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a b s t r a c t 

Human motion recognition is a hot topic in the field of human–machine interface research, where human 

motion is often represented in time sequential sensor data. This paper investigates human motion recog- 

nition based on feature-selected sequential Kinect skeleton data. We extract features from the Cartesian 

coordinates of human body joints for machine learning and recognition. As there are errors associated 

with the sensor, in addition to other uncertain factors, human motion sequential sensor data usually 

includes some irrelative and error features. To improve the recognition rate, an effective method is to 

reduce the amount of irrelative and error features from original sequential data. Feature selection meth- 

ods for static situations, such as photo images, are widely used. However, very few investigations in the 

literature discuss this with regards to sequential data models, such as HMM (Hidden Markov Model), 

CRF (Conditional Random Field), DBN (Dynamic Bayesian Network), and so on. Here, we propose a novel 

method which combines a Markov blanket with the wrapper method for sequential data feature selec- 

tion. The proposed algorithm is assessed using four sets of open human motion data and two types of 

learners (HMM and DBN), and the results show that it yields better recognition accuracy than traditional 

methods and non-feature selection models. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

Human motion recognition has become a major topic in the

computer vision field [23] in recent years. Interest in this topic is

motivated by the promise of its use in many applications, including

human–robot interaction [34] , content-based video indexing [35] ,

video surveillance, and robotics [36,37] , among others [1,4] . 

In the present study we used Kinect to capture motion data be-

cause of its powerful capabilities and low price. Kinect is the of-

ficial name of the X-Box 360 somatosensory peripheral. It is com-

prised of a set of RGB color cameras, an infrared transmitter, an in-

frared CMOS camera, and a microphone array for audio input. We

extracted 3D coordinates of 20 joints of the human skeleton from

combined color and depth images using Kinect for Windows SDK

[22] . 

Experimental results have shown that humans can recognize

different activities by detecting only a few points of light attached

to the joints of the human body. Therefore, it seems that the po-

sition, orientation, and motion of joints contain enough charac-
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eristic data for computer recognition of such activities. Further-

ore, good performance can be achieved using only the spatial

istribution of the joints [3] . More features such as distance, an-

le, velocity and angular velocity can be derived from sequences

f 3D joint positions. In this way we can obtain a large feature

et that includes 213 dimensions. We can also represent human

otion using these large-dimension sequential data. The greater

he number of features, the longer the time required to analyze

hese features and train the model. Large numbers of features,

hich include irrelative and error features, can cause a reduction

n recognition accuracy [1] , leading to a more complex model with

ower marketing appeal. Therefore, it is necessary to select fea-

ures from the sequential feature data set. Feature selection can

liminate irrelevant or redundant characteristics, and thus reduce

he number of features to improve the accuracy of the model and

horten its running time. In addition, the selection of truly rele-

ant features can simplify the model and facilitate a better under-

tanding of the data processing. Human motion recognition thus

ecomes a classification problem, after representation has been

pplied. 

Feature selection methods are roughly divided into two classes:

lter and wrapper [14,15] . The wrapper method uses a predictive

odel to score feature subsets, while the filter method uses a

http://dx.doi.org/10.1016/j.patrec.2016.12.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2016.12.008&domain=pdf
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roxy measure, instead of the error rate, to score a feature subset

29] . In our case, a straight-forward approach is to use the wrapper

ethod. We can validate a combination set of features by carry out

earning and classification phases. The method will determine an

ptimal subset for classification; however, the computational cost

s expensive. The filter method is not needed to perform the learn-

ng and classification phases, thus it does not take as much time

or selection; however, it cannot guarantee that the selected fea-

ure subset is the best for classification. Both of the above methods

ave been widely adapted to the static situation, but they cannot

upport sequential data continuously. Following the accumulation

f time-slice data, we do not have an appropriate feature selection

ethod to deal with sequential data, unless we evaluate the entire

eature combination set using the wrapper method. 

In this paper, we propose a novel method for feature selection

ased on a Markov blanket combined with the wrapper method

o overcome this problem. Different to traditional static situation

ethods, in our approach, the feature selector has to support the

equential data continuously, and determine the subset feature

ombination that is best for classification. We select these features

ia the conditional independence relation using a Markov blanket—

etermined from all of the sequential feature data following time-

lice accumulation and validate whether the subset feature is opti-

al/minimal using the wrapper method. 

Richer structures such as Hidden Markov Models (HMMs) [29] ,

onditional Random Field (CRF) [24–26] and the Dynamic Bayesian

etwork (DBN) [27] have been explored for use in sequential data

epresentation, such as human motion recognition. This paper ap-

lied the HMMs and DBN learner with four sets of open human

otion data to validate the proposed method. The contribution of

he paper has the following points: 

1. We propose a feature selection algorithm based on a Markov

blanket combined with the wrapper method, which is named

as the SFA-MB ( S equential data F eature selection A lgorithm

based on M arkov B lanket) algorithm. It solves the problem of

sequential data feature selection. The algorithm not only con-

siders conditional independence testing between the features

via the Markov blanket, but also deals with the recognition ac-

curacy of the learner by using the wrapper method. 

2. If we use all the time-slice features in the sequential data to

build a large Bayesian network, we can simply select the best

feature set by a Markov blanket. However, the selected feature

from each time slice is different, and determining how to fuse

the selected feature based on a natural approach is a challenge.

In this paper we solve the problem, and prove that the method

is reasonable in both academic and experimental ways. 

3. We improve the recognition accuracy based on our proposed

algorithm using HMMs and DBNs learners. We validate its ef-

fectiveness through four sets of open human motion or gesture

data, such as the MSR Action3D data set [22] , ChaLearn Gesture

data [28] , and so on. 

. Related works 

Human actions can usually be represented by sequential data

atterns. The k -nearest neighbors method uses the distance be-

ween the representation of an observed motion and a training set.

he most common label among the k -closest training sequences is

hosen as the classification criterion [4] . Support vector machines

SVMs) learn a hyperplane in the feature space that is described by

 weighted combination of support vectors. Schuldt et al. [5] used

 local SVM approach. Lv & Nevatia [11] combined SVMs with lo-

al representations of fixed lengths. The K-Nearest Neighbors (K-

N) and SVM approaches are static models representing human
otion, so we use HMMs to represent human motion in a more

atural way. 

Relevance vector machines (RVMs) are probabilistic variants of

VMs. Oikonomopoulos et al. [7] used RVMs for motion recognition

y measuring the dynamic time warping (DTW) distance between

wo sequences. This approach takes into account the distance be-

ween corresponding frames. Veeraraghavan et al. [13] used DTW

or sequences of normalized shape features in a nonparametric

odel. Yao & Zhu [9] introduced dynamic space–time warping, in

hich, in addition to the temporal dimension, sequences are also

ligned according to image position and scale. 

HMMs use hidden states that correspond to different phases in

he performance of a motion. The use of graphical models for hu-

an motion recognition is not a new idea. Yamato et al. [29] clus-

ered grid-based silhouette mesh features to form a compact code-

ook of observations and then trained HMMs for the recognition

f different tennis strokes. Lu & Little [15] used a hybrid HMM,

n which one process denotes the closet shape–motion template

nd the other models the position, velocity, and scale of the per-

on in the image. Lv & Nevatia [11] used 3D joint locations, but

onstructed a large number of action HMMs, each of which used a

ubset of all joints. This resulted in a large number of weak classi-

ers. They used AdaBoost to form the final classifier [6,8,10] . 

Conditional random fields (CRFs) use a plurality of overlapping

eatures. Sminchisescu et al. [12] used a linear chain CRF in which

he state dependency was of the first order. In the present study,

e extracted features from skeleton data for representation using

MMs. 

In this paper, we use the richer graphical structure of HMM and

BN to represent human motion sequential data, and select effec-

ive features from the original feature set to improve the recogni-

ion accuracy. 

The feature set of the above graphical models for learning is

anually selected by an expert. Few studies have focused on fea-

ure selection in HMMs. The wrapper method has very high com-

utation costs and is not feasible for large data sets. Here we

ocus on a modification of the filter method, a Markov blanket

16,17] . The Markov blanket of a target variable contains a mini-

al set of variables for which all other variables are conditionally

ndependent of the target variable. However, Bayesian networks

19,20] are not directly related to time, so DBNs are then used to 

odel temporal processes. The traditional Markov blanket method

16,17] cannot deal with sequential data models such as HMMs and 

BNs. Most Markov blanket methods represent features and target

ariables as a static Bayesian network, for which it is difficult to

nd the Markov blanket of a target variable for HMM and DBN

earning. Pei et al. [18] proposed a segmental booting method for

MM feature selection. 

The basic idea of our approach is to translate the sequen-

ial feature data into a static Bayesian network, and select the

ptimal feature set using a Markov blanket based on the static

ayesian network. However, the problem is then determining the

arget variable of the Markov blanket. We set human motion la-

els as the target variable, and calculate the conditional indepen-

ence between the target variable and an irrelative feature candi-

ate based on the Markov blanket candidate. Different to the tradi-

ional method, we do not gather all of the time slice data to deter-

ine the Markov blanket. We find that the sequential data can be

lassified just by the part of the data, and it is unnecessary to clas-

ify the sequential data using all of the time-slice data. As such, we

ccumulated the sequential data following time-slice addition, and

uilt a Bayesian network and selected the Markov blanket once a

ew time-slice dataset was added. The selected feature was evalu-

ted using the wrapper method, and the feature set of the entire

ime-slice dataset that had the best score was used as the final,

ptimal feature set. 
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S(t-1,0)

S(t-1,2)

S(t-1,1)

...

S(t,0)

S(t,2)

S(t,1)

...

S(t+1,0)

S(t+1,2)

S(t+1,1)

...

... ......

...

DD Dt-1 t t+1

...

time slice 0 to time slice T

Fig. 1. A example of sequential data. 

Fig. 2. Example of a BN illustrating the Markov blanket for target variable Tar . 
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3. Feature representation 

A distinguishing feature vector that adequately describes a mo-

tion is critical for motion recognition systems. Here we extracted

3D coordinates for 20 human joints from color and depth images

from Kinect for Windows SDK. These 20 joints constituted a di-

agram of the human skeleton. The Cartesian coordinates, the Eu-

clidean distance between the midpoint of hip and each joint, ve-

locity, angle, and angular velocity were chosen as motion features. 

Assuming that the 3D coordinates of the hip midpoint at time t

are p 0 t ( x 0 t , y 0 t , z 0 t ) and the 3D coordinates of joint i at time t are

p it ( x it , y it , z it ), then the Euclidean distance between the midpoint of

the hip and joint i is d oi = 

√ 

(x it − x 0 t ) 2 + (y it − y 0 t ) 2 + (z it − z 0 t ) 2

for i = 0 , 1 , 2 , . . . , 19 joints apart from the midpoint of the hip. 

The torso angle was also chosen as a motion feature after

we found that distance features alone do not yield good results.

The right and left elbow angles were also added to the motion

features. We assumed that the 3D coordinates at time t were

p 2 t ( x 2 t , y 2 t , z 2 t ) for the left shoulder, p 9 t ( x 9 t , y 9 t , z 9 t ) for the left

elbow, and p 11 t ( x 11 t , y 11 t , z 11 t ) for the left wrist. The left arm

vector is v 29 = ((x 2 t − x 9 t )(y 2 t − y 9 t )(z 2 t − z 9 t )) and v 119 = ((x 11 t −
x 9 t )(y 11 t − y 9 t )(z 11 t − z 9 t )) . 

Assuming that the angle of the left elbow is �, then cos � =
( v 29 × v 119 ) \ ( | v 29 | × | v 119 | ) . The right elbow angle is the same as

the left. The velocity and angular velocity considers the differ-

ence between two close frames. In this way we can obtain a 213-

dimensional feature vector, which is too large to teach the HMM

for motion recognition. To improve the recognition accuracy, we

need to reduce the number of dimensions of the feature space. 

4. Feature selection 

A feature selection [29] algorithm can be considered as a search

technique for sorting the feature subsets, along with an evaluation

measure which scores the different feature subsets. The simplest

algorithm is an exhaustive search, which tests each possible feature

combination to find the one that minimizes the error rate, but it is

computationally intractable. 

Most of the research regarding these methods have focused on

static data patterns, for example, a static image. However, numer-

ous data patterns need sequential data to be properly represented,

for example, sound data, human action and so on. Of course, we

can use the wrapper method and a searching policy to find a fea-

ture subset that holds a local minimum score. However, as dis-

cussed above, this comes at a large computational cost. Moreover,

current filter methods cannot support sequential data. Different to

static data patterns, following the accumulation of a time slice, a

sentential dataset will grow continuously. As shown in Fig. 1 , a set

of sequential data includes T sets of data vectors D t ( t ∈ T ), and

D t include an N-dimensional vector { S(t, 0) , S(t, 1) , . . . , S(t, n ) } . In

general, the data in every time slice has the same dimension and

attributes. For example, in our research, a data set of each time

slice has 213-dimensional features, but each human action has a

different number within the time slice. In other words, the same

people who perform the same action always generate different se-

quential data. The dimension of the data should be same, 213, but

the number of time slices (we call it time length) is different. Thus,

very few literature reports regarding the filter method for feature

selection can support this kind of data pattern with an appropriate

model. 

4.1. Markov blanket for feature selection 

A Markov blanket is a filter method for feature selection that

does not need learning and classification phases, so it is less ex-

pensive in time and computation costs. The Markov blanket of a
arget feature contains a minimum set of features for which all

ther features are conditionally independent of the target variable.

ur aim was to experimentally determine how Markov blanket

redictors could improve the classification accuracy of sequential

ata. A Bayesian network (BN) [16,20] is a directed acyclic graph in

hich nodes represent variables of a subject of interest, and arcs

etween the nodes describe causal relationships among the vari-

bles. A BN is a compact representation of a joint probability dis-

ribution of domain variables. A Markov blanket is a key concept

f conditional independence in graphic models of BNs. The Markov

lanket of a target feature Tar is the set consisting of the parents of

 , the children of Tar , and features common to the children of Tar .

iven its Markov blanket, a feature is conditionally independent of

ther features [20] . As shown for the BN in Fig. 2 , variables de-

oted in blue color (nodes a, b, c, d, and e) constitute the Markov

lanket for target variable Tar . 

.2. 2TBN-MB 

However, a BN always represents a static situation, for example

 photo image. In other words, if we do not consider the temporal

ttribute of the data, it is easy to represent sequential data in a
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DDt-1 t
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S(t-1,n)

S(t,n-2)

S(t,n-1)

S(t,n)

Target
(Tar)

(Action Label)

Markov Blanket
(MB)

Fig. 3. Markov blanket searching via the Two-Timeslice structure of the sequential 

data. 
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Fig. 4. An illustration of the SFA-MB procedure. 
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N. In this research, our application is human motion recognition.

owever, the sensor data of human motion is spatio-temporal, and

e cannot represent the spatio-temporal sensor data using a static

N. A DBN is a more natural way to represent human motion than

 static BN in this case. Since in a DBN, we always assume that

t any point in time, t, the value of a variable can be calculated

rom the internal regressors and the immediate prior value (time

 − 1 ); as such we often call a DBN as a Two-Timeslice BN (2TBN)

20] . A straight-forward idea is using the 2 TBN to teach the Markov

lanket for feature selection of the spatio-temporal data. 

As show as Fig. 3 and Algorithm 1 , we call the set of data,

 D t−1 , D t } , to be Two-Timeslice data, and the human motion la-

lgorithm 1 Sequential data feature selection lagorithm via a

arkov lbanket based on Two-Timeslice adta (2TBN-MB). 

nput : 

• Target (Tar) → Human motion label; 
• The number of time slices T ; 
• Dataset in each time slice D 1 , D 2 , …, D t ,…, D T ; 
• Whole _ Data = D 1 

⋃ 

D 2 …
⋃ 

D T . 

B_TSFS Algorithm : 

1. Initilization: Segment D into a Two-Timeslice data structure

{ D t−1 , D t } ; 
2. Set Tar to be the target of Markov blanket searching; 

3. Markov blanket MB searching using the HITON algorithm. 

utput : MB to be the selected feature set. 

el is set to be the target ( Tar ) of the Markov blanket. Based on

he HITON algorithm [30] , the Markov blanket should be deter-

ined from the spatio-temporal human motion data. In Fig. 3 , the

egion between two dish cycles indicates a Markov blanket. The

eature set of the Markov blanket is the feature selection result.

sing the selected feature, we perform the classification experi-

ents. Unfortunately, when using this method we cannot obtain

 good result (see Section 5 ). Since human action data is spatio-

emporal data, only a few cases can be represented just by one
et of Two-Timeslice data. Thus, selected features from the Two-

imeslice data based Markov blanket cannot capture complete in-

ormation regarding a human action. We discuss this in detail in

he following section ( Section 5 ). 

.3. SFA-MB 

.3.1. Algorithm description 

To overcome this problem, we propose the SFA-MB method. As

hown in Fig. 4 , we set the human motion label to be the tar-

et (Tar), the number of time slices as T , and one dataset of time

lice data to be D t . Then the entire sequential data are indicated

y the variable D = { D 0 , D 1 , . . . , D t , . . . D T } . At time t, we use the

ataset D 0 , ... ,t and the target Tar to search the Markov blanket MB t 
ased on the HITON algorithm [30] . Using the selected feature set

B t , we perform a wrapper procedure. Different learners should

se a different wrapper method, for example, if we employ the

MM, the wrapper procedure involves HMM parameter learning

nd classification phases based on selected features via the Markov

lanket MB t . Finally, we leave the selected feature set, which holds

he maximum classification rate. The detailed process is shown in

lgorithm 2 . 

With regard to the selected features of the SFA-MB, we find that

n alleged selected feature may be different in each time slice. For

xample, in Fig. 4 , the blue nodes indicate the selected feature of

he SFA-MB. However, although features S (2, 1) , S (3, 1) are selected

n time slice 2 and 3, the same features in the other time slices

ave not been chosen. However, in the sequential data S (., 1) are

ained by the same data source in each time slice. For example,

he position of the right hand. Therefore, we cannot only pick out

ertain features from certain time slices to be the selected feature.

n the SFA-MB, if a certain feature in a certain time slice is se-

ected, we have to leave all of the features in every time slice. In

he above example, we selected the feature S (2, 1) , S (3, 1) , then the

eatures S (., 1) are therefore seen as the selected result. Thus, in the

elected features of the SFA-MB, we left some redundant features,

uch as S (., 1) − S (2 , 1) − S (3 , 1) . An outstanding question is then, will

hese redundant features affect the recognition rate? We will dis-

uss this in the next section. 

The wrapper function in Algorithm 2 is same as Reference [30] .

n Ref. [30] , the author has not given a concrete algorithm about

he wrapper function. For the different learner, it may have differ-

nt algorithm. For example, in the case of the HMMs learner, the

rapper function should have two steps: 1)Training. Based on the

elected feature set, EM algorithm will be performed for the HMMs

arameters estimation. 2)Evaluation. Based on the learned param-
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Algorithm 2 Sequential data feature selection algorithm via a 

Markov blanket (SFA-MB). 

Input : 

• Target (Tar) 
• The number of time slices T ; 
• Data set in each time slice D 1 , D 2 , …, D t ,…, D T ; 
• The entire _ Data = D 1 

⋃ 

D 2 …
⋃ 

D T . 

SFA_MB Algorithm : 

1. Assign: Idea_feature= ∅ ; Idea_t=0; 

Temp_Data= ∅ ;Max_accuracy=0; 

Selected_Features= ∅ ; 
2. FOR t = 1 to T 

3. Temp_Data =Temp_Data 
⋃ 

D t ; 

4. MB(Tar) = FIND-MB(Temp_Data,Tar); 

5. accuracy_rate = Wrapper(Whole _ Data,MB(Tar)); 

6. IF accuracy_rate > Max_accuracy THEN 

7. Max_accuracy = accuracy_rate ; 

8. Idea_t = t ;Idea_feature =MB(Tar); 

9. END IF 

10. END FOR 

11. FOR k = 1 to SizeOf(Idea_feature) 

12. fea = Idea_feature[k] 

13. Find out all of the fea features at every time slices, we de- 

note them by fea_slice (see Section 4.3.1). 

14. Push fea_slice into Selected_Features. 

15. END FOR 

16. RETURN Idea_t ; Selected_Features. 

FIND-MB(Data D ,Target T ar) 

“Return the Markov blanket of T ar through the HITON algorithm 

30 based on the dataset D ”

1. V = All of the features (nodes) in the dataset D 

2. node_set = The node set directly linked to the target T ar (par- 

ents and children of node T ar) returned by HITON_PC 30 

3. candidate_set = parents and children of the node belong to the 

node_set 

4. Temp_MB = node_set 
⋃ 

candidate_set 

5. ∀ N ∈ Temp_MB and ∀ P ∈ node_set 

IF � ∃ R ⊆ {P} 
⋃ 

V - { T ar,N} ⇒ ⊥ ( T ar,N | R) 

THEN N is still retained in Temp_MB 

ELSE remove N from Temp_MB 

6. RETURN Temp_MB 

Wrapper(Data D ,Feature Set MB ) 

“Return the corrected rate of classification through the feature set 

MB based on the data set D ”

Output : Idea_t ; Idea_feature. 

 

 

 

 

 

 

 

 

 

Fig. 5. The models used in our experiments: HMMs (left) and DBN (right). 
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eters and selected features, we can assess the recognition rate for

the selected feature set. 

4.3.2. Theoretical proof 

In [16] , the author provides the definitions of conditionally in-

dependent and Markov blanket . 

Definition 1. Two variables are said to be conditionally indepen-

dent given a set of variables X if, for any assignment of values

a, b , and x to the variables A, B , and X , respectively, P (A = a | X =
x ; B = b) = P (A = a | X = x ) . That is, B gives us no information about

A beyond what is already in X. X is can also be considered as the

Markov blanket of A . 

In our case, O mb , O , O, T ar are defined as a Markov blanket,

the reduced feature set, all of the features, and the target vari-
ble (here it is the human motion label), respectively. Based on

efinition 1 , we can write P (T ar| O mb ; O ) = P (T ar| O mb ) . In Bayesian

etwork, the nodes can be divided into three partitions, one is tar-

et node, another is Markov blanket which is denoted as O mb , and

nother is denoted as O . And the whole feature set is denoted by

 , so we also can define the O mb = O − O . We assume O redu ⊂ O .

ecause O and Tar are conditionally independent given the Markov

lanket O mb , the Eq. (1) is established. 

 (T ar| O mb ) = P (T ar| O mb ; O redu ) (1)

Eq. (1) explains that, although the Markov blanket includes

ome redundant features, but it does not affect the classification

esult P ( Tar | O mb ). This is a very interesting yet contradictory corol-

ary. If feature selection cannot improve the classification result,

he research topic of feature selection should be insignificant and

bsurd. In fact, feature selection does not only remove redundant

ariables, but also removes error and/or noise features. Different to

edundant features, error and noise features will affect the classi-

cation result. A large number of experimental results show that

he selected features can indeed improve classification results. In

he following section we will show some similar conclusions. 

. Experiments 

.1. Computing platform and experiment data 

In our experiments, the computer has one Intel Core i5 CPU

nd 4GB memory. The HMM inference/learning and Markov blan-

et learning are implemented by Matlab. 

We applied our method to two types of learners, HMMs and

BN, using four sets of open data: the MSR Action3D data set

21,31] , the MSRDailyActivity3D [21,32] , the Online RGBD Action

ataset [33] , and the Chalearn dataset [28] . The structure of the

MMs and DBN is shown in Fig. 5 . Since all of the open dataset

nclude original data and label data file, the test dataset is anno-

ated manually. 

We split the datasets ( MSR Action3D, MSRDailyActivity3D, Online

GBD Action ) into two parts: training data and test data. The size

f the test data is about two times that of the training data. Since

haLearn LAP 2014 Dataset has been divided into “training data”

nd “test data” by dataset provider, we have not split it afresh. 

.1.1. MSR Action3D data set 

The MSR Action3D dataset consists of skeleton data obtained

rom a depth sensor similar to the Microsoft Kinect at a frequency

f 15 Hz. The set of actions includes high arm wave, a horizontal

rm wave, hammer, hand catch, forward punch, high throw, draw X,

raw tick, draw circle, hand clap, two-hand wave, side boxing, bend,

orward kick, side kick, jogging, tennis swing, tennis serve, golf swing,

ick up and throw . Each action has 20–30 action samples, and 20–

0 time slices. 

.1.2. MSRDailyActivity3D 

MSRDailyActivity3D consists of 16 actions by 10 people. The ac-

ions include drink, eat, read book, call cellphone, write on a paper,

se laptop, use vacuum cleaner, cheer up, sit still, toss paper, play

ame, lie down on sofa, walk, play guitar, stand up, sit down . Each

ction has about 20 samples. 
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Table 1 

Recognition results without feature selection. 

Data set Average accuracy HMMs Average accuracy DBN 

MSR Action3D 0 .8393 0 .2076 

MSRDailyActivity3D 0 .7728 0 .1243 

Online RGBD Action 0 .9027 0 .2351 

Chalearn LAP 2014 0 .9464 0 .3271 

Table 2 

Experimental results of 2TBN-MB algorithm. 

Data set Average accuracy (HMMs) Average accuracy (DBN) 

MSR Action3D 0 .8337 0 .4057 

MSRDailyActivity3D 0 .8115 0 .4262 

Online RGBD Action 0 .8148 0 .3721 

Chalearn LAP 2014 0 .6549 0 .3357 

Table 3 

Experimental results of SFA-MB algorithm. 

Data set Average accuracy (HMMs) Average accuracy (DBN) 

MSR Action3D 0 .9180 0 .4235 

MSRDailyActivity3D 0 .9417 0 .4583 

Online RGBD Action 0 .9795 0 .3921 

Chalearn LAP 2014 0 .9523 0 .4163 
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.1.3. Online RGBD Action Dataset 

The Online RGBD Action Dataset includes 7 actions, drinking,

ating, using laptop, reading cellphone, making phone call, reading

ook, using remote . Each action includes 46 samples and 199–256

ime slices. 

.1.4. Chalearn LAP 2014 dataset 

The competition organizer provided three datasets: “training

ata”, “validation data” and “test data”. Each data set consists of

undreds of files, and each file contains approximately one-minute

esture data, which include skeleton data and RGBD video data. In

he gesture data, there are 20 type of gestures and each sample

ata includes 16–26 time slices. In our experiments, we only used

he “training data” for learning, and testing the gesture recognition.

he actions includes Go away, Come here, Perfect! Crafty, No fun!

hat do you want? They get together, Are you crazy? What have you

one? There is no interest to me, OK, What would you do?, Enough

lready! You want to take, No good any more, I’m hungry, That was

 long time ago, It’s very delicious! They have agreed, I’m sick. 

.2. Recognition by selected features 

In this section, two methods, 2TBN-MB and SFA-MB, were em-

loyed to perform the training and recognition using the above

our sets of open data. Each experiment was carried out according

o the 10-fold cross-validation scheme. 

.2.1. 2TBN-MB and SFA-MB 

Table 1 shows the recognition results of the four open datasets

ithout the feature-selection process. Tables 2 and 3 show the

ecognition results of the four open datasets using HMMs and DBN

ased on the 2TBN-MB and SFA-MB algorithms, respectively. Com-

aring these to the results in Table 1 , we find that the SFA-MB fea-

ure selection method improves the recognition rate of HMMs and

BN significantly. Since the structure of the DBN is designed sim-

ly, compared to HMMs, the results of the DBN are worse. In this

esearch, we do not focus on the DBN recognition. We also find

hat the results of SFA-MB are significantly better than 2TBN-MB,

hich is attributed to the Two-Timeslice structure, which does not

ave capabilities for capturing information of the spatio-temporal

uman action data for classification (see Section 4.2 ). 
.2.2. Comparing to traditional method for feature selection 

In contrast, we also employed several traditional wrapper fea-

ure selection methods to the MSR Action3D data set based on the

MMs learner. 

CA. We applied PCA (Principal Components Analysis) to reduce

he feature dimension of each time slice. This reduced the fea-

ure dimension by almost 90%. Using the compressed features, the

omputational time for HMM recognition was 50% shorter, but the

ecognition accuracy was largely unchanged. The HMM recogni-

ion accuracy using compressed features was 82.23%, which is very

imilar to the original accuracy of 81.85%. Thus, PCA significantly

educed the computation cost without affecting the classification

erformance. Based on MSR Action3D data set, we have selected

1 features by PCA. The principal components from 1th to 21th ac-

ount for or “variance explain” 95% of the overall variability. 

A and SFS. Fig. 4 shows the HMMs recognition accuracy of MSR

hen used on the Action3D Dataset using the GA and SFS meth-

ds. For GA, we set the crossover probability to 0.8, the mutation

robability to 0.03 and the population size to 50 for 100 iterations.

he final convergence population yielded a recognition accuracy of

7.58%. SFS obtained 85.02% recognition accuracy, which is better

han that of the GA. SFS is not terminated until all of the search

nd calculation is over, and the feature subset which has the best

core will be the best one. All of data (all time slice data) is used

n SFS and GA feature selection procedure. 

Contrasting the traditional methods, PCA, GA (Genetic Algo-

ithm) and SFS (Sequential Forward Selection), when considering

ecognition accuracy or computational cost, SFA-MB yields better

esults than all the other methods. In order to further validate the

erformance of our method, we added some experiments to com-

are the PCA, GA and SFS using the open dataset: MSRDailyActiv-

ty3D, Online RGBD Action, and Chalearn LAP 2014. Table 4 shows

he experiment results of the comparison. 

In Algorithms 1 and 2 , we have used a threshold for Markov

lanket decision in HITON [30] algorithm. Conditional indepen-

ence core between the variable data is calculated by HITON, and

he core will be used to select which variable related to the target

ariable closely. So, the value of threshold will be effect the result

f Markov blanket. In our system, the threshold is selected manu-

lly, the optimization of the threshold has not be discussed. It will

e a challenge of our future work. 

Definition 1 and the discussion of Section 4.3.2 illustrate that

he redundant variables can not affect the classification results, but

he error and the noise features will greatly effect the classifica-

ion accuracy theoretically. As show as Table 4 , Algorithm SFA-MB

ubstantially improved the classification accuracy in open dataset

SR Action3D, MSRDailyActivity3D, Online RGBD Action , but a slight

mprovement has been occurred in dataset Chalearn LAP 2014 . By

nvestigating the source of dataset, we found the error and the

oise data of Chalearn LAP 2014 is significantly less than the oth-

rs. In the dataset, we define the obvious error value to be the

rror and the noise data, for example, all zero pattern. The er-

or and the noise data investigation is carried out only by human

anually, we have not built a system to find the error and the

oise data automatically. In the future, automatic error/noise data

iscovery should be a challenge work. And quantitative studying

f the relationship between the classification results and the er-

or/noise/redundant data should also be a meaningful subject in

uture. 

. Conclusions 

In this paper, we proposed a Markov blanket based feature

election method for human motion recognition. The method
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Table 4 

HMMs recognition accuracy when applied to four datasets based on various feature selection methods. 

Data set Feature selection methods Recognition rate Feature selection time (seconds) Feature number 

MSR Action3D No feature selection 0 .8393 0 213 

PCA 0 .8223 4035 21 

GA 0 .4758 19653 38 

SFS 0 .8502 14582 5 

2TBN-MB 0 .8337 6543 31 

SFA-MB 0 .9180 7875 27 

MSRDailyActivity3D No feature selection 0 .7728 0 213 

PCA 0 .7983 32035 23 

GA 0 .3281 119653 67 

SFS 0 .8129 104582 42 

2TBN-MB 0 .8115 63543 28 

SFA-MB 0 .9417 91331 43 

Online RGBD Action No feature selection 0 .9027 0 213 

PCA 0 .8567 8053 37 

GA 0 .6129 29433 102 

SFS 0 .8502 25842 74 

2TBN-MB 0 .8148 13932 42 

SFA-MB 0 .9795 23543 19 

Chalearn LAP 2014 No feature selection 0 .9464 0 213 

PCA 0 .8982 90155 68 

GA 0 .7712 396537 45 

SFS 0 .8502 242853 97 

2TBN-MB 0 .6549 134532 45 

SFA-MB 0 .9523 200608 34 
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effectively solved the feature selection problem of sequential data.

Comparing to the traditional wrapper method, SFA-MB not only

improved recognition accuracy, but also reduced computational

cost. We proved the rationality and efficiency of the SFA-MB via

theoretical and experimental evidence. Four sets of open data were

validated using the SFA-MB, and the experiment results showed

that it effectively improved recognition performance. 
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