers, as well as the
overlapping-region data. Therefore, CSVH tends to produce reasonable decisions. LDSVM presented
lower accuracy than CSVH, because of its inherent difficulty in addressing overlapping-region data.
Although it is equipped with the refined component kNN to modify the less confident decisions of
the SVM, it should be kept in mind that the metric on which kNN works is derived from the SVM
hyperplane function. In the datasets with overlapping classes, the SVM hyperplane function would be
distorted by the bias introduced by the overlapping data. Consequently, the quality of the resulting
metric would be affected, which would then affect the behavior of the kNN as well. As discussed
above, TWSVM provided better performance than SVM. According to empirical evidence, SVM and
MVSVM are competitive in common benchmark datasets, but the former behaves better than the
latter in more cases. This is because SVM solves the quadratic problems while MVSVM solves two
eigenvalue problems. In atrial hypertrophy data, a complex data environment, the quality optimization
problem makes classification accuracy important. The advantage of solutions to quadratic problems
helps SVM present higher accuracy than MVSVM in most cases. As for NN2, its analysis was similar
to the above section.

Table 4. Diagnosis accuracy on atrial hypertrophy data (%).

Training Subset Ratio NN SVM MVSVM TWSVM LDSVM CSVH
=02 75.0 £2.7 775+ 3.7 777 £35 78.1+3.0 787 +£3.6 79.7 £33
0=04 752 +32 778 £4.0 772+£28 783 +42 785 £ 3.0 793 £27
0=06 741+39 762+43 760+ 43 779 £35 780+ 41 789 +3.1

In order to show a statistically significant difference, a Wilcoxon signed-ranks test [35] was
employed. The Wilcoxon signed-ranks test is a statistical test that ranks the difference in performance
of two classifiers for each dataset. We summarized the statistical test results at the significance level
a = 0.05 and report them in Table 5. Generally, if the p-value of the test is less than 0.05, it indicates
there are statistically significant differences in accuracy between the two classifiers. It can be observed
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from Table 5 that the p-values are less than 0.05, which indicates that the proposed CSVH outperforms
the competitor in statistical significance.

Table 5. p-Values of the Wilcoxon signed-ranks test between CSVH and other classifiers (significance
level o = 0.05).

Training CSVH vs. CSVH vs. CSVH vs. CSVH vs. CSVH vs.
Subset Ratio NN SVM MVSVM TWSVM LDSVM
p=02 0.002 0.002 0.0039 0.0059 0.0156
p=04 0.0039 0.0098 0.0059 0.0254 0.0273
p=0.6 0.002 0.0237 0.0098 0.0195 0.0488

It is typical that in clinical practice, between the patient and health classes, the size of one side is
smaller than the other. We thus considered the cases where the sizes of two classes were imbalanced.
We simulated such scenarios with the training subsets specified in Table 6, where ‘# represents the
number of instances of the corresponding class; T1, T2, ... and T8 represent eight training cases.
LDSVM is equipped with kNN, and is sensible to the size of training data. Thus, except LDSVM,
we considered the diagnosis accuracy of the other four classifiers as the training data size changed.
The diagnosis accuracy of the tested approaches is shown in Figures 7 and 8.

Table 6. Imbalanced training dataset details.

# Patient # Health
T1 5 20
T2 5 25
T3 5 30
T4 5 35
T5 30 5
T6 45 5
T7 60 5
T8 75 5

7 == =- MVSVM
. --e-- TWSVM
72*---.-.-.___ .
-'~-~*_ ——————— - -‘—---- -
o ————
70 ‘ ‘
T T2 ™ h

Data Set

Figure 7. Classification accuracy of T1, T2, T3, and T4.
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Figure 8. Classification accuracy of T5, T6, T7, and T8.

From the experimental results, we found that the accuracy values of the five approaches reported
in Figure 7 are lower than those in Figure 8. This suggests that decreasing the patient class size has
more influence on the diagnosis results than decreasing the health class size. This is because the
instances of the patient class are of higher diversity, which means a small amount of patient instances
would fail to provide comprehensive class structure information. Consequently, the resulting classifier
is unable to hold sufficient discriminative knowledge to distinguish patient class vectors from health
class vectors. On the contrary, in the experiments involved in our paper, the distribution of the health
instances was relatively closely gathered. This allows a small number of health instances to reveal
sufficient discriminative knowledge concerned with the health class.

Another observation is that in both Figures 7 and 8, CSVH presents consistently higher accuracy
than its four peers. This further verifies the validation and higher performance of CSVH in atrial
hypertrophy diagnosis. Moreover, by comparing Figures 7 and 8 with Table 4, we observe that CSVH
and TWSVM are less affected by imbalanced training data than the other three approaches. The reason
for this is that CSVH and TWSVM construct two characterized hyperspheres and two crossing
hyperplanes, respectively, for the two classes. Thanks to the customization to the individual class,
these models can flexibly adapt to the change in class size. MVSVM also generates two crossing
hyperplanes for the two classes; however, its model formulation is implemented by solving eigenvalue
problems. Compared with CSVH and TWSVM, which solve quadratic optimization problems,
MVSVM'’s solutions are not as stable as those of CSVH and TWSVM. As for SVM, it constructs
a hyperplane with the margin between two classes. An imbalance of the two sides would attract the
hyperplane away from the central sites of the margin, which would reduce the width of the separation
of the hyperplane and affect the classification accuracy.

The standard deviations are listed in Table 7, and it can be observed that the CSVH is more
stable than the other classifiers. It can be observed from Table 7 that CSVH is more stable than other
SVM-based methods.
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Table 7. The standard deviations of the classifiers on T1-T8.

Dataset NN1 SVM MVSVM TWSVM CSVH
T1 3.1 4.2 39 4.0 3.2
T2 2.8 41 3.2 3.5 3.0
T3 37 3.8 37 4.5 27
T4 3.3 4.0 43 4.1 3.6
T5 3.6 4.2 29 44 37
T6 2.6 4.0 3.4 3.6 3.2
17 3.7 3.9 3.3 4.0 2.8
T8 3.8 4.6 3.7 3.8 3.6

Finally, we will provide a brief discussion of time complexity. We denoted the size of a dataset as
N, and supposed the size of each class as N/2. CSVH’s time consumption was then 2-O((N/ 2)3), which
is consumed in executing two quadratic optimization problems. TWSVM and MVSVM were of the
same time complexity as CSVH. SVM consumed high cost with O(N3), and NN2’s time consumption
was unexpected because it depends on many factors, including the structure of the network (number
of layers and neurons) and the termination condition (using pre-specified iteration times or an error
threshold), among others. Taking both the performance and cost into consideration, CSVH is more
desirable than its competitors.

5. Conclusions and Ongoing Work

Computer-aided diagnosis for atrial hypertrophy using sensor data monitored from medical
sensors is a challenging problem owing to the absence or poor quality of training data and the confused
difference between the healthy subjects and patients. For this reason, this paper proposed a new atrial
hypertrophy diagnosis method based on characterized support vector hyperspheres (CSVH), which
generates two hyperspheres for the two classes. The patient class hypersphere is characterized by a
weighted model formulation, with the aim of taking the diversity of patient instances into consideration.
The health class hypersphere is characterized by the furthest distance to the patient class, with the
aim of achieving the maximum separation from the patient class. Based on the two hyperspheres,
membership functions are defined. If a query is rejected by the two classes, it is labelled according to the
information of the outliers and the overlapping-region data. The balance coefficient is parameterized
adaptively. The experimental results demonstrate the higher performance of CSVH over its peers
on real atrial hypertrophy datasets and its competitive behavior in common classification tasks in
comparison to state-of-the-art methods. Techniques for combining Bayesian networks [36] with CSVH
are under development to integrate the prior knowledge of medical experts, and work to develop
some techniques such as ensemble or information fusion to further improve accuracy is also ongoing.
We will also study the distribution of atrial hypertrophy datasets and study how to show or visualize
the high dimensional distribution of the atrial data. Refining CSVH details and extending CSVH to
solving multi-classification problems is also work that will be concentrated on in the future.
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