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Two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions
of space coordinates 𝑟, are proposed and studied numerically. The band gaps structures of the photonic crystals for TE
and TM waves are different from the two-dimensional conventional photonic crystals. Some absolute band gaps and semi-
Dirac points are found. When the medium column radius and the function form of the dielectric constant are modulated, the
numbers, width, and position of band gaps are changed, and the semi-Dirac point can either occur or disappear. Therefore,
the special band gaps structures and semi-Dirac points can be achieved through the modulation on the two-dimensional
function photonic crystals. The results will provide a new design method of optical devices based on the two-dimensional
function photonic crystals.
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1. Introduction
Photonic crystals, periodic structures that control pho-

tons in a way comparable to the way semiconductors con-
trol electrons, have inspired extensive study since their emer-
gence in the late 1980’s.[1–5] The most important property of
the photonic crystals is the photonic band gap. In the two-
dimensional photonic crystals, there are absolute band gaps
and Dirac points that create many applications such as polar-
ization beam splitter, waveguides, self-collimation beams, de-
fects, all-optical logic gates, and different functional optical
devices[6–8] for photonic crystals structures.

Recently, Dirac point in photonic and phononic crystals
have been found at the corners of the Brillouin zones of trian-
gular and honeycomb lattices where two bands meet,[9] lead-
ing to the observation of many novel wave transport proper-
ties, such as classical analogs of Zitterbewegung and pseu-
dodiffusion. It was reported that linear dispersions can also
occur at the Brillouin zone center of a square lattice photonic
crystal, induced by simultaneous zero permittivity (εeff = 0)
and permeability (µeff = 0), and the linear dispersions could
be understood from an effective medium perspective. Various
theoretical approaches, such as multiple scattering,[10] tight
binding,[11] and perturbation,[12,13] have also been developed
to analyze the properties of the Dirac point in photonic crys-
tals. The Dirac point produces at the Brillouin zone boundary,
which has also been found in elastic/acoustic waves[14] and in

the simple cubic lattice. The Dirac-like points are created by
the bands intersecting at one point at the Brillouin zone center,
and the band dispersion relation near is point are linear, which
is obtained by accidental degeneracy. When the material pa-
rameters and structure parameters are changed, the bands of
the Dirac-like point should be separated and are not linear.
The various transport properties of zero-refractive-index mate-
rial have been studied near the Dirac-like point, which are the
focus of much of the recent work.[15–18] This dispersion rela-
tion is analogues to the Dirac point in electron systems, where
two linear bands touch so that there is no band gap. Owing to
this special property, remarkable wave transport behaviors and
interesting applications in electromagnetic waves have been
reported.[15–18] The semi-Dirac point, a type of unique and
unprecedented electronic band dispersion, was discovered[19]

and studied.[20] It was found that, near a point in the Fermi
surface in the two-dimensional Brillouin zone, the dispersion
relation is linear along the symmetry line (it is a direction of
lattice, i.e., (1,1) direction) but quadratic in the perpendicular
direction.[19–21] It is reported that this semi-Dirac point is as-
sociated with the topological phase transition between a semi-
metallic phase and a band insulator.[21]

The semi-Dirac points are formed by the bands inter-
secting at one point at the Brillouin zone center or bound-
ary; the dispersion relations are linear at one direction and are
quadratic at its vertical direction. The Dirac points are formed
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by the bands intersecting at one point at the Brillouin zone cen-
ter or boundary, and the band dispersion relation near the point
are linear, which is obtained by doubly degeneracy. When the
material parameters and structure parameters are changed, the
bands of the Dirac point should not be separated.

In Refs. [22]–[27], we have proposed one-dimensional
function photonic crystals, which consist of two media: A and
B. Their refractive indices are the functions of space position,
unlike conventional photonic crystal (PCs), which is consti-
tuted by the constant refractive index media A and B. We
have studied the transmissivity and the electric field distribu-
tion with and without defect layer. In this paper, we have pro-
posed two-dimensional function photonic crystals, in which
the medium column dielectric constants are the functions of
the space coordinate, and calculated the band gaps structures
of TE and TM waves, different from the two-dimensional con-
ventional photonic crystals band gaps structures. We also
found there are absolute band gaps and semi-Dirac points in
the two-dimensional function photonic crystals. The findings
have wide-ranging application potential. The absolute band
gaps can be designed into the polarization selection device,
and the semi-Dirac points can be used to achieve zero refrac-
tive index materials. Using our calculations, as the medium
column radius and the function form of the dielectric constant
changes, we find the numbers, width, and position of band
gaps are changed, and the semi-Dirac point can either occur
or disappear. They can design the needed band gaps structures
for the two-dimensional function photonic crystals. Hence, the
two-dimensional function photonic crystals can provide a new
design method of optical devices.

2. The Fourier transform of dielectric constant
for two-dimensional function photonic crys-
tals
For the two-dimensional function photonic crystals, the

medium column dielectric constants are the functions of space
coordinates 𝑟, different from the two-dimensional conven-
tional photonic crystals, whose dielectric constants are con-
stant. The medium column dielectric constants become the
functions of space coordinates 𝑟, which can be realized eas-
ily in physics. We know that the external electric field can
cause the change of the medium refractive index, called the
electro-optical effect,[28] i.e., n(E) = n0 + aE + bE2, where
E is the external electric field intensity, n0 is the medium re-
fractive index without an external electric field, n(E) is the
medium refractive index with external electric field, a and b
are the electro–optical coefficients. When the external elec-
tric field is E = E(x,y,z), the medium refractive index is
n(E) = n(x,y,z). Moreover, in nonlinear optics, the medium
refractive index is the linear function of external light inten-
sity I, which is called the optical Kerr effect,[29] i.e., n(I) =

n0 + n2I, where n0 represents the usual weak-field refractive
index, n2 = (3/4n2

0ε0c)χ(3) is the optical Kerr coefficient, and
χ(3) is the third-order nonlinear optical susceptibility. When
the external light intensity is I = I(x,y,z), the medium refrac-
tive index is n(I) = n(x,y,z). So the medium column dielectric
constants can easily become the function of space coordinates
𝑟, i.e., ε = ε(x,y,z), when the medium columns are imposed
on the external electric field E(x,y,z) and external light inten-
sity I(x,y,z).

The dielectric constant of the cylindrical medium column
can be written as

ε(𝑟) =

{
εa(𝑟), r ≤ ra,

εb, r > ra,
(1)

or

1
ε(𝑟)

=


1

εa(𝑟)
, r ≤ ra,

1
εb
, r > ra,

(2)

equation (2) can be written as

1
ε(𝑟)

=
1
εb

+

(
1

εa(𝑟)
− 1

εb

)
s(r), (3)

where

s(r) =
{

1, r ≤ ra,
0, r > ra.

(4)

The Fourier inverse transform of 1/ε(𝑟) is

ε
−1(𝐺) =

1
V0

∫
V0

d𝑟
1

ε(𝑟)
e−i𝐺·𝑟, (5)

in the two-dimensional reciprocal space, it is

ε
−1(𝐺||) =

1

V (2)
0

∫
V (2)

0

d𝑟||
1

ε(𝑟||)
e−i𝐺||·𝑟|| , (6)

where 𝐺|| = m1𝑏1 +m2𝑏2, 𝑟|| = x𝑖+ y𝑗, V (2)
0 represents the

unit cell area in the two dimensional lattice space.
Substituting Eq. (3) into Eq. (6), we obtain

ε
−1(𝐺||) =

1

V (2)
0

∫
V (2)

0

d𝑟||[
1
εb

+

(
1
εa
− 1

εb

)
s(𝑟||)]e

−i𝐺||·𝑟||

=
1
εb

1

V (2)
0

V (2)
0 δ𝐺||,0

+
1

V (2)
0

∫
V (2)

0

d𝑟||

(
1
εa
− 1

εb

)
s(𝑟||)e−i𝐺||·𝑟||

=
1
εb

δm,0δn,0 +
1

V (2)
0

×
∫

V (2)
0

d𝑟||

(
1
εa
− 1

εb

)
s(𝑟||)e−i𝐺||·𝑟||

=
1
εb

δm,0δn,0 + I, (7)

where

I =
1

V (2)
0

∫
V (2)

0

d𝑟||

(
1
εa
− 1

εb

)
s(𝑟||)e−i𝐺||·𝑟||
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=
1

V (2)
0

∫
V (2)

0

d𝑟||
1
εa

s(𝑟||)e−i𝐺||·𝑟||

− 1

V (2)
0

∫
V (2)

0

d𝑟||
1
εb

s(𝑟||)e−i𝐺||·𝑟||

= I1− I2, (8)

where

I2 =
1

V (2)
0

∫
V (2)

0

d𝑟||
1
εb

s(𝑟||)e−i𝐺||·𝑟||

=
1
εb

1

V (2)
0

∫
V (2)

0

d𝑟||s(𝑟||)e−i𝐺||·𝑟||

=
1
εb

1

V (2)
0

∫ ra

0
rdr

∫ 2π

0
dθ e−iG||·r·cosθ

=
1
εb

1

V (2)
0

∫ ra

0
rdr

∫ 2π

0
dθ e iG||·r·sin(θ−π/2), (9)

where |𝑟|||= r|| = r, |𝐺|||= G||, d𝑟|| = ds = rdrdθ , and θ is
the included angle of 𝑟|| and 𝐺||.

By the formulas

e iω·sinθ =
∞

∑
l=−∞

Jl(ω)e ilθ , (10)

∫ 2π

0
dθ e il(θ−π/2) =

{
0, (l 6= 0),
2π, (l = 0),

(11)

and ∫
xmJm−1(x)dx = xmJm(x)+ c, (12)

we have

I2 =
1
εb

1

V (2)
0

∫ ra

0
rdr

∞

∑
l=−∞

Jl(G|| · r)
∫ 2π

0
dθ e il(θ−π/2)

=
1
εb

1

V (2)
0

2πra

G||
· J1(G|| · ra), (𝐺|| 6= 0), (13)

when G||→ 0 (m→ 0, n→ 0), we have

I2(m = 0,n = 0) = lim
G||→0

1
εb

1

V (2)
0

2πra
J1(G|| · ra)

G||

=
1
εb

1

V (2)
0

2πra lim
G||→0

(J1(G|| · ra))
′

(G||)′

=
1
εb

1

V (2)
0

2πra lim
G||→0

J′1(G|| · ra) · ra

=
1
εb

πr2
a

V (2)
0

=
f

εb
, (𝐺|| = 0), (14)

where J′1(0) = 1/2 and f = πr2
a/V (2)

0 is the filling ratio.
Where

I1 =
1

V (2)
0

∫
V (2)

0

d𝑟||
1

εa(r,θ)
s(𝑟||)e−i𝐺||·𝑟||

=
1

V (2)
0

∫ ra

0
rdr

∫ 2π

0

1
εa(r,θ)

e iG||·r||·sin(θ−π/2)dθ

=
1

V (2)
0

∫ ra

0
rdr

∫ 2π

0
dθ

1
εa(r,θ)

∞

∑
l=−∞

Jl(G|| · r)e il(θ−π/2)

=
1

V (2)
0

∫ ra

0
r

1
εa(r)

∞

∑
l=−∞

Jl(G|| · r)dr
∫ 2π

0
dθ e il(θ−π/2)

=
2π

V (2)
0

∫ ra

0
r

1
εa(r)

J0(G|| · r)dr, (𝐺|| 6= 0). (15)

In Eq. (15), we have considered εa(r,θ) = εa(r).
When G|| = 0, as J0(0) = 1, we have

I1 =
2π

V (2)
0

∫ ra

0
r

1
εa(r)

dr, (𝐺|| = 0), (16)

substituting I1, I2, and I into Eq. (7), we obtain

ε
−1(𝐺||) =


1
εb
(1− f )+

2 f
r2

a

∫ ra

0
r

1
εa(r)

dr, (𝐺|| = 0)

2 f
r2

a

∫ ra

0
r

1
εa(r)

J0(G|| · r)dr− 2 f
εb

J1(G|| · ra)

G|| · ra
, (𝐺|| 6= 0).

(17)

Equation (18) is the Fourier transform of the dielectric con-
stant for two-dimensional function photonic crystals. When
εa(r) = εa, the εa is a constant, then equation (17) becomes

ε
−1(𝐺||) =


1
εb

+

(
1
εa
− 1

εb

)
f , (𝐺|| = 0),

2 f
(

1
εa
− 1

εb

)
J1(G|| · ra)

G|| · ra
, (𝐺|| 6= 0).

(18)

Equation (18) is the Fourier transform dielectric constant of
two-dimensional conventional photonic crystals. So, the two-
dimensional conventional photonic crystal is the special case

of two-dimensional function photonic crystals.
In Refs. [30] and [31], the authors have given the eigen-

value equations of TM and TE waves with the plane-wave ex-
pansion method, they are

∑
𝐺′
(𝑘+𝐺′) · (𝑘+𝐺)ε−1(𝐺−𝐺′)H𝑘(𝐺

′) =
ω2

c2 H𝑘(𝐺), (19)

and

∑
𝐺′
|𝑘+𝐺′||𝑘+𝐺|ε−1(𝐺−𝐺′)E𝑘(𝐺

′) =
ω2

c2 E𝑘(𝐺). (20)
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Substituting Eq. (17) into Eqs. (19) and (20), we can obtain
the band gaps structure of two-dimensional function photonic
crystals.

3. Numerical result
In this section, we will report our numerical results of

band gaps structures for the two-dimensional function pho-
tonic crystals. In order to compare the band gaps structures
of two-dimensional conventional and function photonic crys-
tals, we will first calculate the band gaps structures of the two-
dimensional conventional photonic crystals with Eqs. (18),
(19), and (20). The structure is the triangle lattice, that is
shown in Fig. 1, and the cylindrical medium columns are lo-
cated in the air, whose dielectric constants are εa = 9 and

medium column radius is ra = 0.65a, where a = 10−6 m is
the lattice constant. The band gaps structures of TE and TM
waves are shown in Figs. 2(a) and 2(b), respectively. In the
frequency range from 0 to 0.8 (in unit of a/2πc), there are
three band gaps for the TE and TM waves.

a
r

X

Γ M

(a) (b)

Fig. 1. (a) The triangular lattice structure of two-dimensional photonic
crystals, (b) the first Brillouin zone of the triangle grid.
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Fig. 2. The band gaps structure of two-dimensional conventional photonic crystals for the triangle lattice, εb = 1, εa = 9, medium
column radius ra = 0.65a. (a) TE wave, (b) TM wave.

In the following, we calculated the band gaps structures of
the two-dimensional function photonic crystals with Eqs. (17),
(19), and (20). The structure is also the triangle lattice, and the
cylindrical medium columns are located in the air, whose di-
electric constants are the function of the space coordinate, i.e.
εa(𝑟)= kr+b (0≤ r≤ ra), where ra is the medium column ra-
dius, and k is called the function coefficient. When k = 0, it is
conventional photonic crystals, when k 6= 0, it is function pho-
tonic crystals. From Fig. 3 to Fig. 6, we take k = 1.8× 106,
b = 9, and study the medium column radius ra effect on the
band gaps structures in the frequency range from 0 to 0.8. In
Figs. 3(a) and 3(b), we give the band gaps structures of TE and
TM waves with the medium column radius ra = 0.26a. There
are two wider band gaps for the TE wave, and one band gap for
the TM wave. In the vicinity of 0.55 frequency, the band gaps
of TE and TM waves overlap to form an absolute band gap,
which can be designed into the polarization selection device.
Figures 4(a) and (b) are the band gaps structures of TE and

TM waves with the medium column radius ra = 0.3a. There
are three band gaps for the TE wave, and one band gap for the
TM wave. In the vicinity of 0.5 frequency, there is an absolute
band gap, and one semi-Dirac point A for TM wave, which is
because the dispersion relation is linear along the XM direc-
tion and quadratic along the XΓ direction in the vicinity of the
A point. In Figs. 5(a) and 5(b), we give the band gaps struc-
tures of TE and TM waves with the medium column radius
ra = 0.65a. There are four band gaps for the TE wave, and
two band gaps for the TM wave. In the vicinity of 0.32 and
0.76 frequencies, there are two absolute band gaps, and one
semi-Dirac point A for the TE wave. In the vicinity of the A
point, the dispersion relation is linear along the XM direction
and quadratic along the XΓ direction. In Figs. 6(a) and 6(b),
we give the band gaps structures of TE and TM waves with the
medium column radius ra = 0.8a. There are two band gaps for
the TE wave, and one band gap for the TM wave.
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Fig. 3. The band gaps structure of two-dimensional function photonic crystals for the triangle lattice, εb = 1, εa = k · r+ 9, function
coefficient k = 1.8×106, medium column radius ra = 0.26a. (a) TE wave, (b) TM wave.
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Fig. 4. The band gaps structure of two-dimensional function photonic crystals for the triangle lattice, εb = 1, εa = k · r+ 9, function
coefficient k = 1.8×106, medium column radius ra = 0.3a. (a) TE wave, (b) TM wave, there is one semi-Dirac point A for TM wave.
In the vicinity of the A point, the dispersion relation is linear along the XM direction and quadratic along the XΓ direction.

In Figs. 7 and 8, we take ra = 0.65a, b = 9 and research
the function coefficient k effect on the band gaps structures
in the frequency range from 0 to 0.8. In Figs. 7(a) and 7(b),
we give the band gaps structures of TE and TM waves with
the function coefficient k = 3.6× 106. There are three band
gaps for the TE wave, and one band gap for the TM wave. In
the vicinity of 0.31 frequency, there is an absolute band gap.
There are two semi-Dirac points A and B for the TE wave, and
one semi-Dirac point C for the TM wave. In the vicinity of the
A point, the dispersion relation is linear along the XM direc-
tion and quadratic along the XΓ direction. In the shadow of B
and C points, the dispersion relation is linear along the MX di-

rection and quadratic along the MΓ direction. In Figs. 8(a)
and 8(b), we give the band gaps structures of TE and TM
waves with function coefficient k = −1.8× 106. There are
two band gaps for the TE and TM waves. In the vicinity of
0.26 frequency, there is an absolute band gap, and one semi-
Dirac point A for the TM wave. In the vicinity of the A point,
the dispersion relation is linear along the XM direction and
quadratic along the XΓ direction. From Fig. 3 to Fig. 8, we
find the band gaps numbers, width, and position are changed,
and the semi-Dirac point can either occur or disappear with the
medium column radius ra and function coefficient k changing.
We can obtain the appropriate band gaps structures by select-
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ing the different medium column radius and function form of
the dielectric constant for the two-dimensional function pho-
tonic crystals. Comparing the band gaps structure of conven-

tional photonic crystals (shown in Fig. 2) and function pho-
tonic crystals (shown in Figs. 3–8), we can find the band gaps
numbers, width and position are different.
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Fig. 5. The band gaps structure of two-dimensional function photonic crystals for the triangle lattice, εb = 1, εa = k · r+ 9, function
coefficient k = 1.8×106, and medium column radius ra = 0.65a. (a) TE wave, there is one semi-Dirac point A for the TE wave. In the
vicinity of the A point, the dispersion relation is linear along the XM direction and quadratic along the XΓ direction. (b) TM wave.
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Fig. 6. The band gaps structure of two-dimensional function photonic crystals for the triangle lattice, εb = 1, εa = k · r+ 9, function
coefficient k = 1.8×106, and medium column radius ra = 0.8a. (a) TE wave, (b) TM wave.

For the two-dimensional conventional photonic crystals,
it has a certain structure, and its band gaps structure are de-
termined. If we need a new band gaps structure, the two-
dimensional conventional photonic crystals should be remade.
For the two-dimensional function photonic crystals, by chang-
ing the external light intensity distribution, the function forms
of the medium column dielectric constants are changed, and
the band gaps structure will be changed, i.e., through adjust-
ing the light intensity distribution, we can obtain the determi-
nate band gaps structure; the two-dimensional photonic crys-

tals need not be remade and can be used repeatedly. Therefore,
the two-dimensional function photonic crystals can both adjust
the band gaps structure conveniently and reduce the manufac-
turing cost. A photonic crystal band gap’s width is related to
the lattice symmetry degree. The two-dimensional photonic
crystal has the point group symmetry,[32] it can form a semi-
Dirac point. In this paper, the two-dimensional triangle lat-
tice function photonic crystal met the creation conditions of
the semi-Dirac point, since the two-dimensional function pho-
tonic crystal keep the point group symmetry, but translation
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symmetry is decreased, the crystal symmetry reduces, which
is advantageous to the formation of the anisotropic dispersion
relation of the Dirac point and semi-Dirac point. Since the
symmetry decrease makes the band gap width narrow, at a
special condition, the bands intersect at one point, to form a
Dirac point or semi-Dirac point. The two-dimensional conven-

tional photonic crystals possess both point group symmetry
and translation symmetry, it has higher symmetry and wider
band gaps, which make the possibility of forming a semi-Dirac
point reduce. Therefore, the two-dimensional function pho-
tonic crystals form a semi-Dirac point more easily than the
two-dimensional conventional photonic crystals.
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Fig. 7. The band gaps structure of two-dimensional function photonic crystals for the triangle lattice, εb = 1, εa = k · r+9, function coefficient
k = 3.6× 106, medium column radius ra = 0.65a. (a) TE wave, there are two semi-Dirac points A and B for the TE wave. In the vicinity of
the A point, the dispersion relation is linear along the XM direction and quadratic along the XΓ direction. In the vicinity of the B point, the
dispersion relation is linear along the MX direction and quadratic along the MΓ direction. (b) TM wave, there is one semi-Dirac point C for
the TM wave. In the vicinity of the C point, the dispersion relation is linear along the MX direction and quadratic along the MΓ direction.

F
re
q
u
e
n
c
y
/
(ω
a
/

π
c
)

F
re
q
u
e
n
c
y
/
(ω
a
/

π
c
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A

ΓMXΓΓMXΓ

(a) (b)

Fig. 8. The band gaps structure of two-dimensional function photonic crystals for the triangle lattice, εb = 1, εa = k · r+ 9, function
coefficient k =−1.8×106, medium column radius ra = 0.65a. (a) TE wave, (b) TM wave, there is one semi-Dirac point A for the TM
wave. In the vicinity of the A point, the dispersion relation is linear along the XM direction and quadratic along the XΓ direction.

4. Conclusion

In this paper, we have studied the two-dimensional func-
tion photonic crystals through calculating the band gaps struc-
tures of TE and TM waves and found that they are differ-
ent from the two-dimensional conventional photonic crys-

tals. Some absolute band gaps and semi-Dirac points oc-

cur in the two-dimensional function photonic crystals. With

the changing of the external light intensity distribution, the

function forms of the medium column dielectric constants are

changed, and the numbers, width, and position of band gaps
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are changed, and a semi-Dirac point can either occur or dis-
appear. All the results will provide a new design method for
optical devices.
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