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Abstract: Calculating the evolution of polarization for all polarization states of light in 
optical systems, in global coordinates, is an important, yet challenging task. This calculation 
exists for completely polarized light, but has not yet been developed for partially polarized 
light. A 3 × 3 coherency matrix for partially polarized light, in global coordinates, is 
presented to calculate the transformation of its polarization as it passes through an optical 
system. This matrix is a three-dimensional generalization of the coherency matrix. A new 
coherency matrix calculus method in three dimensions is suggested and validated for two 
cases. A double Gauss optical lens is introduced to compare this method’s performance with 
two-dimensional calculus. 
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1. Introduction 
Quantifying the evolution of polarization for light passing through optical systems [1–4] is 
important, especially in the case of partially polarized light passing through polarimetric 
cameras [5,6] that are used for measuring target polarization. Such analysis allows not only to 
determine the polarization characteristics of an optical system through which light passes [7–
9], but also to determine the polarization of light itself [10–13], which may be affected as a 
result of light’s interaction with polarimetric cameras [14,15]. 

The evolution of the polarization state can be calculated using the polarization ray tracing 
technique [16], and many methods for this technique have been developed over the years 
[17]. Methods that are based on the 2 × 2 Jones matrix and 4 × 4 Mueller matrix have been 
extensively used for polarization ray tracing [18,19]. The corresponding vectors for 
representing polarization are the Jones vector (which captures only completely polarized 
light, but captures the overall phase information) or the coherency matrix, and the Stokes 
vector (which capture both polarized and partially polarized light, but does not capture the 
overall phase information). The above methods are all defined for two-dimensional 
coordinate systems, which means they are only appropriate when the polarization paraxial 
approximation holds, and ignore the coordinate difference of light rays in different 
propagation directions. 

To use the polarization ray tracing approach on light rays in different propagation 
directions, Chipman et al. and Yun et al. [20,21] have developed a method that uses a 3 × 1 
polarization vector and a 3 × 3 polarization matrix, which are three-dimensional 
generalizations of the Jones vector and Jones matrix. However, this method can only describe 
the evolution of completely polarized light, as the Jones vector cannot describe the 
polarization state of unpolarized and partially polarized light. Jose J. Gil et al. [22,23] 
proposed the 3D coherency matrices to describe the degree of polarization in three 
dimensions, which consist of generalized Stokes parameters, but they didn’t focus on the 
evolution of polarization in optical systems. Because in many situations light is only partially 
polarized, it becomes more important to calculate the polarization evolution of such partially 
polarized light. In particular, a method is urgently needed to perform calculations for 
polarimetric cameras; the results of these calculations can then be used for calibrating the 
polarization effects of polarimetric cameras [11–13], which would be advantageous for 
improving their measurement accuracy. 

In this article, we describe the development of the three-dimensional polarization ray 
tracing calculus for partially polarized light, using a new 3 × 3 coherency matrix. Unlike the 
previous 3D coherency matrices, the 3 × 3 coherency matrix is a three-dimensional 
generalization of the classical coherency matrix, and is used to describe partially and fully 
polarized states in three-dimensional global coordinates. The physical associations between 
this novel coherency matrix for global coordinates and the currently used coherency matrix 
are described. The calculus of three-dimensional polarization ray-tracing for partially 
polarized light is derived in detail. The method is validated on two special cases: 1) global 
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coordinates are aligned with the local coordinates of incident and exiting light, 2) linear 
polarized light is refracted by a dielectric medium. 

This paper is organized as follows. In Section 2, we describe the previous polarization 
calculus and the associated vectors and matrices available for describing the polarization of 
light. In Section 3, the novel 3 × 3 coherency matrix in global coordinates is proposed. In 
Section 4, the calculus of three-dimensional polarization ray tracing for partially polarized 
light is derived using the proposed 3 × 3 coherency matrix. In Section 5, the method is 
demonstrated and validated on two special cases and one example. In Section 6, we 
summarize and conclude the paper. 

2. Previous polarization calculus 
In this section, we summarize the previous polarization calculus and review the definition of 
the currently used coherency matrix. 

2.1 Summary 

Table 1 lists the previous polarization calculus and the associated vectors and matrices 
available for describing the polarization of light. 

Table 1. The previous polarization calculus. 

Calculus and properties Polarization vector Polarization matrix Polarization evolution 
equation 

Jones calculus Jones vector Jones matrix 

= ×(out) (in)E T E  
Amplitude calculus 

x

y

E
E
 

=  
 

E  
11 12

21 22

T T

T T
 

=  
  

T  Only polarized light 
Local coordinates 
Coherency matrix 

calculus Coherency matrix Jones matrix 
†= × ×P(out) P(in)J T J T  Intensity calculus 

xx xy

yx yy

J J
J J
 

=  
  

PJ  
xx xy

yx yy

J J
J J
 

=  
  

PJ  All polarization state 
Local coordinates 
Mueller calculus Stokes vector Mueller matrix 

= ×(out) (in)S M S  

Intensity calculus 
0
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S
S
S
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M  

All polarization state 

Local coordinates 

Polarization ray tracing 
calculus Polarization vector Polarization ray tracing matrix 

3 3= ×(out) 3 (in)E P E  
Amplitude calculus 

x

y

z

E
E
E

 
 

=  
 
 

3E  
11 12 13

21 22 23

31 32 33

p p p
p p p
p p p

 
 =  
  

3P  
Only polarized light 

Global coordinates 

We can see from Table 1 that the existing polarization calculi utilize the Jones matrix or 
the Mueller matrix. These are well known and are described in detail elsewhere. The 
polarization vector associated with the Mueller matrix is the Stokes vector, and it can 
represent both polarized and partially polarized light. There are two polarization vectors 
associated with the Jones matrix, i.e., the Jones vector and the coherency matrix. Because the 
Jones vector can only represent polarized light, the coherency matrix can be a suitable 
substitution for the Jones matrix. 

Local coordinates indicate that the polarization calculus is performed in two-dimensional 
coordinates, while global coordinates indicate that the calculus is performed in three-
dimensional coordinates. Three-dimensional calculus is more objective, because two-
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dimensional calculus assumes polarization paraxial approximation. One three-dimensional 
method was suggested by Yun et al. [20,21]; this method is called the polarization ray tracing 
calculus. It is a three-dimensional generalization of the Jones calculus, including the 
generalization of the Jones vector and Jones matrix. It can describe the polarization evolution 
of light as it passes through an optical system in three-dimensional global coordinates. 
However, the method cannot describe the polarization evolution for partially polarized light, 
because the generalization of the Jones vector can only describe polarized light. 

2.2 Coherency matrix 

The coherency matrix is described in detail by Born and Wolf in their books [24,25]. Here we 
just review its definition and properties. 

Consider a quasi-monochromatic light wave that propagates in the positive z direction. Let 
Ex and Ey represent the components of the electric field vector 

 ( )i kz wtA e −= ⋅E  (1) 

in two mutually orthogonal directions, which are perpendicular to the direction of 
propagation. The coherency matrix JP of a quasi-monochromatic light wave is defined by 

 

†

,

.

x
x y

y

xx xy

yx yy

E
E E

E

J J
J J

∗ ∗

= ×

 
 = ×   

 

 
=  
  

PJ E E

 (2) 

Here, the operator  denotes averaging over some short window of time, the operator ×  
denotes the matrix multiplication, the superscript †  is the Hermitian conjugate, and the 
superscript * denotes conjugate. The diagonal elements of JP, Jxx and Jyy, are real and 
represent the intensities of the components in the x and y directions. Hence, the trace Tr(JP) 
of the matrix is equal to the total intensity of the light wave, 

 (J ) .x x y y xx yyTr E E E E J J∗ ∗= + = +P  (3) 

The nondiagonal elements are in general complex, but they are conjugates of each other. 
The degree of polarization P (hereafter denoted as DoP) of the wave is given by 

 
( )2

4 J
1 , 0 1.

xx yy

P P
J J

= − ≤ ≤
+

P  (4) 

Here, the operator PJ  denotes the associated determinant of the coherency matrix JP. 
For P = 1, the wave is completely polarized. For a general polarization state (i.e., partially 

elliptically polarized light), the orientation θ (called Orient in this paper) of polarization and 
the ellipticity angle ε are given by 

 
( )
( )

1 1
arc tan , arc sin .

2 2
xy yx xy yx

xx yy xx yy

J J j J J

J J P J J
θ ε

+ − −
= =

− +

   
   
   

 (5) 

In two-dimensional coordinates, the coherency matrix [26] of partially elliptically 
polarized light with intensity I is 
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1 cos 2 cos 2 (sin 2 cos 2 sin 2 )

.
(sin 2 cos 2 sin 2 ) 1 cos 2 cos 22

P P jI
P j P

θ ε θ ε ε
θ ε ε θ ε

+ − 
=  + − 

PJ  (6) 

When the ellipticity angle is ε = 0°, partially elliptically polarized light becomes partially 
linearly polarized light. 

3. New 3 × 3 coherency matrix in global coordinates 
In this section, we present a new 3 × 3 coherency matrix in three-dimensional global 
coordinates. 

3.1 Coherency matrix in the eigen-vibration coordinates 

From the above descriptions, the coherency matrix in two-dimensional coordinates is defined 
in the plane perpendicular to the direction of propagation, which we here call the “eigen-
vibration plane” of the propagating light. We can build a right-handed three-dimensional 
coordinate system using the eigen-vibration plane and the propagation vector; in what 
follows, we call these coordinates the “eigen-vibration coordinates” of the propagating light. 
Each light ray has independent eigen-vibration coordinates, O-X’Y’Z’, as the propagation 
vectors of light are different in an optical system. The coordinates are three-dimensional local 
coordinates. A schematic is shown in Fig. 1. 

O

KX’

Y’

Z’
Propagation 

Vector

 

Fig. 1. The eigen-vibration coordinates of the propagating light. 

In the eigen-vibration coordinates, a three-dimensional generalization of the coherency 
matrix is easy to derive. Let Ex’, Ey’, and Ez’ represent the three components of the electric 
field vector EL. The Ez’ component is always zero, because the electric field vector only 
oscillates in the eigen-vibration plane. The coherency matrix JP3L in the ray’s eigen-vibration 
coordinates can be rewritten as 

 

†

'

' ' ', , 0
0

0
.

0 0

x

y x y

E
E E E∗ ∗

= ×

 
   = ×   
  

 
=  
 

P3L L L

P

J E E

J

 (7) 

The trace Tr(JP3L) of the matrix is also equal to the total intensity of the propagating light. 
Because the associated determinant P3LJ  is always zero, the degree of polarization P in 
eigen-vibration coordinates should be rewritten as 

 
( )2

4( )
1 .xx yy xy yx

xx yy

J J J J
P

J J

−
= −

+
 (8) 
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The other polarization parameters are given in Eq. (5). 

3.2 Coherency matrix in three-dimensional global coordinates 

In an optical system, different light rays will propagate in different directions. Each light ray 
has its own coherency matrix JP3L in its own eigen-vibration coordinates. It then becomes 
necessary to express all coherency matrices JP3 in the same three-dimensional global 
coordinate system. 

To accomplish this process, we first transform local coordinates into global coordinates. 
We assume that the propagation vector of light is K = [Kx, Ky, Kz]T in the global coordinates 
O-XYZ. The eigen-vibration coordinates O-X’Y’Z’ are constructed relative to the light ray’s 
propagation vector. A schematic is shown in Fig. 2. 

X

Y

ZO

K
X’

Y’

Z’

ωy

ωx

O-XYZ: Global coordinate system
O-X’Y’Z’: Local coordinate system

O-XYZO-X’Y’Z’

Rotation matrix 
R

Inverse rotation matrix  
 R-1

 

Fig. 2. Global coordinates O-XYZ and the eigen-vibration coordinates O-X’Y’Z’. 

The transformation from local coordinates into global coordinates is as follows: 1) the 
eigen-vibration coordinates rotate ωy around the Y’ axis and then 2) rotate ωx around the X’ 
axis. The rotation angles ωy and ωx are given by 

 
2 2 2

(90 arc cos( )), arc tan( ).yx

y x

zx y z

KK

KK K K
ω ω= − − =

+ +
 (9) 

The rotation matrix R is 

 ,×
x y

R = R R  (10) 

where 

 
cos 0 sin 1 0 0

0 1 0 , 0 cos sin

sin 0 cos sin 0 cos

.
y y

x x x

y y x x

ω ω

ω ω

ω ω ω ω

−

= =

−

   
   
   
     

y
R R  (11) 

By using the rotation matrix R, we can transform the coherency matrix from eigen-
vibration coordinates into global coordinates. The electric field vector EG in global 
coordinates is 

 .= ×
LGE R E  (12) 

The coherency matrix JP3 in the three-dimensional global coordinate system is 

 

†

( )

.

T

T

= ×

= × × ×

= × ×

P3 G G

*
L L

P3L

J E E

R E R E

R J R

 (13) 
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For all polarization states, the coherency matrix JP3 can be obtained from the associated 
rotation matrix R and coherency matrix JP3L in the corresponding eigen-vibration 
coordinates. The correctness of this statement can be demonstrated by decomposing 
polarization states into completely polarized light, completely unpolarized light (natural 
light), and partially polarized light. 

Firstly, we take a beam of completely polarized light as an example. In the eigen-vibration 
coordinates, its Jones vector is E3L and its coherency matrix is JCP3L. In the global 
coordinates, its Jones vector E3 can be calculated as = ×

3 3L
E R E . Its coherency matrix JCP3 in 

three-dimensional global coordinates is calculated as 

 

†
3 3

*
3 3

*
3 3

*
3 3

( )

( )

( )

.

T

T
L L

T T
L L

T

= ×

= ×

= × × ×

= × × ×

= × ×

CP3

CP3L

J E E

E E

R E R E

R E E R

R J R

 (14) 

Secondly, we discuss about a beam of completely unpolarized light (natural light) with 
intensity Iup. The natural light can be decomposed into the addition of two independent linear 
polarized light [24]. In the two-dimensional coordinates (the eigen-vibration plane), the 
coherency matrix of the natural light JUP can be expressed as 

 
1 0 0 0

.
0 0 0 12 2

up upI I   
= +   

   
UPJ  (15) 

In the eigen-vibration coordinates, its coherency matrix JUP3L can be expressed as 

 
1 0 0 0 0 0
0 0 0 0 1 0 .

2 2
0 0 0 0 0 0

up upI I   
   = +   
      

UP3LJ  (16) 

In the global coordinates, its coherency matrix JUP3 is calculated as 

 .T= × ×UP3 UP3LJ R J R  (17) 
Thirdly, we discuss about a beam of partially polarized light. In the eigen-vibration 

coordinates, its coherency matrix, JP3L(P, θ, ε), with intensity I, can be decomposed into the 
addition of two coherency matrixes. One is the coherency matrix of completely polarized 
light, JCP3L, with intensity PI. Another is the coherency matrix of completely unpolarized 
light, JUP3L, with intensity (1-P)I. They can be described as 
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1 cos 2 cos 2 (sin 2 cos 2 sin 2 ) 0
(sin 2 cos 2 sin 2 ) 1 cos 2 cos 2 0 ,

2 0 0 0
1 cos 2 cos 2 sin 2 cos 2 sin 2 0

sin 2 cos 2 sin 2 1 cos 2 cos 2 0 ,
2 0 0 0

1 0 0
(1 ) 0 1 0

2 0 0 0

P P j
I P j P

j
PI j

P I

θ ε θ ε ε
θ ε ε θ ε

θ ε θ ε ε
θ ε ε θ ε

 
 
 
  
 
 
 
  

 




+ −
= + −

+ −
= + −

−=

P3L

CP3L

UP3L

J

J

J ,

.





= +P3L CP3L UP3LJ J J

 (18) 

In the global coordinates, its coherency matrix JP3 is also the addition of the two 
associated coherency matrixes, which can be described as 

 ,= +P3 CP3 UP3J J J  (19) 

where 

 
,
.

T

T

= × ×

= × ×
CP3 CP3L

UP3 UP3L

J R J R
J R J R

 (20) 

Hence the coherency matrix JP3 is obtained as 

 ( )
.

T T

T

T

= × × + × ×

= × + ×

= × ×

P3 CP3L UP3L

CP3L UP3L

P3L

J R J R R J R
R J J R
R J R

 (21) 

Because the polarization parameters (i.e., the degree of polarization P, the orientation of 
polarization θ, and the ellipticity angle ε) are defined in the eigen-vibration plane, they cannot 
be calculated in global coordinates. To calculate these, the coherency matrix should be 
transformed from global coordinates into the system of eigen-vibration coordinates, using the 
inverse matrix R−1 of the rotation matrix. After expressing the coherency matrix in the system 
of eigen-vibration coordinates, the polarization parameters can be calculated as in Eqs. (5) 
and (8). 

4. Three-dimensional polarization ray tracing calculus for partially polarized 
light 
In this section, we develop the calculus of three-dimensional polarization ray tracing for 
partially polarized light. 

After obtaining the polarization vector and the associated polarization matrix, the 
polarization ray tracing calculus can be developed using the associated polarization evolution 
equation. For partially polarized light, we have decided to use the coherency matrix calculus 
for polarization ray tracing. In two-dimensional coordinates, the coherency matrix calculus is 
associated with the coherency matrix and the Jones matrix. In three-dimensional global 
coordinates, the associated Jones matrix should be generalized to three-dimensional global 
coordinates. This has been accomplished by Yun et al. [20], and the polarization ray tracing 
matrix P3 is the generalization of the Jones matrix in global coordinates. 

After obtaining the generalization of the coherency matrix JP3 and the Jones matrix P3 in 
three-dimensional global coordinates, three-dimensional polarization ray tracing calculus for 
partially polarized light can be developed. The associated polarization evolution equation at 
the medium surface q is rewritten as 
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 †.= × ×P3(out, q) 3(q) P3(in, q) 3(q)J P J P  (22) 
The polarization ray tracing matrix P3(q) represents the polarization matrix of the medium 

surface q in the three-dimensional global coordinate system [20]. It is given by 

 ) , , , , ,
T

   = × ×   3(q) (out, q (out, q) (out, q) 3(q) (in, q) (in, q) (in, q)P p s k T p s k  (23) 

where 

 

)

, ,

, .

×= = ×
×

= = ×

(in, q) (out, q)
(in, q)(in, q) (in, q)(in, q)

(in, q) (out, q)

(out, q)(in, q)(out, q) (out, q)(out, q

k ks p k s
k k

s s p k s

 

   

 

    

 (24) 

The 3 × 3 Jones matrix T3(q) is the generalization of the Jones matrix T(q) in the surface 
local coordinates {s(q), p(q), k(q)}. 

For dielectrics, metals, multilayer coated media and other isotropic media, the matrix is 
defined by 

 ( ) ( )

( ) ( )

0 0
, or .

0 0
0

0 1
p q p q

s q s q

t r
t r

    
= =     
          

(q)
3(q) (q)T T

T
 (25) 

The quantities t and r are refraction and reflection, respectively, for the surface q. The 
coefficients ts(q), tp(q) are s- and p-amplitude transmission coefficients, while rs(q), rp(q) are 
reflection coefficients. For an uncoated interface between two isotropic media, they can be 
calculated from the Fresnel equations [27]. For coated interfaces, they can be calculated from 
multilayer coating calculations. 

For the surfaces of gratings, holograms, subwavelength gratings, and other nonisotropic 
media, the definition of the 3 × 3 Jones matrix T3(q) has been provided previously [28,29]. 

Because a typical optical system has more than one surface, Eq. (23) is used for every 
surface. The total polarization ray tracing matrix P3(total) of an optical system is 

 ( )
1

.
Q

q=

=∏3(total) 3 qP P  (26) 

According to Eq. (22), the coherency matrix JP3(out) for the final exiting light is 

 † ,= × ×P3(out) 3(total) P3(in) 3(total)J P J P  (27) 

where the coherency matrix JP3(in) represents the polarization state of the incident light. 

5. Demonstration and application example 
In this section, we assess the validity of the proposed method on two special situations, and 
illustrate the method at work by using a double Gauss optical lens. 

5.1 Relationship with the coherency matrix calculus in two-dimensional coordinates 

From the discussion in section 2, the calculus in two-dimensional coordinates is based on the 
polarization paraxial approximation. This implies that in the global coordinate system, all 
light rays in an optical system look like to propagate along the z axis when their evolutions of 
polarization are calculated. A schematic is shown in Fig. 3. 
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Fig. 3. Polarization paraxial approximation for an optical system. 

Let the polarization vectors before and after a medium’s surface be k(in) and k(out), which 
can be expressed as 

 [ ] [ ]0, 0, 1 , 0, 0, 1 .T T= =(in) (out)k k
 

 (28) 
Because, in this case, the global coordinates are aligned with local coordinates, the 

associated rotation matrices R(in) and R(out) for the two eigen-vibration coordinates are 
identity matrices. The coherency matrix JP3(in) of the incident light and the polarization ray 
tracing matrix P3 in global coordinates can be expressed using the associated coherency 
matrix JP(in) and the Jones matrix T in two-dimensional coordinates as 

 ,
0 0

.
0 10 0

   
   
    

= =P(in)
P3(in) 3

J T
J P  (29) 

The coherency matrix JP3(out) for the light exiting from the medium’s surface in global 
coordinates is calculated as 

 
( ) ( )

( ) 0
.

0 0

= × ×

× ×
=
 
 
 

†
P3 out 3 P3 in 3

†
P in

J P J P

T J T  (30) 

The associated coherency matrix JP(out) in two-dimensional coordinates is 

 ( ) ( ) .= × × †
P out P inJ T J T  (31) 

The coherency matrix JP3L(out) in the eigen-vibration coordinate system is also equal to the 
coherency matrix JP3(out) because the associated rotation matrix R(out)−1 is the identity matrix. 
We can see from Eqs. (30) and (31) that the polarization parameters represented by the 
coherency matrix JP3(out) are equivalent to those represented by the coherency matrix JP(out) in 
two-dimensional coordinates. 

The above derivations indicate that the coherency matrix calculus in two-dimensional 
coordinates is just a special situation of the one in global coordinates, which can be taken as a 
demonstration of the correctness of the proposed method. 

5.2 Relationship with the polarization ray tracing calculus 

The polarization ray tracing calculus proposed by Yun et al. is used to describe the evolution 
of polarized light as it passes through an optical system, in three-dimensional global 
coordinates. The method of calculation proposed in this paper describes the evolution of all 
polarization states. When they are all used to describe the evolution of polarized light, we can 
compare the two results to demonstrate the correctness of the proposed method. 

Consider a beam of completely linearly polarized light, with the polarization orientation θ 
and unit intensity (I = 1). In the system of eigen-vibration coordinates, its Jones vector E3L(in) 
and coherency matrix JCP3L(in) are expressed as 
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+
= −
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E

J
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The propagation vectors before and after a medium’s surface are also k(in) and k(out). The 
transformation from local coordinates of k(in) into global coordinates is represented by the 
rotation matrix R(in) (see Fig. 2). It is given in Eq. (10). The transformation from global 
coordinates back into local coordinates of k(out) is represented by the inverse rotation matrix 
R(out)−1 (see Fig. 2). It is inverse of R. 

According to Eqs. (7)-(27), the Jones vector E3L(out) and the coherency matrix JCP3L(out) of 
the exiting light, in their eigen-vibration coordinates, are 

 
† )

,

[ ( ) ] ( .TT

= × × ×

= × × × × × ×

-1
(out)3L(out) 3 (in) 3L(in)
-1 -1

CP3L(out) (out) 3 (in) CP3L(in) (in) 3 (out)

E R P R E

J R P R J R P R
 (33) 

The two polarization orientations θ1(E3) and θ1(J3) represented by E3L(out) and JCP3L(out) are 
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J
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E
E

J J
J J

 (34) 

where the tuple (row, column) represents an element in the associated vector or matrix. 
We can assign random values to the parameters, i.e., to the polarization orientation θ of 

the incident light, the two polarization vectors k(in), k(out), and the two amplitude transmission 
coefficients ts, tp. The calculation results for the two quantities in Eq. (34) are the same for 
the two methods, validating the proposed method. A numerical example is listed in Table 2. 

Table 2. A numerical example of the two three-dimensional calculi (θ = 45°). 

 E3L(in) K (in) K (out) P3 
E3L(out) θ1(E3) 

JCP3L(in) JCP3L(out) θ1(J3) 

Jones 
vector 

1
2

1
2

0

 
 
 
  

 
0.0485

0.1217

0.9914

 
 
 
  

 
-0.0083

0.1028

0.9947

 
 
 
  

 
0.7633 0.0048 0.0451

0.0058 0.7663 0.0093

0.0545 0.0431 0.9954

− − 
 
 
  

 
0.5412

0.5400

0

 
 
 
  

 44.94° 

Coherency 
matrix 

1 1 0
1

1 1 0
2

0 0 0

 
 
 
  

 
0.0485

0.1217

0.9914

 
 
 
  

 
-0.0083

0.1028

0.9947

 
 
 
  

 
0.7633 0.0048 0.0451

0.0058 0.7663 0.0093

0.0545 0.0431 0.9954

− − 
 
 
  

 
0.2929 0.2923 0

0.2923 0.2916 0

0 0 0

 
 
 
  

 44.94° 

5.3 Application to a double Gauss optical lens 

We applied the polarization ray tracing method to a double Gauss optical lens with AR 
coating, using the coherency matrix calculus in three-dimensional global coordinates. The 
results were compared with those obtained using the two-dimensional calculus. The double 
Gauss optical lens is shown in Fig. 4. 
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Fig. 4. The double Gauss optical lens. The entrance pupil diameter is 33 mm, the focal length 
is 100 mm, and the field of view is 28 deg. 

We assumed the degree of polarization to be P = 0.25, and the polarization orientation θ = 
25°, for eigen-vibration coordinates of all light rays. The evolution of the polarization state 
depended on the normalized pupil coordinates and field coordinates. We performed 
calculations for all normalized pupil coordinates at some special field coordinates. Figures 5-
7 show the results obtained using the two calculation methods. Three-dimensional 
polarization ray tracing was calculated using the method proposed in this paper, while two-
dimensional polarization ray tracing was calculated using the POLDSP.SEQ macro in CODE 
V according to the Mueller calculus [27]. 

5.3.1 DoP pupil maps in the central and marginal fields of view 

We compared the results obtained using the two methods for the central and marginal fields 
of view, respectively, to examine the discrepancies across the exit pupil. The normalized field 
coordinates of the central field of view were (0, 0). The normalized field coordinates of the 
marginal field of view were (0, 1). As the DoP is an important descriptor of polarization, we 
constructed DoP pupil maps for the two calculations, to visualize their performance. 

The DoP pupil maps for the field coordinates (0, 0) are shown in Fig. 5. 

 

Fig. 5. The DoP pupil maps for the three-dimensional (a) and two-dimensional (b) calculi, and 
their deviations (c) for the field coordinates (0, 0). The color code corresponds to the values. 

Figure 5 shows that the main discrepancy between the two methods is at the edge of two 
diagonal directions, where the influence of polarization effects is obvious relative to the 
polarization of the incident light. At the center of the exit pupil, the two methods yield nearly 
the same results. This is because, in this telephoto lens, the propagation directions of the 
incident light rays in the central field of view are along the z axis in global coordinates. In the 
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cross-shaped area, the discrepancy is small because the directions of polarization effects 
coincide with the polarization directions of the incident light rays. 

The DoP pupil maps for the field coordinates (0, 1) are shown in Fig. 6. 

 

Fig. 6. The DoP pupil maps for the three-dimensional (a) and two-dimensional (b) calculi, and 
their deviations (c) for the field coordinates (0, 1). The color code corresponds to the values. 

Figure 6 shows that the two methods yield different results across the entire exit pupil. 
This follows because the deviations between the propagation directions of real light rays and 
their polarization paraxial approximations are much larger in the marginal field of view. 
Because the two-dimensional calculation assumes the polarization paraxial approximation, 
many differences between propagation directions are ignored, making the calculation less 
accurate. On the other hand, these differences are accounted for in the three-dimensional 
calculation, thus the new method results in more accurate DoP. 

5.3.2 The discrepancy between the two calculations across the field of view 

To describe the discrepancies across the field of view more explicitly, we averaged the DoP 
across the pupil to compare the DoP calculated from the two calculi as a function of field 
coordinates (0, Hy), where Hy represents the normalized field of view coordinates in the y 
direction (Hx = 0). The average DoP and Orient calculated from the two methods are shown 
in Fig. 7, clearly showing the discrepancies between the two calculation methods. 

 

Fig. 7. Average DoP (a) and Orient (b) calculated from the two calculi, vs. the Y field of view. 
The blue curves with triangles are calculated from the two-dimensional calculation. The red 
curves with circles are calculated from the three-dimensional calculation. 

Figure 7 shows that the three-dimensional calculation suggests larger polarization effect-
related changes, compared with the two-dimensional calculation. The discrepancy increases 
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from the center field of view to the edges. For this optical system, the largest relative 
discrepancies for DoP and Orient were ~5% and ~8%, respectively. For optical systems with 
larger entrance pupil diameters, wider fields of view, or higher numerical apertures, these 
discrepancies are likely to be more significant. 

The above examples demonstrate that the proposed method is more accurate than the two-
dimensional calculation method, and has a wider scope of applicability than the 
generalization of the Jones vector. 

6. Conclusions 
A framework for polarization ray tracing using 3 × 3 coherency matrices was presented, 
which allows three-dimensional polarization ray tracing calculations for partially polarized 
light. The 3 × 3 coherency matrices in three-dimensional coordinate system are proposed to 
represent both polarized and partially polarized light. The method to calculate the evolution of 
polarization in three-dimensional-coordinate systems was presented and validated 
numerically with an example ray trace. The correctness of the proposed method was 
demonstrated on special examples. The method was demonstrated on a double Gauss optical 
lens, and the results were compared with those obtained using the conventional two-
dimensional calculus. The proposed method is more accurate for non-paraxial ray trace, and 
very advantageous for optical design, analysis, and polarization calibrations of optical 
systems that critically rely on polarization. 
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