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Image quality is dramatically influenced by the stitching errors in a large-diameter stitching Fresnel lens. In this
paper, we studied three kinds of errors that can cover all stitching errors in a Cornwell deployed Fresnel lens. In
particular, a 300-mm-diameter, three-belt deployed Fresnel diffractive lens was simulated to investigate the stitch-
ing error. The star test and the resolution board test experiments were conducted, and the experimental results fit
the simulation results. This means that our error analysis theory and simulation method are efficient and accurate
and could be used to guide future super-large aperture stitching. © 2017 Optical Society of America
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1. INTRODUCTION

Interest in using large-aperture diffractive optical elements
(DOEs) for fabrication of the primary lenses of space telescopes
has largely been discussed in specialized literatures [1–6], and
they present interesting benefits when compared with other
alternatives. For instance, DOE-based primary lenses show
loose surface shape tolerance and are lightweight. In 1999,
Hyde first proposed the Eyeglass telescope system, which uses
a large-diameter diffractive lens as the primary lens and a sep-
arate telescope as the mobile eyepiece [7]. Based on this sketch,
Serre et al. designed a ground-based prototype and tested the
telescope system. Although this new system was very promis-
ing, a drawback was the resulting system resolution, which was
limited due to the small aperture of the primary lens, being only
8 cm [8]. In 2002, Hyde proposed the MOIRE system, which
shares the same structure as the Eyeglass. From his studies, he
demonstrated that it is very difficult to fabricate large-diameter
DOEs directly, and the best way to fabricate them is to process
small diffractive element sections and then properly stitch them
together [9].

Under this scenario, the study of primary lenses based on
stitched DOEs has become a matter of interest. Early et al.
assembled a 5-m-diameter, 250-m focal length glass diffractive
lens by using 72 rectangular and triangular panels [10]. Domber
et al. assembled a 5-m-aperture, 45° segmented diffractive mem-
brane that consists of three petals and six DOEs. They tested the

membrane, and the obtained results showed that the root mean
square (RMS) wavefront error of a single DOEwas 112 nm, and
the quality of the obtained images in terms of the National
Imagery Interpretability Rating Scale (NIIRS) reached values
of 2.3 by using a LED source under laboratory conditions
[11]. Although Domber et al. demonstrated the optical perfor-
mance of the stitchingmembrane and highlighted the interest of
using it for telescope fabrication, the study of the influence of the
stitching error on the final image quality was not provided yet.
However, in real implementations, these errors exist due to
imprecise stitching. As a consequence, the final image quality
is reduced to a certain extent. Yan et al. recently conducted
the study of flat-stitching error of photon sieves. Their study
focused only on a squared aperture, but no other type of aperture
has been studied so far. Moreover, they studied only a one-
dimensional stitching error, which could not fully cover five-
dimensional in real stitching. More importantly, no quantitative
stitching error formulas have been obtained [12].

The outline of this paper is as follows. First, in Section 2,
we briefly review the design of the Cornwell layout, one of the
most commonly implemented aperture layouts. Next, in
Section 3, we provide the mathematical equations of the axis
error, the radial error, and the rotation error of subaperture
stitching DOEs. Those calculations are based on wave aberra-
tion theory and Rayleigh criteria. Afterwards, in Section 4,
we perform MATLAB and Zemax co-simulation of a
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300-mm-diameter, three-belt deployed Fresnel lens. In
Section 5, the star test and the resolution board test of the lens
are carried out; the experimental results fitted the simulation
results. The conclusions are provided in Section 6.

2. SUBAPERTURE LAYOUT

Nowadays, the most commonly used subaperture layouts are
the Cornwell layout, the Circle layout, and the Golay layout
[13]. Among them, the most widely studied is the Cornwell
layout. In this layout, all the apertures are evenly distributed
within the same belt, and different belts are constructed by
forming together different concentric rings of certain diameters.
Shapes for the apertures to be applied have been proposed as
circular, rectangular, and trapezoidal, each one finding its own
application [14]. As an example, Fig. 1 shows a Cornwell de-
ployed Fresnel lens with circle subapertures (yellow circles).

We first analyze the most densely distributed situation in a
Cornwell deployed Fresnel lens. Namely, one subaperture in
any belt is tangent to its adjacent subapertures in the neighbor-
ing belt. In addition, each subaperture is also tangent to its
adjacent one in the same belt. In this arrangement, shown
in Fig. 1, each belt has m subapertures, and the number of
the belts is n.

As an example, let us analyze one particular subaperture
labeled by the subscript i. To fully characterize this subaper-
ture, we need to know its azimuthal angle-2αi (angular position
of the subaperture into the belt), the half-width of the belt-dn,
where the subaperture is placed, the radius of this subaperture
rn (all the subapertures in a particular belt share the same
radius), and the length D from the middle of this belt to
the point O (the center of the whole lens). We also label
�xi; yi� as the central coordinates of the subaperture i, and
d in as the distance from O to the inner margin of the first belt.
According to this geometric relation, we can derive that

dn �
sin α�d in � 2d 1 � � � � � 2dn−1�

1 − sin α
n ≥ 2: (1)

Due to the fact that the subapertures are tangent among
each other, the coordinates of the i subaperture are

xi � sin�αi��d in � 2d 1 � � � � � 2dn−1 � dn� n ≥ 2;
(2)

yi � cos�αi��d in � 2d 1 � � � � � 2dn−1 � dn� n ≥ 2:

(3)

Any distributed Cornwell Fresnel lens can be designed by
considering these three equations. However, because mechani-
cal calibration structures are needed to be installed among
the adjacent apertures in some practical applications, these
apertures are not generally tangent, and rn should be smaller
than dn.

3. SUBAPERTURE STITCHING ERROR
ANALYSIS

The surface of the Fresnel lens discussed in Section 2 can be
regarded as flat if we do not consider errors caused by fabrica-
tion or by temperature variation. Under this circumstance,
stitching errors are still introduced due to the deviations of
the real subaperture positions from their corresponding ideal
ones. These stitching errors may arise in three different forms:
as offset errors in the radial direction, offset errors in the axial
direction, and rotating errors around the radius. For the sake of
clarity, these error sources are represented in Fig. 2.

The Fresnel lens in Fig. 2 contains six panels. All panels are
ideally stitched with the exception of panel B. In particular,
panel B contains radial and rotating errors. Thus, its real posi-
tion does not coincide with the ideal one (the ideal position is
presented in Fig. 2 by a gray circle). Therefore, these three types
of error tolerances can be estimated by calculating optical path
differences. Note that we can use this model to characterize
the stitching error for any type of diffractive element. In the
following, the above stated stitching errors are mathematically
described.

A. Radial Offset Error Tolerance
Let the focal length of a given lens be f , the incident height of
the edge ray r, and the offset in the radial direction Δr. When
illuminating the system with a collimated beam, the optical
path difference between the ideal and the real ray trajectories
ΔLradius can be written as

ΔLRadius �
r
f
Δr: (4)

According to Rayleigh Criteria, the peak-to-valley (PV)
wavefront error of a precise optical system should be less than
λ∕10, and, thus, the corresponding radial offset error tolerance
must accomplish

Fig. 1. Cornwell deployed Fresnel lens with circle subapertures. Fig. 2. Six-subaperture deployed Fresnel lens.
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Δr � λf #

5
: (5)

B. Axial Offset Error Tolerance
Under the same scenario in case a, but for an offset in the axial
direction Δz, the optical path difference ΔLradius is written as

ΔLAxis �
r2

2f 2 Δz; (6)

and the axial error tolerance must accomplish

Δz � 4λf #2

5
: (7)

C. Rotating Error Tolerance
Figure 3 illustrates the rotating error scheme. The edge of the
aperture deviates from its ideal position A to the real one B due
to the rotating error, where the rotating angle is θ. In the case of
an aperture without rotating error, L3 represents the optical
path from A to the focal point F. By contrast, when the rotating
error translates the aperture edge from point A to point B, L2
provides the optical path from point B to F. Spot C can be
determined by finding the intersection point between the
horitzontal line passing through point A and the prolongation
of the aperture in the rotating direction (dashed line in Fig. 3);
L1 provides the optical path from point C to F. We label Δz as
the axial distance from A to B, and Δz 0 the axial distance from
B to C.

By considering the rotating error, the optical path difference
ΔLRotate before and after applying the rotation θ can be
described as

ΔLRotate � L2 � Δz − L3: (8)

By applying L1 to the equation, Eq. (8) can be written as

ΔLRotate � �Δz � L1 − L3� � �L2 − L1�: (9)

Since values of Δz 0 are much smaller than other distances in
Fig. 3, they can be neglected. In such a case, the two terms in
Eq. (9) represent the radial offset error and axial offset error,
respectively. So,

ΔLRotate �
r2

2f 2 Δz � r
Δr
f

; (10)

ΔLRotate �
r3

2f 2 sin θ� r2

f
�1 − cos θ�; (11)

ΔLRotate �
rΔθ

8�f #�2 sin θ� r�Δθ�2
4f # ; (12)

Δθ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6.4λ�f #�3 � r

p
−

ffiffi
r

p
4f #

ffiffi
r

p : (13)

The rotating error described by Eq. (13) is relative to the
center of a given subaperture, but not to the center of the whole
diffractive lens. Moreover, the center of the subaperture does
not generally coincide with the center of the lens. Hence, it
is more accurate to study the error by using as criteria the whole
lens center. Figure 4 sketches the error pattern relative to the
lens center.

Note that O 0 is the center of a subaperture, the distance AB
is its diameter, O is the center of the whole lens, and d is the
length from O to O 0. Then, Δθ 0 can be written as

Δθ 0 � arctan

�
r sin�Δθ�

r cos�Δθ� � d

�
: (14)

D. Comprehensive Error
Note that Eqs. (5), (7), and (14) represent the radial, the axial,
and the rotating error tolerances, respectively. We can tell that
the offset errors are proportional to f #; the rotating error is not
only related to f #, but also related to its diameter and d .

In a real stitching process, these three above-stated errors
appear at the same time, and they appear in 5 deg of freedom
(DOF). If we use Δl i to represent the effect of individual errors
on the wavefront distribution, and use W i to represent the
weight of each error (W 1 and W 2 for rotating errors in x and
y directions, W 3 for the axial offset error, and W 4 and W 5 for
radial offset errors in x and y directions), we have the following
equation [Eq. (15)], and it can be used to estimate the total
error tolerance of the stitching system:

ΔL �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W 2

1Δl21 �W 2
2Δl22 �W 2

3Δl 23 �W 2
4Δl

2
4 �W 2

5Δl25
q

:

(15)

According to Eq. (15), a certain error can be relaxed by
properly assigning the weight of other error sources. What is
more, once the real wavefront distribution is obtained, we can
find out which subapertures have the stitching error. Moreover,
we can also estimate the error type from the shape of the
wavefront, which can be measured by using interferometric

Fig. 3. Rotating error pattern. Fig. 4. Error pattern relative to the lens center.
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techniques. Last but not least, the error values of the stitching
lens can be calculated from the PV value of the wavefront.

4. SIMULATION METHOD OF SUBAPERTURE
DOEs

The simulation method used to describe a subaperture DOE
stitching error is explained as follows. First, the phase distribu-
tion of a DOE is calculated, and the obtained information is
loaded to the incident wavefront. Afterwards, the correspond-
ing phase distribution in the focal plane is analyzed.

Let us start by studying the relation of an infinitesimal point
of the ideally stitched subaperture, spatially described by the
point �x0; y0; z0�, and the corresponding point �x; y; z� affected
by the stitching error. The two points can be related by the
following linear system in the matrix form:0

BBB@

x

y

z

1

1
CCCA � A · R · B ·

0
BBB@

x0
y0
z0
1

1
CCCA; (16)

where the matrices A, R, and B are written as follows:

A �

0
BBBB@

1 0 0 0

0 1 0 0

0 0 1 0

tx ty tz 1

1
CCCCA; R �

0
BBBB@

1 0 0 0

0 cos α sin α 0

0 − sinα cos α 0

0 0 0 1

1
CCCCA;

B �

0
BBB@

cos β 0 − sin β 0

0 1 0 0

sin β 0 cos β 0

0 0 0 1

1
CCCA:

The first matrix A represents the offset error, tx , ty are the
radial offset errors, and tz is the axial offset error. Matrix R rep-
resents the axial rotating error for a rotation angle α, and matrix
B is the radial rotating error (rotating angle as β). Then, the
phase distribution of this point is

ϕ�x; y; z� � −
k

2�f − z� �x
2 � y2�: (17)

Note that Eq. (17) provides the phase distribution of a single
subaperture point affected by stitching errors, with k being the
wavenumber (k � 2π∕λ), and f the focal length of the lens.
The overall phase distribution of the diffractive lens is the
addition of the phase distributions of all the points, which
can be described as

ϕsum�x; y; z� �
XN
i�0

ϕi�xi; yi; zi�: (18)

We want to emphasize that N in Eq. (18) represents the
number of discrete points.

Once the total phase distribution is calculated, a “.DAT”
file, which contains all phase values, is created by MATLAB.
Then, we can simulate the lens in Zemax by using “Grid Phase”
to describe the phase [15].

We want to note that during the radial offset error simula-
tion, if the theoretical wavefront PV is λ∕10, the PV in the
Zemax should be λ∕5. This is because in Zemax processing,
all PV values of the wavefront are expressed in negative values.
However, in our method, the radial offset makes the differences
of phase values between a real wavefront and an ideal one to be
both negative and positive, and the opposite.

5. EXPERIMENTAL TEST OF A 300-MM-
DIAMETER STITCHING FRESNEL LENS

A. Design of the Diffractive Element
We designed a 300-mm-diameter amplitude Fresnel lens with
a working wavelength of 632.8 nm and a focal length of
30,000 mm. For this focal length and diameter, the ring
number s equation can be written as

s2λ2 � 2sλf � r2s : (19)

Moreover, the corresponding widths are

ws �
f λ
2rs

: (20)

After the calculation, this Fresnel element contains 592
rings, and the width of the outermost ring is 63.28 μm.

In this Fresnel lens, any amount of circular subapertures can
be distributed. Here we evenly deployed the subapertures in
three belts in order to facilitate the subsequent simulation.
The width of the belts is the same as the diameters of their
corresponding circular subapertures. The configuration of the
lens is as follows: First, only one subaperture is deployed in A
belt (see Fig. 5), and the center of this belt coincides with
the center of the Fresnel lens (D1 � 0 mm, r1 � 39.96 mm).
B belt is evenly distributing eight subapertures (D2 �
74.41 mm, r2 � 14.35 mm). The angle between the first sub-
aperture and the x axis is 30°, and the angle between each two
adjacent subapertures is 45°. In the case of C belt [see Fig. (5)],
12 subapertures are evenly distributed (D3 � 131.05 mm,
r3 � 18.94 mm). The angle between the first subaperture in
C belt and the x axis is 15°, and the angle between each two
adjacent subapertures is 30°.

Fig. 5. 300-mm diameter, three-belt-distributed subaperture
Fresnel lens.
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The diameter of all subapertures in a particular belt is fixed
to a value equal to the width of the belt where they are placed.
The modulation of the wavefront of one subaperture in each
belt is independent of that of the other subapertures in the same
belt. The modulation result of the wavefront depends on the
one subaperture that has the maximum error.

The PV of the Fresnel lens in Fig. 5 is 0.0048λ, and its Airy
disk diameter is 0.154 mm. When the outer three subapertures
in the first quadrant all move along the axis for 5.06 mm in the
same direction, the PV is 0.1069λ. The wavefront maps are
shown in Fig. 6.

We want to emphasize that for the sake of visualization, the
wavefronts shown in Figs. 6(a) and 6(b) are re-scaled. To note
the differences in the corresponding wavefront peak values, we
added numerical scale bars in red (i.e., 0.0048λ and 0.1096λ,
respectively).

Note that the excessive circular subapertures not only intro-
duce difficulties in Fresnel lens fabrication, but also in the
calibration. However, we know that the maximum error deter-
mines the wavefront of a whole belt. Thus, if a certain suba-
perture in a belt has the same error as the one in the belt, and
the errors of other subapertures in such a belt are smaller, the
modulation result of the wavefront for these circular subaper-
tures is the same as the one shown by this single belt.
Considering this, all the subapertures in a belt can be regarded
as a whole, namely, a belt subaperture. More importantly, the
error of this belt is the same as the maximum subaperture error.

By taking this into account, we designed the stitching
Fresnel lens with belts instead of an array of tangential circles.
The implemented configuration is as follows: The radius of A
belt is 39.96 mm; the inner radius of B belt is 60.06 mm, and
its outer radius is 88.76 mm; and finally, the inner radius of C
belt is 112.11 mm, and its outer radius is 149.99 mm. A picture
of the corresponding diffractive elements is shown in Fig. 7.

By simulating the scheme in Fig. 7, the corresponding Airy
disk diameter is 0.153 mm, and the PV is 0.0049λ when all
belts are ideally stitched. When C belt has a 5.06 mm axial
offset error, the PV is 0.1029λ. The simulation results are
shown in Fig. 8.

Note that by taking into account the values for the red scale
bars in Figs. 6 and 8, we see how wavefronts share the same
contour in the real implementation.

The wavefront PV values of the Fig. 5 pattern and Fig. 7
pattern are equivalent, considering the simulation results in
Figs. 6 and 8. This demonstrates that the belt-distributed
stitching Fresnel lens we proposed and the circular subaper-
tures-based lens lead to the same modulation results on the
wavefront. Hence, we want to note that it is feasible to use belt
subapertures to replace circular ones. So, in order to simplify

the experiment, we used the three-belt-distributed model to
make the analysis.

Then the theoretical error tolerances are calculated by the
three equations in Section 2. The results are given in Table 1.

For larger quantitative information of the three-belt-based
Fresnel lens, Figs. 9 and 10 show the modulation transfer func-
tions (MTFs) of both the ideally stitched Fresnel lens (Fig. 9)
and the lens with the C belt presenting a 5.06-mm axial offset
error (Fig. 10), as a function of the spatial frequency.

The obtained simulated results show that: (i) the maximum
signal frequency is 3.84 lp∕mm when the modulation value is
0.1 if there is no stitching error; (ii) the maximum signal fre-
quency decreases to 3.61 lp∕mm when there exists a 5.06-mm
axial error in the C belt.

Fig. 6. Wavefront patterns: (a) ideal, (b) axial error is 5.06 mm.

Fig. 7. 300-mm-diameter Fresnel lens.

Fig. 8. Wavefront distributions: (a) ideal, (b) C-belt axial error is
5.06 mm.

Table 1. Theoretical Error Tolerancesa

Radial Offset Axial Offset Rotation

A belt 47.83 μm 72.29 mm 2.77°
B belt 21.39 μm 14.46 mm 0.17°
C belt 12.66 μm 5.06 mm 0.08°

aIn addition, the simulation results for C belt are given in Table 2.

Table 2. Simulation Results of C Belta

Error Type Radial Offset Axial Offset Rotation

Error 12.66 μm 5.06 mm 0.08°
WF PV 0.1945λ 0.1035λ 0.978λ
WF RMS 0.0494λ 0.0399λ 0.0229λ

aNote that the simulation results in Table 2 fit the theoretical calculation
provided in Table 1.
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We also performed the simulation of the comprehensive
error explained in Section 3 (d). We set the rotating error
weight of W 1 � W 2 � 0.67, axial offset error weight of
W 3 � 0.67, and the radial offset error weight of W 4 �
W 5 � 0.60. Under these conditions, the wavefront PV is
0.2009λ, and the RMS is 0.0464λ at 0° field of view. The result
shows that the sensitivities of both the rotating error and the
radial offset error are higher than those of the axial offset error.

B. Imaging Test
Finally, we carried out the star test and the resolution board test
of this three-belt-distributed subaperture Fresnel lens separately
in order to verify our theoretical error analysis and the simu-
lation process.

When performing the star test, we used a He–Ne laser
(632.8 nm) to illuminate the Fresnel lens. A small pinhole with
a diameter of 5 μm was used to generate a collimated light
beam. This collimated beam illuminated the Fresnel lens
(Fig. 7) and thus focused to the focal panel. We first tested
the star image of the lens with no stitching error. After this,
the star image was tested again, but now we mechanically
moved the C belt along the axial direction a distance of

6 mm to analyze the effect of an axial error. The obtained
experimental results are provided, respectively, in Fig. 11.

Afterwards, we performed the resolution board test. In this
case, the wavelength of the LED source ranged from 620 nm to
640 nm. In addition, the resolution board used included spatial
frequencies ranging from 25 lp∕mm to 100 lp∕mm. The test-
ing results obtained from the ideal and the C-belt axial error
cases are, respectively, provided in Figs. 12(a) and 12(b).

Results given in Fig. 11 show that ideally stitched lenses are
able to provide better images than those presenting stitching
errors. The testing results in Fig. 12 indicate that the maximum
signal frequency for an ideally stitched lens is 3.79 lp∕mm, but
when an axial error of 5.06 mm is set for the C belt, this maxi-
mum signal frequency reduces to 3.57 lp∕mm. We want to
emphasize that the testing results fit the simulation results.

6. CONCLUSION

In this paper, five degrees of freedom stitching errors, occurring
during the fabrication of diffractive Fresnel lenses to be used as
primary lenses of space telescopes, are described for the first
time. The offset error tolerance and the rotating error tolerance
were deduced by using Cornwell deployed diffractive elements
that consist of circular subapertures. Moreover, we theoretically
demonstrated the suitability of using belt-distributed apertures
instead of arrays of circular subapertures, as they provide similar
performance but the first arrangement is easier to implement in
fabrication processes. Based on this latter result, we simulated a
three-belt distribution of a 300-mm-diameter Fresnel lens.
The simulation results showed that subapertures with a small

Fig. 9. MTF of the ideally stitched Fresnel lens.

Fig. 10. MTF of the lens with C belt has a 5.06-mm axial offset
error.

Fig. 11. Star test images: (a) ideal, (b) C-belt axial error is 6 mm.

Fig. 12. Resolution board test: (a) ideal, (b) C-belt axial error is
6 mm.
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diameter and large f # are preferable because they present larger
error tolerances. Finally, the proposed Fresnel lens scheme
(three-belt distribution) was experimentally tested by using
the star and the resolution board tests for a 300-mm-diameter
Fresnel lens. The experimental results show that the maximum
signal frequency is 3.79 lp∕mm for an ideally stitched system,
and the maximum signal frequency decreases to 3.57 lp∕mm if
C belt has a 6-mm axial offset error. The experimental results fit
the simulation results. Therefore, this work provides a theoreti-
cal framework suitable to study stitching errors in DOE and
can be used to study future super-large diameter subaperture
stitching diffractive elements.

Funding. People’s Government of Jilin Province
(20160519021JH); State Key Laboratory of Luminescence
and Applications.
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