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Abstract
Here, we propose, fabricate and characterize GaN directional couplers for on-chip optical
interconnect on a GaN-on-silicon platform. Suspended InGaN/GaN multiple-quantum-well
diodes are adopted for both the transmitter and the receiver, and GaN directional couplers are
used to achieve the light coupling between suspended waveguides that are directly connected to
the transmitter and the receiver. The proposed on-chip optical interconnects are experimentally
demonstrated by light propagation and in-plane data transmission using visible light. The light
propagation images directly show that the emitted light can be laterally coupled into the
suspended waveguide, and the guided light from the input waveguide then couples to the
coupled waveguide due to the overlapped slab. The receiver detects the transmitted light from
the coupled waveguide to complete the in-plane visible light communication process, as
confirmed by pseudo-random binary sequence data and eye diagrams at the transmission rate of
30Mbps.

Keywords: directional coupler, on-chip optical interconnect, InGaN/GaN multiple-quantum-
well diode, in-plane visible light communication, GaN-on-silicon platform

(Some figures may appear in colour only in the online journal)

Directional couplers are some of the fundamental optical
components in a photonic circuit and are used for the cou-
pling of optical power between two waveguides in a given
direction of light propagation [1–5]. A directional coupler
usually employs parallel, intersecting rib waveguides with
their overlapped slab within up to a few microns of the
waveguides in the intersection region to permit light transfer
between the waveguides. GaN directional couplers have been
fabricated on a GaN-on-sapphire platform for integrated
quantum photonics [6]. GaN is an excellent optical material
for the development of photonic circuits from the visible to
the infrared range [7–11]. A higher index contrast can be
achieved using a substrate removal technique that is promis-
ing for the formation of highly optical confined waveguides.
Moreover, an emitter and a detector can be fabricated on a

single chip based on an InGaN/GaN multiple-quantum-well
diode (MQWD) [12, 13]. On-chip optical interconnects have
been extensively investigated [14–16]. Various photonic cir-
cuits can be developed for diverse applications by combina-
tions with an emitter, a waveguide, a coupler and a detector
on a chip [17, 18].

Here, we propose, fabricate and characterize a photonic
integration of an InGaN/GaN MQWD, a suspended GaN
waveguide and a directional coupler on a GaN-on-silicon
platform, leading to the formation of on-chip optical inter-
connects. Using a combination of silicon removal and back
wafer etching of suspended epitaxial films, a highly optically
confined GaN waveguide and a directional coupler are gen-
erated by exploiting the large index contrast between GaN
and air [19]. Suspended InGaN/GaN MQWDs are used for
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both the transmitter and the receiver in the in-plane visible
light communication (VLC) system and are fabricated by
identical processes. In the GaN directional coupler, the light
power and fields of one waveguide interact with the light
power and fields of another waveguide, coupling signals from
one waveguide to another to complete the in-plane data
transmission. Light propagation images are measured to
directly characterize the light coupling, and the in-plane VLC
process is experimentally demonstrated by the transmission
and detection of pseudo-random binary sequence (PRBS) data
and eye diagrams.

Figure 1 shows a schematic of our proposed on-chip optical
interconnects made with suspended GaN directional coupler.
The InGaN/GaN MQWD at the right top corner is adopted as
the detector (receiver) when acting as a photodiode to sense
the light, and another InGaN/GaN MQWD at the left bottom
corner is used as the emitter (transmitter) when it serves as a
light-emitting diode to emit the modulated light. The in-plane
confined light of the emitter is first coupled into the suspended
waveguide that is parallel to the InGaN/GaN MQWD surface
and is used as the input port of the directional coupler. The light
couples to another waveguide to propagate to the coupled port of
the directional coupler due to the overlapped slab in the direc-
tional coupler region. Hence, the in-plane light propagation
between the detector and the emitter is created through the
suspended waveguides, leading to an in-plane signal transmis-
sion using visible light. Moreover, another coupled waveguide is
fabricated for reference.

The on-chip photonic integration of suspended InGaN/
GaN MQWDs, a waveguide and directional coupler is imple-
mented on a 2-inch GaN-on-silicon wafer [20–22]. The growth
of GaN-on-silicon InGaN/GaN MQWD structures is con-
ducted out with a metal–organic chemical vapor phase
deposition [23–25], and Al-composition step-graded AlGaN
multilayers are sandwiched between GaN and silicon substrate
for stress management [26–28]. The heat dissipation issue can
be addressed through the growth on metallic substrate [29]. For
the subsequent silicon removal, the 1500μm-thick silicon
substrate is first thinned to 200 μm by chemical-mechanical
polishing. The top epitaxial layers consist of an 80 nm-thick
p-type Mg-doped GaN layer, a 35 nm-thick p-type Mg-doped
AlGaN layer, a 120 nm-thick InGaN/GaN MQWs, a 3400 nm-

thick n-type Si-doped GaN layer, a 400 nm-thick undoped GaN
layer, a 600 nm-thick AlGaN buffer layer and a 330 nm-thick
AlN layer. The top layer is defined by photolithography and is
etched down to n-type Si-doped GaN to form mesa by
inductively coupled plasma reactive ion etching (ICP RIE) with
Cl2 and BCl3 hybrid gases at the flow rates of 10 sccm and
25 sccm, respectively. The etch rate is approximately
120 nmmin−1, and the 1.6 μm-thick AZ5214 photoresist
serves as the etching hard mask. Subsequently, the 20 nm Ni/
180 nm Au bilayers are evaporated onto the surface of the
p-GaN and the n-GaN layers as the metal electrodes. After the
lift-off process, the sample is annealed at 500 °C in an N2

atmosphere for 5 min to obtain p- and n-contacts, leading to the
formation of InGaN/GaN MQWDs. The directional coupling
regions are then patterned and etched to the depth of∼1 μm by
ICP RIE, where the 1.6 μm-thick AZ5214 photoresist serves as
the etching hard mask. The 6.7 μm-thick AZ4620 photoresist
serves as the etching hard mask for long time etching of GaN
because it is a hard material [30–32]. The supporting arms and
waveguides are then patterned and etched at the depth of
∼3 μm by ICP RIE. The top device structures are protected by
the 6.7 μm-thick AZ4620 photoresist, and the silicon substrate
is then spin-coated with the 16 μm-thick AZ4620 photoresist
and patterned by backside alignment photolithography. Silicon
removal is conducted to obtain suspended device architecture,

Figure 1. Schematic of proposed on-chip optical interconnects made
with suspended GaN directional coupler.

Figure 2. (a) SEM image of the on-chip optical interconnects
featured with a GaN directional coupler. (b) High magnification
image of the SEM image of the supporting part.
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where the AlN buffer layer acts as the etching stop layer.
Suspended epitaxial films are etched from the backside by ICP
RIE to obtain ultrathin integrated devices on the 2 μm-thick
self-supported membrane.

Figure 2(a) shows the scanning electron microscope
(SEM) image of the on-chip optical interconnects made with a
GaN directional coupler. The coupling length of the direc-
tional coupler is 60 μm. In the directional coupler region, the
suspended rectangular waveguides are replaced by suspended
rib waveguides, where the waveguide rib etch depth is 1 μm,
and the thickness of the overlapped slab is 1 μm. The optical

modes spread horizontally into the underlying slab, leading to
the mode overlap for the light coupling between the input
waveguide and the coupled waveguide. The overlapped slab
also has the supporting functionality for an integrated pho-
tonic circuit. The 1.5 μm-wide, 1 μm-high and 60 μm-long
isolation trenches are formed by ICP-RIE to separate the
p-GaN layers for the transmitter and the receiver. The 60 μm-
long, 3 μm-wide and 2 μm-high waveguide is connected to
the directional coupler and one InGaN/GaN MQWD. At the
other end of the GaN directional coupler, two semi-Y-branch
waveguides with a length, width and height of 140 μm, 3 μm
and 2 μm, respectively, are used. One semi-Y-branch wave-
guide impinges on another InGaN/GaN MQWD, and the
other semi-Y-branch waveguide is used for reference.
Figure 2(b) shows a high magnification image of the sup-
porting arms, which are used to address the fracture issue of
suspended waveguides [33]. The strain relaxation during
etching process, which also affects the emission wavelength
[34], can be managed to obtain a suspended device archi-
tecture. Device deviations from the ideal elements are
attributed to the misalignment and ICP RIE processes. It is
possible to further optimize the fabrication processes to
decrease deviations between the fabricated devices and the
designed elements. It is possible to further optimize the fab-
rication processes to decrease the deviations between the
fabricated devices and the designed elements.

The InGaN/GaN MQWD is assumed to uniformly emit
light in all directions so that the in-plane confined light could
be laterally coupled into the suspended waveguide that is

Figure 3. (a) SEM image of an integrated photonic circuit with an inset showing the magnified disconnected part. (b) Measured light
propagation images when the left InGaN/GaN MQWD is biased at 4.2 V. (c) and (d) measured light propagation images when the right
InGaN/GaN MQWD is biased at 4.2 and 4.4 V, respectively.

Figure 4. The measured electroluminescence (EL) spectra of light
emission.
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directly connected to the InGaN/GaN MQWD regarded as
the transmitter. Figure 3(a) shows a SEM image of the inte-
grated photonic circuit, where one semi-Y-branch waveguide
is broken. The disconnected part is magnified in the inset of
figure 3(a) and can be used as a waveguide output port,
endowing the capability to directly observe the light propa-
gation performance of the photonic circuit. As shown in
figure 3(b), the emitted light from the InGaN/GaN MQWD is
laterally coupled into the suspended waveguide and then
guided along the semi-Y-branch waveguide when the InGaN/
GaN MQWD is biased at 4.0 V. At the disconnect region, the
guided light is diffracted into the air at the waveguide output
facet. Correspondingly, the emitted light is laterally coupled
into the suspended straight waveguide when another InGaN/
GaN MQWD is biased at 4.2 V, as shown in figure 3(c). The
guided light coupling between the input waveguide and the
coupled waveguides occurs in the directional coupler region.
The coupled light is then guided by the coupled waveguides
and diffracted into air at the waveguide output facets, as
confirmed by the light emission spots. Moreover, a light
emission spot can be clearly observed at the output port of the
directional coupler. Figure 3(d) shows that the light emission

is improved as the bias voltage is increased to 4.4 V. Hence,
more light power is transferred to the input waveguide. As a
result, the light spots at the coupled waveguide facets become
brighter. This means that the light intensity can be tuned by
the bias voltage, which is essential for the VLC sys-
tem [35, 36].

The EL spectra at different injection currents of the
InGaN/GaN MQWD are measured using an Ocean Optics
USB4000 spectrometer. Figure 4 shows the measured the EL
spectra of the light emission. The peak emission wavelength
locates around 452 nm, and the directional coupler allows
broad band coupling compared with the waveguide archi-
tecture. The light emission intensity is tuned by the injection
current, which agrees well with the light propagation
observation.

A simulation of the integrated directional coupler is
performed using the RSoft BeamPROP mode solver. The
used effective refractive index of the suspended waveguide is
2.45 and the surrounding medium is air. A 452 nm circularly
symmetric Gaussian beam is adopted for simulation. The
middle straight waveguide is 3 μm thick and 3 μm wide. In
the coupling region, the coupling gaps between the coupled

Figure 5. The light propagation inside the suspended photonic circuit: (a) the plan view of TM-polarized light; (b) field profile with a
coupling length of 59 μm; (c) the plan view of TE-polarized light; (b) field profile with a coupling length of 59 μm.
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waveguide and the middle straight waveguide are 1.5 μm.
The rib height is 1 μm and the underlying layer is 2 μm thick.
Figure 5(a) illustrates the plan view simulation with

transverse-magnetic (TM) polarization mode. The light power
is transformed from the middle waveguide to the coupled
waveguides. Figure 5(b) shows the overlapped optical modes
in the TM field profile observed at 119 μm, which has a
coupling length of 59 μm. The transverse-electric (TE)
polarized light propagation inside directional coupler is illu-
strated in figure 5(c), and the field profile at 119 μm shows the
overlapped optical modes. The light coupling is obtained
through the underlying layer and can be improved by
increasing the coupling length or decreasing the coupling gap.

As the receiver, the InGaN/GaN MQWD detects the
incident light and completes the photon-to-electron conver-
sion so that the induced photocurrent depends on the light
intensity. On the other hand, the InGaN/GaN MQWD emits
the modulated light to generate the electron-to-photon con-
version when it acts as the transmitter. The emitted light
intensity is controlled by the injection current. Therefore, in
our proposed in-plane VLC system, the current-voltage (I–V )
performance at the receiver is tuned by the light guided
through the suspended waveguides that is modulated by the
injection current at the transmitter. Figure 6(a) shows the log-
scaled I–V plots for the receiver as a function of the injection
current of the transmitter. The measured currents are the sum
of the induced photocurrent and the driven current that flow in
opposite directions. It can be clearly observed that the I–V
performance at the receiver is influenced by the injection
current of the transmitter. The receiver absorbs much more
light power with the increasing injection current of the
transmitter, leading to a higher amplitude of the induced
photocurrent. The induced photocurrents are equal to the
driven currents around the sharp dips. The measured current
values at the injection current of 0 mA for the transmitter are
subtracted from the measured current values to obtain the
induced photocurrents. When the induced photocurrent is

Figure 6. (a) Log-scaled I–V plots for the receiver as a function of
the injection current of the transmitter. (b) Dip shifts and induced
photocurrent versus the injection current of the transmitter.

Figure 7. (a) Wire-bonded chip. (b) Measured PRBS data at a transmission rate of 30 Mbps. (c) and (d) eye diagrams measured at
transmission rates of 20 and 30 Mbps, respectively.
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equal to the driven current at the receiver, a distinct sharp dip
occurs. As illustrated by the blue line in figure 6(b), the sharp
dip is tuned by the injection current of the transmitter and
shifts to higher forward voltage of the receiver. The induced
photocurrent increases when the injection current of the
transmitter increases. The receiver simultaneously detects and
emits light when the InGaN/GaN MQWD is biased at 3.0 V,
and the induced photocurrent is greatly increased compared
with that measured at a bias voltage of 1.0 V.

Figure 7(a) shows the wire-bonded chip, which is sepa-
rated from the processed wafer and fixed to a test pad for
device characterization. The input port is directly connected
to an Agilent 33522A arbitrary waveform generator to gen-
erate the modulated light, and the output port is connected to
an Agilent DSO9254A digital storage oscilloscope. The
transmission and detection of PRBS data are performed to
confirm the in-plane information process using visible light.
Figure 7(b) shows the transmitted and received PRBS data for
the wire-bonded chip at the transmission rate of 30Mbps. The
receiver is biased at 0.0 V and only serves as a photodiode.
The measured bit patterns confirm that the integrated photonic
circuit featuring GaN directional coupler can transmit and
detect PRBS data for the in-plane visible light communica-
tion. Compared to the transmitted/received signals, the sig-
nals suffer waveform distortions due to light propagation
through a band-limited channel. The transmission rate could
be further improved with implementation of nano-LEDs by
decreasing the p-electrode size [37, 38]. Figure 7(c) shows the
measured eye diagrams obtained at the transmission rate of
20Mbps; these are considered to be wide open. As the
transmission rate increases, the waveform distortion increa-
ses. Hence, the eye begins to close as the data rate increases to
30Mbps, as shown in figure 7(d).

In conclusion, we have proposed and fabricated GaN
directional couplers for on-chip optical interconnect on a
GaN-on-silicon platform, in which suspended MQWDs are
adopted for both the transmitter and the receiver. A GaN
directional coupler is used to achieve the light coupling
between two suspended waveguides, connected to the trans-
mitter and the receiver. Light power is partially transferred
from the input waveguide to the coupled waveguide through
the directional coupler, as directly confirmed by the light
propagation images. The in-plane communication process
using visible light is experimentally demonstrated by the
transmission and detection of PRBS data and eye diagrams at
the transmission rate of 30Mbps.
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