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Visual tracking is one of the most important components in numerous applications of computer vision. Although correlation filter
based trackers gained popularity due to their efficiency, there is a need to improve the overall tracking capability. In this paper, a
tracking algorithm based on the kernelized correlation filter (KCF) is proposed. First, fused features includingHOG, color-naming,
and HSV are employed to boost the tracking performance. Second, to tackle the fixed template size, a scale adaptive scheme is
proposed which strengthens the tracking precision. Third, an adaptive learning rate and an occlusion detection mechanism are
presented to update the target appearance model in presence of occlusion problem. Extensive evaluation on the OTB-2013 dataset
demonstrates that the proposed tracker outperforms the state-of-the-art trackers significantly. The results show that our tracker
gets a 14.79% improvement in success rate and a 7.43% improvement in precision rate compared to the original KCF tracker, and
our tracker is robust to illumination variations, scale variations, occlusion, and other complex scenes.

1. Introduction

Visual tracking is a challenging topic in the computer vision
for its various applications in video surveillance, automatic
driving, and medical fields. The aim of tracking is to predict
target’s position in video sequences, given its location in the
first frame. Despite the fact that great progress has beenmade
in recent years, designing a fast and efficient tracking is still
difficult due to many reasons [1] like illumination change,
occlusions, deformations, and scale variations.

In general, tracking algorithms can be divided into
generative tracking and discriminative tracking. Generative
tracking [2, 3] focuses on learning a target appearance model
and it locates the target by searching the region that is most
similar to the appearance model. It does not require a large
dataset for training. However, search region is limited around
the present position of target. Discriminative tracking [4, 5]
addresses visual tracking as a classification problem. It learns
from target and background and predicts region as target or
background. It generally requires a large dataset to achieve
good performances. Although great progress has been made

in the two categories of tracking algorithms, it remains a
challenging task to generalize the target appearance model
from a limited set of training samples. Recently, correlation
filters (CF) [6] have made huge success in tracking due
to their speed and localization accuracy. It is designed to
produce high peaks for a given target in the frame and low
or no peaks for nontarget. Henriques et al. [7] proposed the
CSK tracker to explore the structure of the circulant patch
to enhance the classifier by the augmentation of negative
samples, which adopt the gray feature into the visual tracking.
To further boost the performance of CSK tracker, Danelljan
et al. [8] adopt the color-naming feature into the visual
tracking task, which is a powerful feature for the color objects.
Based on CSK, Henriques et al. [9] introduced the kernelized
correlation filter (KCF) into the tracking application and
adopted theHOG feature instead of rawpixel to improve both
the accuracy and robustness of the tracker.

Although the above-mentioned trackers achieved the
appealing results, three important aspects mainly limit their
accuracy and robustness. First, the trackers apply one kind of
feature for tracking. Single feature has its limitation dealing
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Inputs:
x: training image patch;
y: regression target;
z: test image patch;
p0: initial target position;

Outputs:
p𝑖: detected target position;

Training stage:(1) Compute the Gaussian kernel correlation of 𝑥 with itself:
kxx using (3);(2) Compute coefficient �̂� using (2);
Position Detection:(3) Compute the response f(z) using (4);(4) Find the target position p𝑖 by maximizing f(z);
Model Online Update:(5) Update the template using the fixed learning rate using
(5).

Algorithm 1: The KCF algorithm.

with various changes in tracking. To handlemore challenging
problems, fused features [10–13] are used to tackle with
different target variations. So we use fused feature to improve
the robustness of the tracker. Second, these trackers use
the fixed template size, which is unable to solve the scale
variations. To solve the scale change issue, we sample the
target with different scales and resize them into a fixed size.
Third, learning rate is fixed inmost of the existing correlation
filters [14]. In this paper, we proposed an adaptive learning
rate to track the target and give an occlusion detection
mechanism.

Our contributions in this work can be summarized as
follows. First, fused features are used, including HOG, color-
naming, and HSV to further boost the tracking performance.
Second, we extend the KCF tracker with the capability of
handling scale changes by using a scale adaptive scheme,
which can strengthen the tracking precision. Third, we
present an adaptive learning rate and an occlusion detection
mechanism to update the target appearance model in pres-
ence of occlusion problem. Finally, the competitive results of
OTB-2013 demonstrate that our proposed approach achieves
performance gains in accuracy and robustness, compared to
state-of-the-art trackers.

The rest of this paper is organized as follows. Section 2
describes the KCF algorithm. Section 3 presents our pro-
posed tracking algorithm. Section 4 describes the experiment
results from OTB-2013 dataset. Finally, Section 5 concludes
the whole paper.

2. The KCF Algorithm

The KCF tracker achieves the fastest and most satisfying per-
formance among the recent top-performing trackers and its
principle is simple. In the following, we briefly introduce the
KCF tracker. The overall tracking procedure is summarized
into Algorithm 1. More details can be found in [9].

The KCF tracker casts the tracking problem as a classifi-
cation problem.The classifier 𝑓(𝑥) = ⟨𝜙(𝑥𝑖), 𝑤⟩ is trained on

a𝑀×𝑁 image patch 𝑥 centered around the target.The patch
is twice larger than the size of the target.TheKCF tracker uses
a circulant matrix to learn all the possible shifts of the target;
the cyclic shift versions 𝑥𝑖 are considered as training samples,
where 𝑖 ∈ {0, 1, . . . ,𝑀 − 1} × {0, 1, . . . , 𝑁 − 1}. The matching
score 𝑦𝑖 ∈ [0, 1] is generated by a Gaussian function, and the
classifier is trained by minimizing the ridge regression error:

𝑤 = argmin
𝑤

∑
𝑖

⟨𝜙 (𝑥𝑖) , 𝑤⟩ − 𝑦𝑖2 + 𝜆 ‖𝑤‖2 , (1)

where 𝜙(𝑥) is the mapping function to a Hilbert space and𝜆 ≥ 0 is the regularization parameter controlling the model
simplicity.

Defining the kernel 𝜙𝑇(𝑥)𝜙(𝑥) = 𝑘(𝑥, 𝑥), the solution𝑤
can be derived as 𝑤 = ∑

𝑖
𝛼𝑖𝑘(𝑥, 𝑥). �̂� can be obtained from

�̂� = 𝑦
�̂�𝑥𝑥 + 𝜆 , (2)

where 𝑘𝑥𝑥 is a vector whose 𝑖th element is 𝑘(𝑥𝑖, 𝑥). “̂ ” denotes
the Discrete Fourier Transform (DFT).

For an image datawith 𝑐 feature channels, a concatenation𝑥 = [𝑥1; . . . ; 𝑥𝐶] can be constructed, and the kernel
correlation 𝑘𝑥𝑥 can be computed with element-wise products
in the Fourier domain. Thus, we have

𝑘𝑥𝑥 = exp(− 1𝜎2 (||𝑥||2 + 𝑥2

− 2𝐹−1( 𝐶∑
𝑐=1

𝑥
𝑐
⊙ 𝑥∗
𝑐
))) ,

(3)

where ⊙ denotes the operator of element-wise products, and𝑐 is the index of the feature channels.
During the tracking stage, a𝑀×𝑁 candidate image patch𝑧 is cropped out in the new frame.Thematching score of 𝑧 can

be evaluated via

𝑓 (𝑧) = F
−1 (�̂� ⊙ �̂�𝑥𝑧) , (4)

where 𝑓(𝑧) is the matching score for all the cyclic shift
versions of 𝑧, the position of the target is estimated by finding
the highest score, and 𝛼 and 𝑥 are learned coefficients and
target appearance model.

During the update stage, the coefficient 𝛼 and the target
appearance model 𝑥 should be updated via

�̂�𝑡 = 𝜂�̂�𝑡 + (1 − 𝜂) �̂�𝑡−1
�̂�𝑡 = 𝜂𝑥𝑡 + (1 − 𝜂) �̂�𝑡−1, (5)

where 𝜂 is a fixed learning rate; it is usually set as 0.02.

3. The Proposed Tracking Algorithm

In this section, we describe our tracking process based on the
kernelized correlation filters in detail. The overall tracking is
summarized into Algorithm 2.

Our tracker begins with the initial bounding box, which
locates the position of the tracking target in the first frame.
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Inputs:
x: training image patch;
y: regression target;
z: test image patch;
p0: initial target position;
s0: initial target scale;

Outputs:
p𝑖: detected target position;
s𝑖: detected target scale;

Training stage:(1) Compute the Gaussian kernel correlation of x with
itself: kxx using (3);(2) Compute coefficient �̂� using (2);
Position Detection:(3) Compute the response f(z) using (4);(4) Find the target position p𝑖 by maximizing f(z);
Scale Prediction:(5) Sample the new patch z𝑘𝑖 based on size k𝑖s𝑡 and
resize it to s𝑡;(6) Find the target scale k𝑖s𝑡 by computing the response
f̂(z𝑘𝑖 ) with (6);
Model Online Update:(7) Update the template using (5) according to
occlusion detection strategy.

Algorithm 2: The proposed tracking algorithm.

Then it extracts the fused feature and trains the RLS classifier
to get a position correlation filter. And it locates the target by
finding the maximum response of the correlation filter. Next
we train another RLS classifier to get a scale correlation filter
with multi-scale image patches and fused features. And get
the optimal scale of the target in the new frame by finding
the maximum response of the correlation filter. In the whole
process, we update the filter template according to whether
the target is occluded or not.

In the following subsections, we will introduce our
proposed strategies: feature fusion, scale adaptive scheme,
and model online update scheme.

3.1.The Feature Fusion. In recent years visual tracking is con-
sidered as a classification problem, where the goal is to distin-
guish target from local background. It requires extracting the
best features that can separate target from background.

Since the KCF tracker only used the HOG features,
we employ fused features to boost the tracking perfor-
mance. Because only the dot product and vector norm are
needed in nuclear related functions, the various features of
the target can be considered as a multidimensional vector𝑥 = [𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝐶], according to the property of multi-
channel KCF algorithm; see (3); HOG, CN, andHSV features
are employed to get the fused feature.

Histogram of Gradient (HOG) is one of the most pop-
ular features in visual tracking. The HOG features are 32-
dimensional, including 18 contrast sensitive orientation chan-
nels, 9 contrast insensitive orientation channels, 4 texture
channels, and 1 all zeros channel.TheHOG features are robust
to illumination and deformation.

(31)

(11)
CN

HOG

HSV
(3)

Feature

fusion
Fused feature

(45)

· · ·

· · ·

· · ·

· · ·

Figure 1: Process of the feature fusion.

Color-naming is a low dimensional adaptive extension of
color attributes, which is the linguistic color label assigned by
human to describe the color. RGB color is mapped to 11 basic
color names, black, brown, gray, green, orange, pink, purple,
red, blue, white, and yellow, which usually contains important
information about the target.

HSV is also a color space; it includes hue, saturation, and
intensity information. It is more in accord with human visual
characteristics. HSV color space has better performance than
RGB color space in visual tracking.

The three features are complementary to each other. We
consideredHOG features for gradient details, CN color space
for color information, and HSV space for more detailed
information. The HOG features are 31-dimensional (except
the all zeros channel), the CN features are 11-dimensional,
and the HSV features are 3-dimensional. Three features are
employed to get the 45-dimensional integrated features, so
the channel of the features is 45 in (3). Figure 1 shows the
process of the feature fusion.

The response maps of single feature and fused feature are
shown in Figure 2. As we can see the response map of the
single feature is indistinguishable with much noise around
the center but the response map of fused feature is more
discriminative, which enhances the response area where all
three maps have high confidence.

3.2. The Scale Adaptive Scheme. In visual tracking, scale
change is one of themost common challenging aspects, which
influences the tracking accuracy.TheKCF tracker is unable to
deal with the scale changes. In this section, we proposed an
effective scale adaptive scheme.

For most tracking approaches, the template size of the
target is fixed. In order to handle the scale variations, we
proposed enlarging the scale space from the countable integer
space into uncountable float space. Suppose that the template
size is 𝑠𝑡 in the original image space, and we define a scaling
pool 𝑆 = {𝑘1𝑠𝑡, 𝑘2𝑠𝑡, . . . , 𝑘𝑘𝑠𝑡}. For the current frame, we first
sample 𝑘 patches of the size in 𝑆. Note that the operation
in the kernel correlation function needs the data with the
same dimensions; we resize these patches by using the
bilinear interpolation to the size of the initial target 𝑠𝑡 before
extracting the features. The process is shown in Figure 3.

Then we train another RLS classifier 𝑅𝑡 to get a scale
correlation filter onmulti-scale image patches to estimate the
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Figure 2: Response map of single feature and fused feature.
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Figure 3: The scale adaptive scheme.

target scale. The training process of classifier 𝑅𝑡 is similar
to classifier 𝑅𝑐 in KCF tracker and the target scale in a new
frame is computed by finding the maximum response of the
correlation filter.

argmax𝐹−1𝑓 (𝑧𝑘𝑖) , (6)

where 𝑧𝑘𝑖 is the sample patch; its size is 𝑘𝑖𝑠𝑡.
We should note that the target displacement is implied in

the responsemap, so the final target position should be tuned
by the scale factor 𝑘𝑖.
3.3. Model Online Update Scheme. During the visual tracking
the appearance of the target often changes, so it is necessary to
update the target appearancemodel to adapt to these changes
[15, 16]. Because of appearance variations, training samples of
the tracked targets collected by the online tracker are required
for updating the tracking model. However, this often leads
to tracking drift problem because of potentially corrupted
samples, contaminated/outlier samples resulting from large
variations (e.g., occlusion), which has been shown in [17].
And in most of the existing correlation filter based trackers,

the learning rates are usually fixed. Fixed learning rate limits
the tracker’s ability to adapt to quick changes of appearance,
especially in the presence of occlusion. So we proposed a
novel model online update scheme to track the target.

When the target is occluded, the appearance model
should not be changed; the learning rate is set to 0. If the target
is not occluded, the target appearancemodel will update with
the normal learning rate. The learning rate is set as follows:

𝜂 = {{{
0.02, without occlusion

0, occlusion. (7)

The strategy to judge whether the target is occluded is as
follows:

(1) According to (4), we obtain the target’s position
posmax(𝑧) by maximizing 𝑓(𝑧);

(2) We get the number of the positions, Num, whose
responses satisfy the relationship 𝑓(𝑧) > 𝛽1 ⋅ 𝑓max(𝑧);

(3) Then we judge whether the target is occluded by
making a comparison between Num and 𝛽2 ×width×height,
where width and height are the size of the sample.

If Num is larger than 𝛽2 × width × height, then the target
is occluded; the learning rate is set to 0. If Num is smaller,
the target is not occluded; the target appearance model will
update with the normal learning rate 𝜂 = 0.02.

Suppose that the target in the presence of occlusion can
be considered to mix with a Gaussian noise. Because the
occlusion area also does circular shift operation, when it
performs convolution with the classifier model parameter 𝛼
(see (4)), the response values around𝑓max(𝑧) increase and the
distribution of 𝑓(𝑧) tends to be smooth.

As shown in Figure 4, (b) and (d) are the response maps
of the tracking target in (a) and (c), respectively. The brighter
pixel corresponds to the greater probability value; we can see
that when the target is not occluded the responsemap of𝑓(𝑧)
is discriminative andwhen the target is occluded the response
map is vague. So the distribution of𝑓(𝑧) is consistentwith our
hypothesis and the occlusion detection strategy is reasonable.

4. Experiment

In order to evaluate the overall performance of the proposed
tracker, first, we evaluate the proposed tracker in the way
of OTB-2013 dataset [18]. Second, we compare our tracker
with the state-of-the-art trackers. Finally, we provide the
qualitative analysis of our approach with existing tracking
methods.

4.1. Experiment Settings. We implemented the proposed
tracker by using MATLAB 2015A on Intel i5-5200U CPU,
@2.20GHz processor with 8GB RAM. The parameters set-
tings are as follows: 𝜎 used in Gaussian function is set to
0.5; the cell size of HOG is 4 × 4. The scale pool 𝑆 ={0.98, 0.99, 1.0, 1.01, 1.02}. In the occlusion detection strategy,
the parameter 𝛽1 = 0.5, 𝛽2 = 0.08, and the learning rate𝜂 = 0.02.
4.2. The OTB-2013 Dataset. The OTB-2013 dataset contains
50 fully annotated sequences. These sequences include many
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(a) (b) (c) (d)

Figure 4:Theoriginal frames and responsemapof𝑓(𝑧), respectively, (a) targetwithout occlusion; (b) responsemapof𝑓(𝑧)without occlusion;
(c) target with occlusion; (d) response map of 𝑓(𝑧) in the presence of occlusion.

Success plots of OPE - fast motion (17)

Our [0.529]

Struck [0.462]

KCF [0.460]

TLD [0.417]

CXT [0.388]

CN [0.373]

MIL [0.326]

CSK [0.316]

Our [0.542]

KCF [0.494]

Struck [0.428]

CN [0.414]

TLD [0.399]

CSK [0.369]

CXT [0.368]

MIL [0.311]

Our [0.627]

KCF [0.514]

CN [0.425]

Struck [0.413]

TLD [0.402]

CXT [0.372]

CSK [0.365]

MIL [0.335]

Our [0.574]

KCF [0.496]

CN [0.441]

Struck [0.432]

TLD [0.420]

CXT [0.418]

CSK [0.386]

MIL [0.350]

Our [0.635]

KCF [0.551]

Struck [0.459]

TLD [0.457]

CXT [0.427]

CN [0.410]

MIL [0.382]

CSK [0.349]

Our [0.533]

KCF [0.427]

Struck [0.425]

TLD [0.421]

CXT [0.389]

CN [0.384]

CSK [0.350]

MIL [0.335]

Our [0.525]

KCF [0.497]

Struck [0.433]

CN [0.410]

TLD [0.404]

CXT [0.369]

CSK [0.305]

MIL [0.282]

Our [0.622]

KCF [0.534]

CN [0.434]

Struck [0.393]

TLD [0.378]

MIL [0.369]

CSK [0.343]

CXT [0.324]

Success plots of OPE - scale variation (28) Success plots of OPE - motion blur (12) Success plots of OPE - deformation (19)

Success plots of OPE - illumination variation (25)
1

Success plots of OPE - occlusion (29) Success plots of OPE - out-of-plane rotation (39) Success plots of OPE - out of view (6)

10 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1 0.2

Overlap threshold

0

0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Su
cc

es
s r

at
e

10 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1 0.2

Overlap threshold

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Su
cc

es
s r

at
e

10 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1 0.2

Overlap threshold

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Su
cc

es
s r

at
e

10 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1 0.2

Overlap threshold

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Su
cc

es
s r

at
e

10 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1 0.2

Overlap threshold

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Su
cc

es
s r

at
e

10 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1 0.2

Overlap threshold

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Su
cc

es
s r

at
e

10 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1 0.2

Overlap threshold

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Su
cc

es
s r

at
e

10 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1 0.2

Overlap threshold

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Su
cc

es
s r

at
e

Figure 5: Success plots of videos with 8 different attributes for the top 8 trackers (the number in the title indicates the number of sequences).

popular sequences used in the online tracking literature
over the past several years; these sequences are annotated
with the 11 attributes including illumination variation, scale
variation, occlusion, deformation, motion blur, fast motion,
in-plane rotation, out-of-plane rotation, out-of-view, back-
ground clutters, and low resolution.

4.3. Performance Evaluation. To analyze the performances of
different algorithms, the three evaluation metrics are used:
Center location error (CLE), distance precision (DP), and
overlap precision (OP). The first metric, CLE, is computed
as the average Euclidean distance between the ground-truth
and the estimated center location of the target. The second
metric, DP, is computed as the percentage of frames in the
sequence where the center location error is smaller than a
certain threshold. The DP values are at a threshold of 20
pixels. The third metric, OP, is defined as the percentage of

frames where the bounding box overlap surpasses a threshold𝑡 ∈ [0, 1]. The OP values are at a threshold of 0.5, which
correspond to the PASCAL evaluation criteria.What is more,
the precision plots based on the location error metric and the
success plots based on the overlap metric are adopted.

Three kinds of evaluation strategies are performed:
one pass evaluation (OPE), temporal robustness evaluation
(TRE), and spatial robustness evaluation (SRE). TRE ran-
domizes the starting frame and runs a tracker through the rest
of the sequences, and SRE randomizes the initial bounding
boxes by shifting and scaling.

4.4. Experiment 1: Attribute Based Comparison. We evaluate
our tracker for eight main challenging attributes. These
attributes are used for analyzing the performance of trackers
in different aspects. The success rate of 8 tackers on each
attribute is shown in Figure 5. In the experiments, we can
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Figure 6: Precision plots and success plots of OPE, TRE, and SRE for the top 8 trackers.

observe that our tracker achieves the best performance
among the 8 trackers; our tracker performs well with overall
success rate in fast motion (52.9%), scale variation (53.3%),
motion blur (52.5%), deformation (62.2%), illumination
variation (54.2%), occlusion (62.7%), out-of-plane rotation
(57.4%), and out-of-view (63.5%) while the KCF tracker
achieves success rate of 46%, 42.7%, 49.7%, 53.4%, 49.4%,
51.4%, 49.6%, and 55.1%, respectively. In summary, our
tracker achieves the best results in almost all the attributes.

4.5. Experiment 2: Comparison with the State-of-the-Art
Trackers. Figure 6 illustrates a comparisonwith other 7 state-
of-the-art methods on the OTB-2013 dataset. The 7 trackers
are KCF [9], Struck [19], CN [8], TLD [20], CXT [21], CSK
[6], and MIL [22]. We use precision plots and success plots
on the term of OPE, TRE and SRE over all 50 sequences.
From the success plots of OPE, we can see that our tracker
achieves the best performance with average overlap threshold
0.590 which gets a 14.79% improvement upon KCF (0.514).
From the precision plots of OPE, our tracker (0.795) gets
a 7.43% improvement upon KCF (0.740). Since our model
is based on KCF, the results show the robustness of our

tracker. To give sufficient comparison results, we also show
the overall performance on TRE and SRE. For the results
of TRE, our tracker gets an 11.15% of success plot and
6.85%of precision plot improvement, respectively, uponKCF.
The results on TRE show the robustness of our tracker on
initialization. For the results of SRE, comparing to KCF, our
tracker gets a 15.98% of success plot and 12.74% of precision
plot improvement, respectively, upon KCF.

4.6. Experiment 3: Qualitative Analysis. To evaluate the per-
formance of our tracker, we run other three state-of-the-
art trackers based on correlation filters (KCF, CN, and
CSK) on 9 challenging sequences in Figures 7, 8, and 9.
These sequences include three attributes: scale variation,
illumination variation, and occlusion, which can validate the
effectiveness of our tracker.

To validate the performance of our proposed scale predic-
tion strategy, we choose three scale variation data sequences.
These sequences from top to down are Boy, Dudek1, and
Carscale, respectively.We compare our trackerwithCSK,CN,
and KCF. These three trackers use the fixed template size,
while our tracker uses adaptive scale to track. The result is
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Figure 7: The results on three scale variation sequences.
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Figure 8: The results on three illumination variation sequences.

given in Figure 7. As we can see, our tracker performs well in
these three sequences (Boy, Dudek1, and Carscale). The CN
tracker drifts in the presence of abrupt motion (Boy). The
KCF and CSK trackers perform well in Boy sequences, but
cannot estimate scale changes (Dudek1 and Carscale). Our
tracker is able to estimate scale changes. So the result shows
the effectiveness of our adaptive scale scheme.

To validate the effectiveness of the fusion of features, we
compare our tracker on three illumination variation data
sequences. These sequences from top to down are Coke,
Lemming, and Soccer, respectively. We compare our tracker
with CSK, CN, and KCF; these three trackers only use single
feature. CSK only employs the raw pixels, CN uses color-
naming as feature, and KCF adopts HOG feature. Our tracker
uses the fused features including HOG, color-naming, and
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#0053 #0085 #0098

#0042 #0058 #0078

Our
CSK

CN
KCF

Figure 9: The results on three occlusion sequences.

HSV. The result is shown in Figure 8. As we can see, our
tracker performs well in handling illumination variation
(Coke, Soccer, and Lemming) due to the representation of
integrated features. However, the KCF and CSK trackers drift
when target objects undergo illumination (Coke and Soccer).
And the KCF, CN, and CSK trackers do not redetect targets in
the case of tracking failure (Lemming). In summary, the fused
features are effective and achieve promising tracking results.

To validate the effectiveness of our proposed adaptive
learning rate method, we compare our tracker with CSK,
CN, and KCF. For fair comparison, a fixed learning rate 0.02
is used in these three trackers, while our tracker uses an
adaptive learning rate to track. We choose three sequences
with the attribute of occlusion. These sequences from top to
down are Football, Jogging-1, and Jumping, respectively. The
result is shown in Figure 9. Our tracker performs well in all
these sequences. Other trackers fail during heavy occlusion,
because they use a fixed learning rate and cannot update
the learning rate in time. And they cannot redetect the
object in the case of tracking failure (Jogging-1).This suggests
occlusion detection strategy andmodel online update scheme
in our tracker play an important role in visual tracking.

Overall, our tracker performs well on these challenging
sequences, which can be attributed to three reasons. First,
our tracker is learned from fused features rather than single
feature, so it is effective in tracking the targets. Second, due
to the proposed effective scale adaptive strategy, our tracker
is able to estimate target scale. Third, the occlusion detection
strategy based on model online update scheme makes our
tracker perform well when target objects undergo occlusion.

5. Conclusion

In this paper, we proposed a novel tracking algorithm based
on the correlation filter. The fused features including HOG,
color-naming, and HSV are used to boost the tracking
performance. To deal with the scale changes, we proposed
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an effective scale adaptive scheme; it shows its effectiveness
on sequence with scale change. Besides, in order to adapt
to the change of target, we employed a model online update
scheme to update the target appearance model. The experi-
ment results on 50 sequences demonstrate that our tracker
outperforms the state-of-the-art trackers in terms of accuracy
and robustness.
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