Inorganic Chemistry

Enhanced ${\sim}2~\mu m$ Emission of Tm^{3+} in Lu_2O_3 by Addition of a Trace Amount of Er^{3+}

Liangliang Zhang,[†][©] Zhendong Hao,[†] Xia Zhang,[†] Guo-Hui Pan,[†] Yongshi Luo,[†] Huajun Wu,[†] Xuewei Ba,[‡] and Jiahua Zhang^{*,†}

[†]State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 Eastern South Lake Road, Changchun 130033, People's Republic of China

[‡]Qiqihar University, Qiqihar 161006, People's Republic of China

ABSTRACT: Er³⁺-induced intensity enhancement of ~2 μ m emission is observed in 2 atom % Tm³⁺ doped Lu₂O₃ under 782 nm excitation. The maximum enhancement reaches 41.9% with only 0.05 atom % Er³⁺. Er³⁺ introduces a new quantum cutting process which is proved to be a Tm³⁺ \rightarrow Er³⁺ \rightarrow Tm³⁺ forward–backward energy transfer (FBET) system. The FBET system is observed to work efficiently even at very low Er³⁺ concentration. Thus, energy loss due to energy migration among Tm³⁺ ions is suggested to be suppressed by the FBET process. The Tm³⁺ \rightarrow Er³⁺ \rightarrow Tm³⁺ FBET system may be a new route to improve the performance of Tm³⁺ lasers.

INTRODUCTION

Laser wavelength around the $\sim 2 \ \mu m$ spectral range has been applied in medical science, laser radar, and remote sensing in the past few years.^{1–5} The amazing properties of a $\sim 2 \ \mu m$ laser include transmission in both atmosphere and common silica fiber, harmless to the eye, and appropriate penetration depth in organization.⁶ Thus, researchers have developed different kinds of light sources for $\sim 2 \ \mu m$ lasers. Tm³⁺-doped Lu₂O₃ was one of the desired laser media.^{7,8} Lu₂O₃ has higher thermal conductivity (11.3 $Wm^{-1}K^{-1}$) in comparison with YAG (6.8 $Wm^{-1}K^{-1}$). This is important for heat removal in the pumping process. Emission of Tm³⁺ in Lu₂O₃ has a longer wavelength. This ensures a longer laser wavelength and promises a wider application field of Tm³⁺ lasers. The absorption of the Tm³⁺ ion in Lu_2O_3 is around 796 nm and matches well with commercially available GaAlAs laser diodes.⁹ In the past decades, Lu₂O₃:Tm³⁺ realized 2.03–2.10 μ m lasers in forms such as CW lasers, Q-switched lasers, mode-locked lasers, and thin-disk lasers.¹⁰⁻¹⁴ The laser with Lu₂O₃:Tm³⁺ has been applied as a hybrid booster, in optical parametric oscillation (OPO), as a pump source, etc.^{15,10}

When the ${}^{3}H_{4}$ level of Tm³⁺ is excited, the ${}^{3}F_{4}$ level (~2 μ m) of Tm³⁺ is populated by a cross-relaxation (CR) process.^{17,18} This process occurs between two nearby Tm³⁺ ions and is essentially a quantum cutting phenomenon. Theoretically, the quantum efficiency is 2 for an ideal CR process. As matter of fact, the efficiency of CR depends on the doping concentration of Tm³⁺ ions. With increasing Tm³⁺ concentration, both CR efficiency and energy migration between Tm³⁺ ions increases.^{19,20} If the energy migrates to a Tm³⁺ ion with defects around it, the luminescence is quenched. Thus, the best

concentration must be optimized considering the balance between CR efficiency and quenching. In Lu_2O_3 , a 9.3 W laser was achieved with 2 atom % Tm^{3+,10} Further increase in CR efficiency is necessary but is also a challenge.

There are limited methods to increase CR efficiency. The common method is introducing ions such as Li⁺, La³⁺, etc. for charge (radius) compensation or better crystallinity.^{21,22} This method aims to reduce defects in the host material. Another method is introducing a sensitizer ion: for example, Yb³⁺, Cr³⁺, etc. Energy transfer efficiency from Cr³⁺ to Tm³⁺ is 91.7%.²³ However, the absorption of Cr³⁺ (400–700 nm) does not match with the commercial GaAlAs pump source (~800 nm). Yb³⁺ is the most studied sensitizer for Tm³⁺. Energy transfers from Tm³⁺ ³H₄ to Yb³⁺ ²F_{5/2} and then back to Tm³⁺ ³H₅ is observed.²⁴ This constructs a Tm³⁺ \rightarrow Yb³⁺ \rightarrow Tm³⁺ forward–backward energy transfer (FBET) process.²⁵ An increased ³F₄ emission with respect to ³H₄ \rightarrow ³F₄ emission of Tm³⁺ was observed when it was codoped with Yb³⁺. However, this energy transfer process (normal downconversion luminescence) is less efficient in comparison to the CR process (quantum cutting luminescence). Thus, the absolute ³F₄ emission (~2 µm) of Tm³⁺ was decreased.²⁶

The Er³⁺ ion has drawn our attention. The ${}^{4}I_{15/2} \rightarrow {}^{4}I_{13/2}$ transition of Er³⁺ shows no energy mismatch with ${}^{3}H_4 \rightarrow {}^{3}F_4$ of Tm³⁺. Thus, energy transfers from Tm³⁺ ${}^{3}H_4$ to Er³⁺ ${}^{4}I_{13/2}$ and then back-transfers to Tm³⁺ ${}^{3}F_4$ are expected. This is a Tm³⁺ \rightarrow Er³⁺ \rightarrow Tm³⁺ FBET system. Although there have been many studies on Tm³⁺- and Er³⁺-codoped systems,²⁷⁻²⁹ the FBET

 Received:
 July 24, 2017

 Published:
 October 9, 2017

Figure 1. Rietveld refinement plot of Lu_2O_3 samples. Observed (red cross), calculated (black line), and difference profiles (blue line) of the XRD pattern are plotted in the same range. Bragg peak positions are shown as vertical bars. The coordination environments of Lu1 and Lu2 are shown at the right.

Table 1. C	Cell Parameters and	Coordination	Environments	of Er ³⁺ -	- and Tm ³	+-Doped Lu ₂	D ₃ Samples
------------	---------------------	--------------	--------------	-----------------------	-----------------------	-------------------------	-------------------------------

sample	a (Å)	eccentric distance of Lu1 (Å)	Lu1–O distance (Å)	sphericity of Lu1	eccentric distance of Lu2 (Å)	Lu2–O distance (Å)	sphericity of Lu2
Lu ₂ O ₃	10.39	0	18.41	0.84	0.28	18.43	0.85
$(Lu_{0.98}Tm_{0.02})_2O_3$	10.39	0	18.41	0.85	0.17	18.43	0.86
$(Lu_{0.97}Tm_{0.02}Er_{0.01})_2O_3$	10.40	0	18.45	0.85	0.23	18.46	0.86

process has not been reported to our knowledge. The former studies mainly focused on the upconversion luminescence properties of Er^{3+} or Tm^{3+} . Er^{3+} and Tm^{3+} were doped with high concentration (more than 1%) for high upconversion efficiency. In these cases, the interaction between $Tm^{3+} {}^{3}F_{4} \rightarrow {}^{3}H_{6}$ and $Er^{3+} {}^{4}I_{11/2} \rightarrow {}^{4}F_{9/2}$ was dominant.³⁰

In this paper, we only introduce a trace amount of Er^{3+} into Lu_2O_3 : 2 atom % Tm^{3+} . We find that both $Tm^{3+} \rightarrow Er^{3+}$ forward energy transfer (FET) and $Er^{3+} \rightarrow Tm^{3+}$ back energy transfer (BET) processes are effective even at very low Er^{3+} concentration. Simultaneously, other competitive interaction processes are suppressed. This constructs an ideal $Tm^{3+} \rightarrow Er^{3+} \rightarrow Tm^{3+}$ FBET system to enhance ~2 μ m emission of Tm^{3+} . The $Tm^{3+} \rightarrow Er^{3+} \rightarrow Tm^{3+}$ energy transfer route provides a new possibility to improve the performance of Tm^{3+} lasers.

EXPERIMENTAL SECTION

 Tm^{3+} and Er^{3+} -doped Lu_2O_3 species were synthesized by the precipitation method. Lu_2O_3 (5 N), Tm_2O_3 (5 N), and Er_2O_3 (6 N) were dissolved in dilute nitric acid to give 0.1 M $Lu(NO_3)_3$, 0.01 M $Tm(NO_3)_3$, and 0.001 M $Er(NO_3)_3$ solutions. Stoichiometric amounts of $Lu(NO_3)_3$, $Tm(NO_3)_3$, and $Er(NO_3)_3$ solutions were mixed with stirring at room temperature. Ammonia was dropped into the mixed solution afterward. After the mixture was aged for 6 h, the precipitation was separated via centrifugation at a speed of 6000 revolutions per

minute. The precipitate was washed four times with deionized water and dried in an oven at 60 $^{\circ}$ C for 24 h to give the precursor. The precursor was put into a furnace and sintered at 1500 $^{\circ}$ C for 5 h to obtain the sample.

X-ray diffraction (XRD) patterns were collected in a powder diffractometer (Bruker, D8 Focus, Cu K α , 40 kV, 30 mA). The XRD data were collected in the range of $15-70^{\circ}$ with a step size of 0.02° . Rietveld refinement was performed with the FullProf program package. The photoluminescence (PL) and photoluminescence excitation (PLE) spectra were measured with an FLS920 spectrometer (Edinburgh Instruments, U.K.). Near-infrared photoluminescence spectra were measured by a fiber optics optical meter (Ocean Optical, NIRQUEST256-2.5). A 782 nm laser diode was used as the pump source to excite the ${}^{3}H_{4}$ level of Tm³⁺. In lifetime measurements, a 10 ns pulsed laser with tunable wavelengths from an optical parametric oscillator (OPO) pumped by a Nd³⁺:YAG laser (Spectra-Physics, GCR 130) was used as a pump source. The signals were detected by a Tektronix digital oscilloscope (TDS 3052). Optical microscope photographs were measured with an Olympus BX53MTRF-S optical microscope. A 980 nm laser diode was used as the light source.

RESULTS AND DISSCUSSION

Lu₂O₃ belongs to a cubic lattice with a space group of $Ia\overline{3}$. There are two Lu sites in Lu₂O₃, namely Lu1 and Lu2, respectively, as shown in Figure 1. The Lu1 site shows an ideal S_6 symmetry, and the Lu2 site shows a distorted C_2 symmetry. Tm³⁺ and Er³⁺ are considered to be nonluminous in site Lu1

Figure 2. Emission spectra of $(Lu_{0.98-x}Tm_{0.02}Er_x)_2O_3$ samples excited by 782 nm: (a) measured with an FL920 spectrometer in the range 950–1700 nm; (b) measured with a fiber optics optical meter in the range 1550–2150 nm.

due to its good symmetry. The XRD patterns of pure, Tm³⁺doped, and Tm³⁺- and Er³⁺-codoped Lu₂O₃ are shown in Figure 1. Rietveld refinement of the XRD patterns was performed. The results show that there is no impure phase. Cell parameters and atom positions were refined for all the samples. The coordination environments of Lu1 and Lu2 were calculated on the basis of the results of Rietveld refinement, as shown in Table 1. The eccentric distance³¹ is the distance that the center atom shifts from the centroid of the coordinate atoms. Sphericity estimates the degree that the coordination polyhedron deviates from a sphere. The radii of Tm³⁺ and Er³⁺ are 0.88 and 0.89 Å, respectively, and are close to that of the Lu³⁺ ion (0.861 Å). As shown in Table 1, cell parameters and site coordination of Tm³⁺- and Er³⁺-doped Lu₂O₃ do not show obvious distortion. This indicates that Tm³⁺ and Er³⁺ do not change the thermal conductivity of Lu₂O₃ greatly. This is beneficial for high-power laser applications.

Figure 2 is the emission spectra of $(Lu_{0.98-x}Tm_{0.02}Er_x)_2O_3$ samples with different concentrations of Er³⁺. Subject to the detection range of different spectrometers, we measured the emission spectra with both a fiber optics spectrometer (Figure 2b) and an FLS920 spectrometer (Figure 2a). As shown in Figure 2, emission peaks from 980 to 1035 nm originate from the ${}^{4}I_{11/2}$ level of Er^{3+} . Emission peaks in the range of 1400-1580 nm originate from the ${}^{3}H_{4} \rightarrow {}^{3}F_{4}$ transition of Tm³⁺. The emission peak at 1537 nm originates from the ${}^4\mathrm{I}_{13/2}$ level of Er³⁺. Emission peaks from 1600 to 2010 nm originate from the ³F₄ level of Tm³⁺. As shown in Figure 2a, $(Lu_{0.9795}Tm_{0.02}Er_{0.0005})_2O_3$ shows the maximum emission intensity of $Tm^{3+} {}^{3}F_{4}$ with an increased percentage of 41.9%. Further increase in Er³⁺ concentration decreases the emission intensity of the $Tm^{3+} {}^{3}F_{4}$ level. The emission intensity of $(Lu_{0.978}Tm_{0.02}Er_{0.002})_2O_3$ is even weaker than that of $(Lu_{0.98}Tm_{0.02})_2O_3$. As shown in Figure 2a, emission peaks of $Er^{3+}~^4I_{11/2}$ and $^4I_{13/2}$ are observed on excitation by a 782 nm laser. The emission intensity increases with higher Er^{3+} concentration. Since Er^{3+} cannot be excited by 782 nm light, the luminescence of Er^{3+} is ascribed to the energy that was transferred from Tm^{3+} .

Figure 3 is the excitation spectra of $(Lu_{0.975}Tm_{0.02}Er_{0.005})_2O_3$ monitoring at 980 nm $(Er^{3+}\ ^4I_{11/2})$ and 1537 nm $(Er^{3+}\ ^4I_{13/2})$, respectively. The excitation spectra at both 980 and 1537 nm consist of peaks originating from Tm^{3+} . This confirms the

Figure 3. Excitation spectra of $(Lu_{0.975}Tm_{0.02}Er_{0.005})_2O_3$ monitored at 980 nm (⁴I_{11/2} of Er³⁺, black) and 1537 nm (⁴I_{13/2} of Er³⁺, red), respectively. A diagram of the Tm³⁺ \rightarrow Er³⁺ energy transfer process is shown at the top right corner.

energy transfer from Tm^{3+} to $\text{Er}^{3+} {}^{4}\text{I}_{11/2}$ and ${}^{4}\text{I}_{13/2}$ levels. Figure 4 gives the decay curves that monitor the $\text{Tm}^{3+} {}^{3}\text{H}_{4}$ level. The

Figure 4. Decay curves of $(Lu_{0.98-x}Tm_{0.02}Er_x)_2O_3$ excited at 684 nm $({}^{3}F_{2,3} \text{ of }Tm^{3+})$ and monitored at 812 nm $({}^{3}H_4 \text{ of }Tm^{3+})$ emission.

decay rate is accelerated with increasing Er^{3+} concentration. This improves the energy transfer from the Tm^{3+} ${}^{3}\mathrm{H}_{4}$ level to Er^{3+} . Energy transfer from Tm^{3+} ${}^{1}\mathrm{D}_{2}$ and ${}^{1}\mathrm{G}_{4}$ to Er^{3+} have nothing to do with the enhanced ~2 μ m emission on excitation by a 782 nm laser. In this paper, we only discuss energy transfer processes from the Tm^{3+} ${}^{3}\mathrm{H}_{4}$ (can be excited by a 782 nm pump laser) and/or ${}^{3}\mathrm{F}_{2,3}$ (giving electrons to the ${}^{3}\mathrm{H}_{4}$ level by nonradiative transition) levels to Er^{3+} .

As shown in Figure 3, the intensity of energy levels originating from Er3+ are almost the same for 980 and 1537 nm emission. This is reasonable for a down conversion luminescence. However, the excitation intensity originated from Tm³⁺ monitoring 1537 nm is much stronger than that monitoring 980 nm. Energy transfer rates from Tm³⁺ to Er³⁺ ${}^{4}I_{13/2}$ and ${}^{4}I_{11/2}$ levels are different. As shown at the top right corner of Figure 3, there are two possible energy transfer routes from the Tm³⁺ ${}^{3}H_{4}$ or ${}^{3}F_{2,3}$ level to Er³⁺: one is from the ${}^{3}H_{4} \rightarrow$ ${}^{3}\text{H}_{6}$ transition of Tm³⁺ to ${}^{4}\text{I}_{15/2} \rightarrow {}^{4}\text{I}_{11/2}$ of Er³⁺ (process 0, Figure 3). Another is from the ${}^{3}\text{H}_{4} \rightarrow {}^{3}\text{F}_{4}$ transition of Tm³⁺ to ${}^{4}I_{15/2} \rightarrow {}^{4}I_{13/2}$ of Er^{3+} (process 2), Figure 3). Process ① increases in intensity at 980 nm, and process 2 increases in intensity at 1537 nm. Excitation intensity corresponding to the $Tm^{3+3}F_{2,3}$ level at 1537 nm is 3.6 times that at 980 nm. This indicates that the energy on the Tm^{3+ 3}F_{2,3} level mostly transfers to Er³⁺ ⁴I_{13/2}. The energy transfer process from the $Tm^{3+3}H_4 \rightarrow {}^3F_4$ transition to the $Er^{3+4}I_{13/2}$ level (process 2), Figure 3) is responsible for this phenomenon. Thus, energy transfer from $Tm^{3+3}H_4 \rightarrow {}^{3}F_4$ to $Er^{3+4}I_{13/2}$ (process 2), Figure 3) is dominant.

Figure 5 gives the emission spectra of $(Lu_{0.979}Tm_{0.02}Er_{0.001})_2O_3$ (red) and $(Lu_{0.999}Er_{0.001})_2O_3$ (black). There are two emission bands of Er^{3+} : the emission peak at 980–1035 nm originates from the ${}^{4}I_{11/2}$ level, and the emission peak at around 1537 nm originates from the ${}^{4}I_{13/2}$ level. The emission intensity of the $Er^{3+} {}^{4}I_{13/2}$ level is much stronger than that of the ${}^{4}I_{11/2}$ level for $(Lu_{0.999}Er_{0.001})_2O_3$. However, the emission intensity of the ${}^{4}I_{13/2}$ level is weaker than that of the ${}^{4}I_{11/2}$ level for $(Lu_{0.999}Er_{0.001})_2O_3$. The gray shadow in

Figure 5. Emission spectra of $(Lu_{0.979}Tm_{0.02}Er_{0.001})_2O_3$ (red) and $(Lu_{0.999}Er_{0.001})_2O_3$ (black) excited at 782 and 650 nm, respectively. A diagram of the $Tm^{3+} \rightarrow Er^{3+} \rightarrow Tm^{3+}$ FBET process is shown at the top left corner.

Figure 5 shows the intensity difference. A comparison of the two samples suggests that the difference should be triggered by codoped Tm³⁺. The intensity difference should be caused by energy transfer from $\text{Er}^{3+} \, {}^{4}\text{I}_{13/2}$ to Tm³⁺. Judging from the energy level diagram (process ②, Figure 5), only the energy of the Tm³⁺ ${}^{3}\text{F}_{4}$ level is close to that of $\text{Er}^{3+} \, {}^{4}\text{I}_{13/2}$. Thus, we suppose that the energy transfer route is from $\text{Er}^{3+} \, {}^{4}\text{I}_{13/2}$ to Tm³⁺ ${}^{3}\text{F}_{4}$. This can be further confirmed by the following analysis. For example, the emission of Tm³⁺ ${}^{3}\text{F}_{4}$ can be observed when only exciting $\text{Er}^{3+} \, {}^{4}\text{I}_{11/2}$ (Figure 7) and/or ${}^{4}\text{I}_{13/2}$ (Figure 8a).

The above analysis constructs a $\text{Tm}^{3+} \rightarrow \text{Er}^{3+} \rightarrow \text{Tm}^{3+}$ forward–backward energy transfer (FBET) system, as shown at the top left corner of Figure 5 (processes ① and ②). On excitation by 782 nm pump light, energy transfer from the $\text{Tm}^{3+}{}^{3}\text{H}_{4} \rightarrow {}^{3}\text{F}_{4}$ transition to $\text{Er}^{3+}{}^{4}\text{I}_{13/2}$ occurs (forward energy transfer, FET). Then, the energy transfers back to the $\text{Tm}^{3+}{}^{3}\text{F}_{4}$ level from $\text{Er}^{3+}{}^{4}\text{I}_{13/2}$ (backward energy transfer, BET). This process creates two Tm^{3+} ions in the excited ${}^{3}\text{F}_{4}$ state. In other words, this is a quantum cutting process.

In Tm³⁺- and Er³⁺-codoped samples, the Tm³⁺ \rightarrow Er³⁺ \rightarrow Tm³⁺ FBET process and Tm³⁺ \rightarrow Tm³⁺ CR process exist simultaneously. For Tm³⁺ \rightarrow Er³⁺ and Tm³⁺ \rightarrow Tm³⁺ energy transfer processes, the decay curve can be expressed by the Inokuti–Hirayama formula^{32,33}

$$I_{\rm d} = I_0 \, \exp\left[-\frac{4}{3}\pi\Gamma\left(1-\frac{3}{s}\right)N_{\rm a}\alpha^{3/s}t^{3/s}\right] \tag{1}$$

where I_d represents the decay curve of the donor and I_0 represents the decay curve of the donor in the absence of an acceptor. For the $\text{Tm}^{3+} \rightarrow \text{Tm}^{3+}$ CR process, I_d is the decay curve of $(\text{Lu}_{0.98}\text{Tm}_{0.02})_2\text{O}_3$ monitored at 812 nm $({}^3\text{H}_4 \text{ level})$ emission. I_0 is the decay curve of $(\text{Lu}_{0.9999}\text{Tm}_{0.0001})_2\text{O}_3$ monitored at 812 nm emission. *s* is a coefficient with values of 6, 8, and 10, respectively, for dipole–dipole, dipole–quadrupole, and quadrupole–quadrupole interactions. N_a is the number of acceptor ions per unit volume. It can be derived that $\log\{-\ln[I_d/I_0]\}$ shows a linear dependence on $\log t$ with a slope of 3/s. As shown in Figure 6a, *s* can be calculated to be 4.3, close to 6. Thus, the electric interaction type of the $\text{Tm}^{3+} \rightarrow \text{Tm}^{3+}$ CR process is dipole–dipole.

For the $Tm^{3+} \rightarrow Er^{3+}$ forward energy transfer (FET) process, I_d is the decay curve of $(Lu_{0.979}Tm_{0.02}Er_{0.001})_2O_3$ monitored at

Figure 6. (a, c) Relationship between $\log[-\ln(I(t)/I_0(t))]$ and $\log t$ of $(Lu_{0.98}Tm_{0.02})_2O_3$ and $(Lu_{0.979}Tm_{0.02}Er_{0.001})_2O_3$. (b, d) Plots of $\ln[I(t)/I_0(t)]$ vs $t^{1/2}$ for $(Lu_{0.98}Tm_{0.02})_2O_3$ and $(Lu_{0.979}Tm_{0.02}Er_{0.001})_2O_3$.

812 nm. I_0 is the decay curve of $(Lu_{0.98}Tm_{0.02})_2O_3$ monitored at 812 nm. As shown in Figure 6c, *s* can be calculated to be 5.4, also close to 6. Thus, the electric interaction type from Tm³⁺ ${}^{^3}H_4 \rightarrow {}^{^3}F_4$ to $Er^{3+} {}^{^4}I_{13/2}$ is also dipole–dipole.

The critical energy transfer distance R_0 is the distance between an isolated donor–acceptor pair where the energy transfer rate is the same with the spontaneous radiation of the donor. R_0 can be calculated by the formula $R_0^6 = \alpha \tau_0$. α is a rate constant for energy transfer and can be calculated through a transformed Inokuti–Hirayama formula:

$$\ln \frac{I_{\rm d}}{I_0} = -\frac{4}{3}\pi \Gamma \left(\frac{1}{2}\right) n_{\rm A} \alpha^{1/2} t^{1/2} \tag{2}$$

As shown in Figure 6c,d, α values for the Tm³⁺ \rightarrow Tm³⁺ CR process and the Tm³⁺ \rightarrow Er³⁺ FET process equal 8.476 \times 10⁻⁴⁰ and 5.868 \times 10⁻³⁷ cm⁶ s⁻¹ respectively. τ_0 for the Tm³⁺ \rightarrow Tm³⁺ CR process is 346 μ s, which is obtained by integrating the decay curve of (Lu_{0.9999}Tm_{0.0001})₂O₃. τ_0 for the FET process is 77 μ s and is obtained from the decay of (Lu_{0.98}Tm_{0.02})₂O₃. Thus, R_0 values are calculated to be 8.15 and 18.88 Å for the Tm³⁺ \rightarrow Tm³⁺ CR process and Tm³⁺ \rightarrow Er³⁺ FET process, respectively.

The critical concentration C_0 is the concentration at which the energy transfer rate is equal to the spontaneous radiation rate. Critical concentration can be calculated by the formula

$$C_0 = \frac{3}{4\pi N_a R_0^{\ 3}}$$
(3)

Thus, the C_0 value of the $\text{Tm}^{3+} \rightarrow \text{Tm}^{3+}$ CR process is calculated to be 0.0155 and the C_0 value of the $\text{Tm}^{3+} \rightarrow \text{Er}^{3+}$ FET process is calculated to be 0.0012. This indicates that the

 $Tm^{3+} \to Er^{3+}$ FET process works efficiently even at very low Er^{3+} concentration.

For the $Er^{3+} \rightarrow Tm^{3+}$ back energy transfer (BET) process, energy transfer efficiency can be estimated by

$$\eta_{\rm BET} = 1 - \frac{I}{I_0} \tag{4}$$

where I_0 is the emission intensity of the donor without an acceptor and *I* is the emission intensity with an acceptor. Figure 7 gives the emission spectra of $(Lu_{0.979}Tm_{0.02}Er_{0.001})_2O_3$ and $(Lu_{0.98}Tm_{0.02})_2O_3$ excited at 980 nm. The emission intensity of

Figure 7. Emission spectra of $(Lu_{0.975}Tm_{0.02}Er_{0.001})_2O_3$ (red) and $(Lu_{0.98}Tm_{0.02})_2O_3$ (black) excited at 980 nm.

Article

Figure 8. (a) Emission spectra of $(Lu_{0.98-x}Tm_{0.02}Er_x)_2O_3$ excited at 1450 nm. (b) Ratio of 1633 nm (${}^{3}F_4$ of Tm^{3+}) to 1537 nm (${}^{4}I_{13/2}$ of Er^{3+}). (c) Diagram of $Er^{3+} \leftrightarrow Tm^{3+}$ reciprocating transfer process.

 $\mathrm{Er}^{3^+}{}^{3}\mathrm{I}_{11/2}$ shows a sudden decrease with codoped Tm³⁺. Back energy transfer efficiency, η_{BET} , can be calculated with eq 4, and the value is 99.54%. The $\mathrm{Er}^{3^+} \rightarrow \mathrm{Tm}^{3^+}$ BET process is highly efficient at low Er^{3^+} concentration. The high energy transfer efficiency is interpreted by high Tm³⁺ concentration.

The above analysis indicates that the Tm³⁺ \rightarrow Er³⁺ \rightarrow Tm³⁺ FBET system works efficiently even at very low Er³⁺ concentration. For the Tm³⁺ \rightarrow Tm³⁺ CR process, a high concentration of Tm³⁺ is necessary. However, high Tm³⁺ concentration results in energy migration between Tm³⁺ ions. If the energy migrates to a Tm³⁺ ion with defects around it, the luminescence is quenched. When an Er³⁺ ion is introduced, the Tm³⁺ \rightarrow Er³⁺ FET process competes with the energy migration process. Thus, Er³⁺ ion recycles a certain proportion of quenching energy. The recycled energy is given back to the Tm³⁺ ion by the Er³⁺ \rightarrow Tm³⁺ BET process. This process reduces energy migration between ³H₄ levels of Tm³⁺ and increases the emission intensity of Tm³⁺ ³F₄ level (~2 μ m).

Figure 8a gives the emission spectra of $(Lu_{0.98-x}Tm_{0.02}Er_x)_2O_3$ excited at 1450 nm, which only excites the ${}^{4}I_{13/2}$ level of Er^{3+} . Emission of ${}^{3}F_4$ (1633 nm) of Tm^{3+} is observed in Figure 8a. This confirms the energy transfer process from $Er^{3+} {}^{4}I_{13/2}$ to $Tm^{3+} {}^{3}F_4$. However, the intensity ratio of $Tm^{3+} {}^{3}F_4$ to $Er^{3+} {}^{4}I_{13/2}$ decreases rapidly with increasing Er^{3+} concentration, as shown in Figure 8b. This is because the energy at the $Tm^{3+} {}^{3}F_4$ level may transfers back to the $Er^{3+} {}^{4}I_{13/2}$ level by thermal disturbance. As shown in Figure 8c, the ${}^{4}I_{13/2}$ level of Er^{3+} is 6313 cm⁻¹, as estimated from the emission spectrum, and the ${}^{3}F_4$ level of Tm^{3+} is estimated to be 5186 cm⁻¹. The energy difference is 1127 cm⁻¹ and is only about two phonons of Lu_2O_3 (618 cm⁻¹). This process becomes obvious at higher Er^{3+} concentration. Thus, ~2 μ m emission of Tm^{3+} decreases with higher Er^{3+} concentration. Enhanced emission of Tm^{3+} can only be observed at a low concentration of Er^{3+} .

Another energy transfer process that may quench the ~2 μ m emission is from Tm³⁺ ${}^{3}F_{4} \rightarrow {}^{3}H_{6}$ to $Er^{3+} {}^{4}I_{11/2} \rightarrow {}^{4}F_{9/2}$, as shown in Figure 9. The upconversion spectra of $(Lu_{0.97}Tm_{0.02}Er_{0.01})_{2}O_{3}$ and $(Lu_{0.99}Er_{0.01})_{2}O_{3}$ excited at 980

Figure 9. Upconversion spectra of $(Lu_{0.97}Tm_{0.02}Er_{0.01})_2O_3$ and $(Lu_{0.99}Er_{0.01})_2O_3$ excited at 980 nm. The color maps are the optical microscope photographs (500×) of $(Lu_{0.97}Tm_{0.02}Er_{0.01})_2O_3$ and $(Lu_{0.99}Er_{0.01})_2O_3$ at 980 nm. The energy scheme shows the green and red upconversion process.

nm are quite different. For $(Lu_{0.99}Er_{0.01})_2O_3$, the upconversion color is mainly green, while that for $(Lu_{0.97}Tm_{0.02}Er_{0.01})_2O_3$ is red. The green emission originates from the ${}^{2}H_{11/2}$ and ${}^{4}S_{3/2}$ levels of Er^{3+} . The two levels are populated by a sequential two photon absorption ${}^{4}I_{15/2} \rightarrow {}^{4}I_{11/2}$ and ${}^{4}I_{11/2} \rightarrow {}^{4}F_{7/2}$, as shown in the energy scheme in Figure 9. This process is well-known for normal upconversion luminescence. When Tm^{3+} is introduced, red emission from ${}^{4}F_{9/2}$ of Er^{3+} dominates. A new energy transfer process from ${}^{3}F_4 \rightarrow {}^{3}H_6$ of Tm^{3+} to ${}^{4}I_{11/2} \rightarrow {}^{4}F_{9/2}$ of Er^{3+} occurs. When the ${}^{4}I_{11/2}$ level of Er^{3+} is populated by a 980 nm laser, process ① populates the ${}^{3}F_4$ level of Tm^{3+} . This process is shown in the diagram in Figure 9. Process ② decreases the emission intensity of the $Tm^{3+} {}^{3}F_4$ level ($\sim 2 \mu m$).

CONCLUSIONS

A trace amount of $\rm Er^{3+}$ is introduced into $\rm Lu_2O_3{:}Tm^{3+}.$ Site distortion is quantified to show the influence of $\rm Er^{3+}$ and $\rm Tm^{3+}$

to Lu sites. No obvious distortion is observed. This is important for high-power laser applications. The emission intensity of Tm^{3+} is enhanced with a low concentration of Er^{3+} . A new $Tm^{3+} \rightarrow Er^{3+} \rightarrow Tm^{3+}$ FBET system is proved in this paper. The energy transfers from the $Tm^{3+3}H_4$ level to the $Er^{3+4}I_{13/2}$ level and then back-transfers to the $Tm^{3+3}F_4$ level. The Tm^{13} $\rightarrow Er^{3+} \rightarrow Tm^{3+}$ FBET is a quantum cutting process and works efficiently at very low Er^{3+} concentration. The critical concentration for the $Tm^{3+} \rightarrow Er^{3+}$ forward energy transfer process (FET) is 0.0012. This value is much smaller than that of the $Tm^{3+} \rightarrow Tm^{3+}$ CR process (0.0155). For the $Er^{3+} \rightarrow$ Tm³⁺ back energy transfer process, the energy transfer efficiency reaches 99.54%. With higher Er³⁺ concentration, other energy transfer processes are observed between Tm³⁺ and Er^{3+} to decrease the ~2 μm emission of Tm^{3+} . Thus, a trace amount of Er^{3+} not only constructs an efficient $Tm^{3+} \rightarrow Er^{3+} \rightarrow$ Tm³⁺ FBET system but also suppresses quenching energy transfer processes. As the result, the $\sim 2 \,\mu m$ emission of Tm³⁺ is enhanced.

AUTHOR INFORMATION

Corresponding Author

*E-mail for J.Z.: zhangjh@ciomp.ac.cn.

ORCID 0

Liangliang Zhang: 0000-0002-9546-8786

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was partially supported by the National Key R&D Program of China (Grant Nos. 2016YFB0701003, 2016YFB0400605, and 2017YFB0403104), the Natural Science Foundation of China (Grant Nos. 61275055, 11274007, 51402284, and 11604330), the Natural Science Foundation of Jilin province (Grant Nos. 20140101169JC, 20150520022JH, and 20160520171JH), the Prior Sci-tech Program of Innovation and Entrepreneurship of Oversea Chinese Talent of Jilin Province, and the State Key Laboratory of Luminescence and Applications.

REFERENCES

(1) You, Z.; Sun, Y.; Sun, D.; Zhu, Z.; Wang, Y.; Li, J.; Tu, C.; Xu, J. High performance of a passively Q-switched mid-infrared laser with Bi₂Te₃/graphene composite SA. *Opt. Lett.* **2017**, *42*, 871–874.

(2) Li, Y. B.; Wang, X.; Yu, B. H.; Tang, Q. B.; Wang, G. H.; Wan, J. G. Nonsequential double ionization with mid-infrared laser fields. *Sci. Rep.* **2016**, *6*, 37413.

(3) Jiang, S.; Yu, C.; Yuan, G.; Wu, T.; Lu, R. Dissociation and Ionization of Quasi-Periodically Vibrating H^{2+} in Intense Few-Cycle Mid-Infrared Laser Fields. *Sci. Rep.* **2017**, *7*, 42086.

(4) Wang, Z.; Gasse, K.; Moskalenko, V.; Latkowski, S.; Bente, E.; Kuyken, B.; Roelkens, G. A III-V-on-Si ultra-dense comb laser,. *Light: Sci. Appl.* **2016**, *6*, e16260.

(5) Malinauskas, M.; Zukauskas, A.; Hasegawa, S.; Hayasaki, Y.; Mizeikis, V.; Buividas, R.; Juodkazis, S. Ultrafast laser processing of materials: from science to industry. *Light: Sci. Appl.* **2016**, *5*, e16133.

(6) Hajireza, P.; Shi, W.; Bell, K.; Paproski, R.; Zemp, R. Noninterferometric photoacoustic remote sensing microscopy. *Light: Sci. Appl.* **2017**, *6*, e16278.

(7) Koopmann, P.; Lamrini, S.; Scholle, K.; Fuhrberg, P.; Petermann, K.; Huber, G. *High Power Diode Pumped 2 \mum Laser Operation of Tm:Lu₂O₃, presented at CLEO: Science and Innovation, CA, June 2016.*

(8) Koopmann, P.; Lamrini, S.; Scholle, P.; Fuhrberg, K.; Petermann, K.; Huber, G. Efficient diode-pumped laser operation of $Tm:Lu_2O_3$ around 2 μ m. *Opt. Lett.* **2011**, *36*, 948–950.

(9) Antipov, A.; Novikov, A.; Larin, S.; Obronov, I. Highly efficient 2 μ m CW and Q-switched Tm³⁺:Lu₂O₃ ceramics lasers in-band pumped by a Raman-shifted erbium fiber laser at 1670 nm. *Opt. Lett.* **2016**, *41*, 2298–2301.

(10) Antipov, A.; Golovkin, S. Y.; Zakharov, O. N.; Zinov'ev, A. P.; Kasatkin, A. P.; Kruglova, M. V.; Marychev, M. O.; Novikov, A. A.; Sakharov, N. V.; Chuprunov, E. V. Structural, optical, and spectroscopic properties and efficient two-micron lasing of new Tm^{3+} : Lu2O3 ceramics. *Quantum Electron.* **2011**, *41*, 863–868.

(11) Antipov, A.; Novikov, A. A.; Zakharov, N. G.; Zinoview, A. P. Optical properties and efficient laser oscillation at 2066 nm of novel Tm:Lu₂O₃ ceramics. *Opt. Mater. Express* **2012**, *2*, 183–189.

(12) Antipov, A.; Novikov, A. A.; Zakharov, N. G.; Zinoview, A. P.; Yagi, H.; Sakharov, N. V.; Kruglova, M. V.; Marychev, M. O.; Gorshkov, O. N.; Lagatskii, A. A. Efficient 2.1- μ m lasers based on Tm³⁺:Lu₂O₃ ceramics pumped by 800 nm laser diodes. *Phys. Status Solidi C* 2013, 10, 969–973.

(13) Lagatsky, A. A.; Antipov, O. L.; Sibbett, W. Broadly tunable femtosecond Tm:Lu₂O₃ ceramic laser operating around 2070 nm. *Opt. Express* **2012**, *20*, 19349–19354.

(14) Schmidt, A.; Koopmann, P.; Huber, G.; Fuhrberg, P.; Young, S.; Yeom, D.; Rotermund, F.; Petrov, V.; Griebner, U. 175 fs Tm:Lu_2O_3 laser at 2.07 μ m mode-locked using single-walled carbon nanotubes. *Opt. Express* **2012**, *20*, 5313–5318.

(15) Larin, S.; Antipov, O.; Sypin, V.; Vershinin, O. Hybrid booster at 1940 nm based on Tm:Lu₂O₃ ceramics implementing fiber combined signal and pump sources. *Opt. Lett.* **2014**, *39*, 3216–3218. (16) Antipov, A.; Eranov, I. D.; Frolov, M. P.; Korostelin, Y. V.; Kozlovsky, V. I.; Novikov, A. A.; Podmar'kov, Y. P.; Skasyrsky, Y. K. 2.92 μ m Cr²⁺:CdSe single crystal laser pumped by a repetitively pulsed Tm³⁺:Lu₂O₃ ceramics laser at 2.066 μ m. *Laser Phys. Lett.* **2015**, *12*, 045801.

(17) Esteban-Betegon, F.; Zaldo, C.; Cascales, C. Hydrothermal Tm^{3+} -Lu₂O₃ Nanorods with Highly Efficient 2 μm Emission. *Inorg. Chem.* **2011**, *50*, 2836–2843.

(18) Cascales, C.; Esteban-Betegon, F.; Zaldo, C. Morphology controlled hydrothermal synthesis processes and emission near 2 μ m of Tm³⁺-doped Lu₂O₃ nanostructures. *Phys. State Solid.* **2010**, *7*, 2675–2678.

(19) French, V. A.; Powell, R. C. Laser-induced grating measurements of energy migration in Tm,Ho:YAG. *Opt. Lett.* **1991**, *16*, 666–668.

(20) Dexter, D. L.; Schulman, J. H. Theory of concentration quenching in inorganic phosphors. *J. Chem. Phys.* **1954**, *22*, 1063–1070.

(21) Peng, Y.; Yuan, X.; Zhang, J.; Zhang, L. The effect of La_2O_3 in Tm^{3+} -doped germanate-tellurite glasses for ~ 2 μm emission,. *Sci. Rep.* **2015**, *4*, 5256.

(22) Zhao, C.; Kong, X.; Liu, X.; Tu, L.; Wu, F.; Zhang, Y.; Zeng, Q.; Zhang, H. Li⁺ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF₄: Yb3+, Tm3+ nanoparticles. *Nanoscale* **2013**, *5*, 8084–8089.

(23) Wang, W. C.; Yuan, D. D.; Zhang, L. L.; Xu, S. Q.; Zhang, Q. Y. Enhanced 1.8 μ m emission in Cr³⁺/Tm³⁺ co-doped fluorogermanate glasses for a multi-wavelength pumped near-infrared lasers. *AIP Adv.* **2014**, *4*, 107145.

(24) Wu, D.; Xiao, W.; Zhang, X.; Hao, Z.; Pan, G.; Zhang, L.; Luo, Y.; Zhang, J. Enhanced emission of $Tm^{3+}:{}^{3}F_{4}\rightarrow{}^{3}H_{6}$ transition by backward energy transfer from Yb^{3+} in $Y_{2}O_{3}$ for mid-infrared applications. *J. Alloys Compd.* **2017**, 722, 48–53.

(25) Liu, W.; Hao, Z.; Zhang, L.; Zhang, X.; Luo, Y.; Pan, G.; Wu, H.; Zhang, J. Enhanced ${}^{3}H_{4} {}^{-3}F_{4}$ nonradiative relaxation of Tm³⁺ through energy transfer to Yb³⁺ and efficient back transfer in lowly Tm³⁺ doped Lu_{1.6}Sc_{0.4}O₃:Tm³⁺,Yb³⁺. *J. Alloys Compd.* **2017**, *696*, 627–631.

(26) Barrera, E. W.; Pujol, M. C.; Diaz, F.; Choi, S. B.; Rotermund, F.; Park, K. H.; Jeong, M. S.; Cascales, C. Emission properties of

Inorganic Chemistry

hydrothermal Yb³⁺, Er³⁺ and Yb³⁺, Tm³⁺-codoped Lu₂O₃ nanorods: upconversion, cathodoluminescence and assessment of waveguide behavior. *Nanotechnology* **2011**, *22*, 075205J.

(27) Rakov, N.; Maciel, G. S. Comparative study of Er^{3+} and Tm^{3+} co-doped YOF and Y_2O_3 powders as red spectrally pure upconverters. *Opt. Mater.* **2013**, *35*, 2372–2375.

(28) Lu, H.; Hao, H.; Shi, G.; Gao, Y.; Wang, R.; Song, Y.; Wang, Y.; Zhang, X. Optical temperature sensing in β -NaLuF₄:Yb³⁺/Er³⁺/Tm³⁺ based on thermal, quasi-thermal and non-thermal coupling levels. *RSC Adv.* **2016**, *6*, 55307–55311.

(29) Zhang, J.; Hao, Z.; Li, J.; Zhang, X.; Luo, Y.; Pan, G. Observation of efficient population of the red-emitting state from the green state by non-multiphonon relaxation in the $Er^{3+}-Yb^{3+}$ system. *Light: Sci. Appl.* **2015**, *4*, e239.

(30) Chan, E. M.; Gargas, D. J.; Schuck, P. J.; Milliron, D. J. Concentrating and Recycling Energy in Lanthanide Codopants for Efficient and Spectrally Pure Emission: The Case of NaYF₄: $\rm Er^{3+}/Tm^{3+}$ Upconverting Nanocrystals, *J. Phys. Chem. B* **2012**, *116*, 10561–10570.

(31) Balic Zunic, T.; Makovicky, M. Determination of the centroid orthe best centre'of a coordination polyhedron. *Acta Crystallogr., Sect. B: Struct. Sci.* **1996**, *52*, 78–81.

(32) Inokuti, M.; Hirayama, F. Influence of Energy Transfer by the Exchange Mechanism on Donor Luminescence. J. Chem. Phys. 1965, 43, 1978–1989.

(33) Zhang, L.; Zhang, J.; Pan, G.; Zhang, X.; Hao, Z.; Luo, Y.; Wu, H. Low-Concentration Eu^{2+} -Doped SrAlSi₄N₇:Ce³⁺ Yellow Phosphor for wLEDs with Improved Color-Rendering Index. *Inorg. Chem.* **2016**, *55*, 9736–9741.