pubs.acs.org/IC # Investigation of the Energy-Transfer Mechanism in Ho3+- and Yb3+-Codoped Lu₂O₂ Phosphor with Efficient Near-Infrared **Downconversion** Guotao Xiang,*,† Yan Ma,† Xianju Zhou,† Sha Jiang,† Li Li,† Xiaobing Luo,† Zhendong Hao,‡ Xia Zhang, Guo-Hui Pan, Yongshi Luo, and Jiahua Zhang, **ABSTRACT:** A high-temperature solid-state method was used to synthesize the Ho³⁺- and Yb³⁺-codoped cubic Lu₂O₃ powders. The crystal structures of the as-prepared powders were characterized by X-ray diffraction. The energy-transfer (ET) phenomenon between Ho³⁺ ions and Yb³⁺ ions was verified by the steady-state spectra including visible and nearinfrared (NIR) regions. Beyond that, the decay curves were also measured to certify the existence of the ET process. The downconversion phenomena appeared when the samples were excited by 446 nm wavelength corresponding to the transition of Ho3+: ${}^5I_8 \rightarrow {}^5G_6/{}^5F_1$. On the basis of the analysis of the relationship between the initial transfer rate of Ho3+: 5F_3 level and the Yb³⁺ doping concentration, it indicates that the ET from 5F_3 state of Ho³⁺ ions to ${}^2F_{5/2}$ state of Yb³⁺ ions is mainly through a twostep ET process, not the long-accepted cooperative ET process. In addition, a 62% ET efficiency can be achieved in Lu₂O₃: 1% Ho³⁺/30% Yb³⁺. Unlike the common situations in which the NIR photons are all emitted by the acceptors Yb³⁺, the sensitizers Ho³⁺ also make contributions to the NIR emission upon 446 nm wavelength excitation. Meanwhile, the ${}^5I_5 \rightarrow {}^5I_8$ transition and ${}^5F_4/{}^5S_2 \rightarrow {}^5I_6$ transition of Ho³⁺ as well as the ${}^2F_{5/2} \rightarrow {}^2F_{7/2}$ transition of Yb³⁺ match well with the optimal spectral response of crystalline silicon solar cells. The current research indicates that Lu_2O_3 : Ho^{3+}/Yb^{3+} is a promising material to improve conversion efficiency of crystalline silicon solar cell. ## INTRODUCTION Nowadays, trivalent lanthanide ions doped phosphors have attracted great interest due to their new features and versatile applicability. 1-3 Trivalent lanthanide ions could not only exhibit upconversion (UC) properties but also own downconversion (DC) emissions, manifesting as dividing one highenergy photon into two or more lower-energy photons. Thanks to such a unique character, DC materials can be widely applied in nonmercury lamp, solid-state laser, plasma display technology, and so on. 4-6 Especially in improving the solar cell efficiency, near-infrared (NIR) DC is considered as a promising method. 7,8 As is well-known, the maximum efficiency of the commercial crystalline silicon solar cell is only 18% because of the spectrum mismatch between the solar spectrum (300 nm - 2500 nm) and the response spectrum of crystalline silicon solar cell (500-1100 nm). Thus, the photons with the wavelengths shorter than 500 nm are unavailable for the silicon solar cell, even though the solar radiation is very strong in the region from 300 to 500 nm. Fortunately, sunlight shorter than 500 nm can be transformed into NIR light, which can be utilized by crystalline silicon solar cell through a NIR DC process, so that the efficiency improvement of the crystalline silicon solar cell can be realized. As reported by T. Trupke et al., utilizing the suitable DC material, the actual efficiency of the silicon solar cells can be increased up to 39.63%, largely exceeding the maximum energy efficiency 30% estimated by Shockley and Queisser. 15,16 Lu₂O₃ has been proved to be an excellent host for trivalent lanthanide ions doping, even at high doping concentration. Moreover, Lu₂O₃ exhibits good thermal stability, insulating property, hygroscopic immunity, and environmentally friendly characteristics. 18 These properties make Lu₂O₃ suitable for practical application. More importantly, Lu₂O₃ has a low phonon energy of ~600 cm⁻¹, which can suppress the nonradiative relaxation during the DC process resulting in high DC quantum yield. 19 The properties mentioned above indicate that Lu₂O₃ is an excellent host for DC. For the activator of NIR DC process, Yb3+ ion, is the most widely used because of its high emission quantum efficiency at \sim 1 μ m just above the band edge of crystalline silicon. Ho³⁺ ion has suitable energy levels that match well with Yb3+ ion and favorable Received: October 26, 2016 Published: January 18, 2017 Department of Mathematics and Physics, Chongqing University of Posts and Telecommunications, 2 Chongwen Road, Chongqing 400065, China [‡]State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 Eastern South Lake Road, Changchun 130033, China metastable energy levels for DC emission, so $\mathrm{Ho^{3+}}$ ion and $\mathrm{Yb^{3+}}$ ion are a good combination in NIR DC investigation. In recent years, large efforts have been devoted to the study of the DC emission realized with $\mathrm{Ho^{3+}/Yb^{3+}}$ couple in a variety of hosts. $^{20-23}$ However, the DC properties in $\mathrm{Ho^{3+}}$ and $\mathrm{Yb^{3+}}$ codoped $\mathrm{Lu_2O_3}$ host are rarely studied. Beyond that, under the excitation of $^5\mathrm{G_6/^5F_1}$ or higher energy level of $\mathrm{Ho^{3+}}$, cooperative energy-transfer (ET) process is considered as the main route for the ET from $^5\mathrm{F_3}$ level of $\mathrm{Ho^{3+}}$ ions to $^2\mathrm{F_{5/2}}$ level of $\mathrm{Yb^{3+}}$ ions. But, as far as we know, this long-accepted mechanism is proposed only based on theory and lack of effective experimental data supporting this phenomenon adequately. In this paper, an efficient NIR DC process was demonstrated in $\mathrm{Ho^{3+}}$ - and $\mathrm{Yb^{3+}}$ -codoped $\mathrm{Lu_2O_3}$. The dependences of $\mathrm{Yb^{3+}}$ concentration on the steady-state spectra including visible and NIR regions, decay curves, as well as ET efficiency were discussed. The ET mechanisms during the DC process were explored with the dependence of the initial transfer rate on $\mathrm{Yb^{3+}}$ ion concentration. Results show $\mathrm{Ho^{3+}}$ - and $\mathrm{Yb^{3+}}$ -codoped $\mathrm{Lu_2O_3}$ phosphor is an excellent DC material and fit for the application of solar cells. ## EXPERIMENTAL SECTION **Chemicals.** Lu_2O_3 , Ho_2O_3 , and Yb_2O_3 with spectroscopic pure grade (99.99%) were supplied by Yang Kou state run rare-earth company. The powders were all used as obtained without any purification. Preparation of Lu₂O₃: 1 mol % Ho³⁺/x mol % Yb³⁺ (x = 0, 1, 5, 10, 20, 30). The Lu₂O₃: 1 mol % Ho³⁺/x mol % Yb³⁺ powder were synthesized by a solid-state reaction. The Lu₂O₃, Ho₂O₃, and Yb₂O₃ were used as the raw materials, which were mixed homogeneously by an agate mortar for 1.5 h, placed in an alumina crucible with a lid, then sintered in a box furnace at 1550 °C for 5 h in air. **Characterization.** Powder X-ray diffraction (XRD) data of the asprepared samples were detected using Cu K α radiation (λ = 1.540 56 Å) on a Bruker D8 advance diffractometer. An FLS920 spectrometer purchased from Edinburgh Instruments was employed to measure the excitation and emission spectra. The decay curves were collected through a Tektronix digital oscilloscope (TDS 3052) with an optical parametric oscillator as the excitation source. ## ■ RESULTS AND DISCUSSION **Structure.** The XRD patterns of Lu_2O_3 : 1% $Ho^{3+}/x\%$ Yb³⁺ synthesized by the high-temperature solid-state method were shown in Figure 1. As can be seen obviously, the positions and relative intensity of the diffraction peaks for the as-prepared products match well with the standard cards of the cubic Lu_2O_3 (JCPDS No. 43–1021) with space group Ia3 (No. 206). No impurity phase is observed in XRD patterns, demonstrating Ho^{3+} and Yb^{3+} are all incorporated into Lu_2O_3 and formed a solid solution structure. In addition, as the difference between radius of Lu^{3+} (1.117 Å) and Yb^{3+} (1.125 Å) is very small, the XRD diffraction peaks did not show obvious shift with the increasing Yb^{3+} concentration, even though at 30 mol % doping concentration of Yb^{3+} . **Luminescence Properties.** A batch of powders with 1 mol % Ho³⁺ doping concentration and different Yb³⁺ doping concentrations (0, 1, 5, 10, 20, and 30 mol %) were synthesized for the investigation of the NIR DC mechanism in Ho³⁺ and Yb³⁺ pairs. As shown in Figures 2–5, the fluorescence excitation and emission spectra of the prepared products were utilized to prove the existence of Ho³⁺ \rightarrow Yb³⁺ ET first. Observe the excitation spectra of Ho³⁺: ${}^5F_4/{}^5S_2 \rightarrow {}^5I_8$ at 551 nm and ${}^5F_5 \rightarrow {}^5I_8$ Figure 1. XRD patterns of Lu_2O_3 : 1% $Ho^{3+}/x\%$ Yb³⁺ with the standard XRD data of cubic Lu_2O_3 (JCPDS No. 43–1021). **Figure 2.** Excitation spectra of Ho³⁺: ${}^5F_4/{}^5S_2 \rightarrow {}^5I_8$ emission (551 nm, blue line) and Ho³⁺: ${}^5F_5 \rightarrow {}^5I_8$ emission (667 nm, red line) in Lu₂O₃: 1 mol % Ho³⁺/5 mol % Yb³⁺ powder sample. **Figure 3.** Excitation spectra of Yb³⁺: ${}^2F_{5/2} \rightarrow {}^2F_{7/2}$ transition (980 nm) in Lu₂O₃: 1 mol % Ho³⁺/5 mol % Yb³⁺ powder sample. at 667 nm; both of them exhibit three distinct absorption peaks located at 420, 446, and 494 nm, which belong to Ho^{3+} : ${}^5\text{I}_8 \rightarrow {}^5\text{G}_5$, ${}^5\text{I}_8 \rightarrow {}^5\text{G}_6/{}^5\text{F}_1$, and ${}^5\text{I}_8 \rightarrow {}^5\text{F}_3$, respectively. In the meantime, the three absorption peaks also appear in the Figure 4. Visible emission spectra in the range of (a) 500-900 nm, (b) 475-515 nm, and (c) 635-700 nm in Lu_2O_3 : $1\% Ho^{3+}/x\% Yb^{3+}$ under 446 nm excitation. **Figure 5.** NIR emission spectra of Lu_2O_3 : 1% Ho^{3+}/x % Yb^{3+} under 446 nm excitation. (inset) NIR emission spectrum in Lu_2O_3 : 1 mol % $Ho^{3+}/5$ mol % Yb^{3+} under 667 nm excitation. excitation spectrum of Yb³+: ${}^2F_{5/2} \rightarrow {}^2F_{7/2}$ infrared emission at 980 nm shown in Figure 3, which manifest the existence of ET from Ho³+ to Yb³+. Besides, as can be seen from Figure 3, the excitation spectrum for monitoring Yb³+: ${}^2F_{5/2} \rightarrow {}^2F_{7/2}$ transition includes two extra excitation bands in the range of 500–700 nm, which belong to Ho³+: ${}^5I_8 \rightarrow {}^5F_4/{}^5S_2$ and ${}^5I_8 \rightarrow {}^5F_5$, respectively, demonstrating ${}^5F_4/{}^5S_2$ level and 5F_5 level of Ho³+ can also transfer energy toYb³+. The visible and NIR emission spectra are measured by 446 nm excitation, which is attributed to the absorption of $\mathrm{Ho^{3^+}}$: ${}^5\mathrm{I}_8 \rightarrow {}^5\mathrm{G}_6/{}^5\mathrm{F}_1$. As shown in Figure 4a, the spectra display two evident emission bands located at ~551 and 756 nm in the range of 500–800 nm, which belong to the ${}^5\mathrm{F}_4/{}^5\mathrm{S}_2 \rightarrow {}^5\mathrm{I}_8$ transition and ${}^5\mathrm{F}_4/{}^5\mathrm{S}_2 \rightarrow {}^5\mathrm{I}_7$ transition of $\mathrm{Ho^{3^+}}$, respectively. Furthermore, there are two weak emissions existing in the ranges of 475–510 nm and 635–700 nm shown in Figure 4b,c, which are attributed to ${}^5\mathrm{F}_3 \rightarrow {}^5\mathrm{I}_8$ transition and ${}^5\mathrm{F}_5 \rightarrow {}^5\mathrm{I}_8$ transition of $\mathrm{Ho^{3^+}}$, respectively. Besides, an emission peak around 893 nm derived from ${}^5\mathrm{I}_5 \rightarrow {}^5\mathrm{I}_8$ transition of $\mathrm{Ho^{3^+}}$ appears in $\mathrm{Ho^{3^+}}$ - and $\mathrm{Yb^{3^+}}$ -codoped samples. Figure 5 shows the NIR region spectra of the as-prepared powders excited by 446 nm wavelength. The Ho³⁺ singly doped and Ho³⁺/Yb³⁺-codoped samples exhibit a strong emission band peaked at ~1208 nm, which is assigned to Ho^{3+} : ${}^{5}I_{6} \rightarrow {}^{5}I_{8}$ transition. As for the Ho^{3+} singly doped sample, the emission peak located at 1033 nm is attributed to ${}^5F_4/{}^5S_2 \rightarrow {}^5I_6$ transition of Ho³⁺. In the Ho³⁺- and Yb³⁺-codoped samples, the ${}^2F_{5/2} \rightarrow {}^2F_{7/2}$ transition of Yb³⁺ appears extending from 900 to 1100 nm. In this range, it is easily to observe two distinct emission peaks around 980 and 1080 nm, which belong to ${}^2F_{5/2} \rightarrow {}^2F_{7/2}$ transition of Yb³⁺. The phenomenon that the NIR emission of Yb³⁺ is exhibited under the direct excitation of the ${}^5G_6/{}^5F_1$ level of Ho^{3+} is another evidence for ET from Ho^{3+} to Yb^{3+} . Here, it is necessary to point out that, except for the ${}^5F_4/{}^5S_2 \rightarrow {}^5I_6$ transition of Ho^{3+} , the ${}^2F_{5/2} \rightarrow {}^2F_{7/2}$ transition of Yb³⁺ also devotes to the emission peak around 1033 nm in the Ho³⁺- and Yb³⁺-codoped samples. This can be explained by the NIR spectra of the codoped samples excited by 667 nm wavelength. In the spectra measurement, 667 nm is selected to excite the ⁵F₅ level of $\mathrm{Ho^{3+}}$, so that it can be avoid to excite ${}^5\mathrm{F_4/^5}\mathrm{S_2}$ level of $\mathrm{Ho^{3+}}$. As shown in the inset of Figure 5, from the range of 900-1100 nm, the three emission peaks located at 980, 1033, and 1080 nm should be all assigned to the ${}^2F_{5/2} \rightarrow {}^2F_{7/2}$ transition of Yb³⁺, resulting from the Stark splitting of ${}^2F_{5/2}$ state and ${}^2F_{7/2}$ state. ²⁴ That is to say, the emission intensity of the peak located at 1033 nm is jointly contributed by the ${}^5F_4/{}^5S_2 \rightarrow {}^5I_6$ transition of Ho^{3+} and the ${}^2F_{5/2} \rightarrow {}^2F_{7/2}$ transition of Yb³⁺ in Ho³⁺- and Yb³⁺codoped samples. It can be seen clearly that the intensity of ${}^5F_3 \rightarrow {}^5I_8$ transition, ${}^5F_4/{}^5S_2 \rightarrow {}^5I_8$ transition, ${}^5F_5 \rightarrow {}^5I_8$ transition, and ${}^5F_4/{}^5S_2 \rightarrow {}^5I_7$ transition of Ho^{3+} is reduced dramatically with the increased Yb^{3+} ion concentration. Moreover, the intensity of the ${}^2F_{5/2} \rightarrow {}^2F_{7/2}$ transition of Yb^{3+} is enhanced along with increasing Yb^{3+} doping concentration up to 10 mol %. This phenomenon demonstrates once again the $Ho^{3+} \rightarrow Yb^{3+}$ ET. The concentration quenching occurs when Yb^{3+} concentration reaches 20 mol %, indicating the optimal doped concentration of Yb^{3+} is 10 mol % with 1 mol % Ho^{3+} . In addition, since the 5I_6 state of Ho^{3+} is slightly lower than ${}^2F_{5/2}$ state of Yb^{3+} , the excited Yb^{3+} can transfer its energy back to 5I_6 state of Ho^{3+} easily, which has been proved clearly by Wang's group. Therefore, the ${}^5I_6 {\rightarrow} {}^5I_8$ transition of Ho^{3+} can be enhanced by this energy back transfer (BET) process, and the ${}^2F_{5/2} {\rightarrow} {}^2F_{7/2}$ transition of Yb^{3+} is reduced at the same time. To understand the DC mechanism in $\mathrm{Ho^{3+}}$ - and $\mathrm{Yb^{3+}}$ -codoped system in depth, the possible ET routes are presented in Figure 6. Excited by 446 nm wavelength, $\mathrm{Ho^{3+}}$ ion in the **Figure 6.** Energy-level diagram and possible ET routes in Lu_2O_3 : Ho^{3+}/Yb^{3+} . ground state 5I_8 is excited to ${}^5G_6/{}^5F_1$ state. Subsequently, 5F_3 level, ${}^5F_4/{}^5S_2$ level, and 5F_5 level can be populated by nonradiative relaxation processes from the corresponding upper state. Then, the Ho³⁺ in ⁵F₄/⁵S₂ or ⁵F₅ state can transfer its energy to one nearby Yb3+ through cross-relaxation processes CR1 and CR2, respectively.²⁵ Specially, the Ho³⁺: ${}^{5}I_{8} \rightarrow {}^{5}F_{3}$ transition is located at approximately twice the energy of the Yb³⁺: ${}^2F_{5/2} \rightarrow {}^2F_{7/2}$ transition, and the position of 5I_5 state of Ho^{3+} is a little higher than that of ${}^2F_{5/2}$ state of Yb^{3+} . In addition, Yb3+ has no other levels up to the UV region. Therefore, the ET from Ho3+ in 5F3 level to Yb3+ has two possible routes: (a) two-step ET, as shown in Figure 6: the first ET step is that the Ho³⁺ ion in ⁵F₃ level transfers its energy to one Yb³⁺ ion through CR3 [${}^{5}F_{3}$ (Ho³⁺) + ${}^{2}F_{7/2}$ (Yb³⁺) \rightarrow ${}^{5}I_{5}$ $(\mathrm{Ho^{3+}})$ + ${}^2\mathrm{F}_{5/2}$ $(\mathrm{Yb^{3+}})$]; next, the second ET step is that the $\mathrm{Ho^{3+}}$ ion in $\mathrm{^{5}I_{5}}$ level is de-excited to the ground state and then transfers its energy to another Yb³⁺ ion $[{}^{5}I_{5} (Ho^{3+}) + {}^{2}F_{7/2}$ $(Yb^{3+}) \rightarrow {}^{5}I_{8} (Ho^{3+}) + {}^{2}F_{5/2} (Yb^{3+})]. (b)$ Cooperative ET (CET), as shown in Figure 6: two Yb3+ ions in the ground state are simultaneously excited to ${}^2F_{5/2}$ state by receiving energy from the same Ho³⁺ ion in ⁵F₃ level. According to our previous report, assuming the ET from Ho³⁺ in 5F_3 level to Yb³⁺ is mainly through a two-step ET process, the initial ET rate $W_{\rm CR}$ should be proportional to the acceptor concentration x, which can be taken as $W_{\rm CR} \propto x$; if the CET process is dominant in the ET from Ho³⁺ in 5F_3 level to Yb³⁺, the initial ET rate $W_{\rm COOP}$ should be proportional to the square of the acceptor concentration, which can be written as $W_{\rm COOP} \propto x^2$. On the basis of the principle mentioned above, we need to explore the relationship between the initial transfer rate and Yb³⁺ ion concentration to judge the ET mechanism from 5F_3 level of Ho³⁺ ions to Yb³⁺ ions. Figure 7 shows the decay curves of Ho³⁺: 5F_3 level in the as-prepared Lu₂O₃: 1% Ho³⁺/x% Yb³⁺ **Figure 7.** Decay curves of Ho³⁺: 5F_3 level in Lu₂O₃: 1 mol % Ho³⁺/x mol % Yb³⁺. ($\lambda_{\rm EX} = 446$ nm, $\lambda_{\rm EM} = 494$ nm). (x=0,1,5,10,20,30). Choosing the curves from the beginning to 70% of the maximum intensity as the targets, the initial decay rate $W_{\mathrm{Yb}(x\%)}$ of samples can be achieved from their slopes. Subsequently, the initial transfer rate of each sample can be calculated by $$W_{\text{Ho-Yb}(x\%)} = W_{\text{Yb}(x\%)} - W_{\text{Yb}(0)} \tag{1}$$ Consequently, the relationship between the initial transfer rate and Yb^{3+} ion concentration is obtained and presented in Figure 8. As can be seen clearly, the n value is 1.03 with **Figure 8.** Double-logarithmic plots of Yb³⁺ doping concentration dependent on the initial transfer rate in Lu₂O₃: 1 mol % Ho³⁺/x mol % Yb³⁺. increasing Yb³⁺ ion doping concentration from 1 to 30 mol %, demonstrating the ET from 5F_3 level of Ho³⁺ to $^2F_{5/2}$ level of Yb³⁺ is mainly through the two-step ET process. Moreover, as shown in Figure 4a, the $^5I_5 \!\rightarrow\! ^5I_8$ transition of Ho³⁺ around 893 nm appears after Yb³⁺ doping, which means the Yb³⁺ doping results in the population of 5I_5 state of Ho³⁺. Interestingly, 5I_5 state of Ho³⁺ is precisely the intermediate level of the two-step ET process. Hence, the occurrence of $^5I_5 \!\rightarrow\! ^5I_8$ transition of Ho³⁺ after Yb³⁺ doping is a strong evidence for the two-step ET process. As depicted in Figure 7, with increasing Yb³⁺ concentration, the decay of ⁵F₃ level of Ho³⁺ rapidly speeds up, which can be explained by the existence of extra decay pathways due to the Yb³⁺ doping: ET from ⁵F₃ level of Ho³⁺ to Yb³⁺ increases the decay rate of Ho^{3+} : 5F_3 level. All the decay curves of the codoped samples exhibit nonexponential characteristics, resulting from the various ET rates from Ho^{3+} to Yb^{3+} . The lifetime values of the samples with different Yb^{3+} concentration are presented in Table 1, which are acquired from the integrating area of the corresponding normalized decay curves. Table 1. Lifetimes and Energy Transfer Efficiencies $\eta_{\rm ETE}$ in Lu₂O₃: 1 mol % Ho³⁺/x mol % Yb³⁺ | Yb ³⁺ concentration (mol %) | lifetime | $\eta_{ ext{ETE}}$ (%) | |----------------------------------------|----------|------------------------| | 0 | 73.2 | 0 | | 1 | 70.1 | 4.2 | | 5 | 62 | 15.3 | | 10 | 49.4 | 32.5 | | 20 | 33.8 | 53.8 | | 30 | 27.8 | 62.0 | The ET efficiency $\eta_{\rm ETE}$ can be calculated by $$\eta_{\text{ETE,Yb}(x\%)} = 1 - \tau_{\text{Yb}(x\%)} / \tau_0$$ (2) where $\tau_{Yb(x\%)}$ represents the decay time of Ho³⁺: 5F_3 level with various Yb³⁺ concentration, and τ_0 is the decay time of Ho³⁺: 5F_3 level in Ho³⁺ single-doped sample. Utilizing the equation mentioned above, the η_{ETE} of each sample is obtained and listed in Table 1. Obviously, the η_{ETE} is improved from 4.2% to 62% with increasing Yb³⁺ doping concentration from 1 to 30 mol %. #### CONCLUSIONS In summary, an efficient NIR DC process has been verified in Lu₂O₃: Ho³⁺/Yb³⁺ powder samples. Meanwhile, the DC mechanism from Ho3+ to Yb3+ has been explored in detail. On the basis of the analysis of Yb3+ doping concentration dependent on the initial transfer rate, we propose that the twostep ET process is the main way for ET from ⁵F₃ level of Ho³⁺ to ${}^2F_{5/2}$ level of Yb³⁺. The ET efficiency reaches 62% for Lu₂O₃: 1% Ho³⁺/30% Yb³⁺. Unlike the common situations that the NIR photons are all emitted by the acceptors Yb3+, the sensitizers Ho³⁺ also make contributions to the NIR emission upon 446 nm wavelength excitation. Beyond that, the ${}^{5}I_{5} \rightarrow {}^{5}I_{8}$ transition and ${}^5F_4/{}^5S_2 \rightarrow {}^5I_6$ transition of Ho³⁺ as well as the ${}^2F_{5/2} \rightarrow {}^2F_{7/2}$ transition of Yb³⁺ match well with the optimal spectral response of crystalline silicon solar cells. Unfortunately, the strong ${}^{5}I_{6} \rightarrow {}^{5}I_{8}$ transition of Ho³⁺ centered at 1208 nm is not suitable for the silicon solar cell to assimilate. However, it may have potential applications in the new wavelength laser oscillations and many other areas. The current experiment results indicate Lu₂O₃: Ho³⁺/Yb³⁺ is a promising DC material for its application in solar cells. ### AUTHOR INFORMATION ## **Corresponding Authors** *E-mail: zhangjh@ciomp.ac.cn. (J.Z.) *E-mail: xianggt@cqupt.edu.cn. (G.X.) ORCID ® Guotao Xiang: 0000-0003-3587-6654 Notes The authors declare no competing financial interest. ## ACKNOWLEDGMENTS This work is financially supported by National Key R&D Program of China (2016YFB0701003 and 2016YFB0400605), National Natural Science Foundation of China (61275055, 11274007, 51402284, 11604330, 11674044, 11404047, and 11604037), Natural Science Foundation of Jilin province (20140101169JC, 20150520022JH, and 20160520171JH), Chongqing Research Program of Basic Research and Frontier Technology (CSTC2015jcyjA50005, CSTC2016JCYJA0113, and CSTC2016jcyjA0207), and Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJ1500409 and KJ1600406). ## REFERENCES - (1) Dianov, E. M. Bismuth-doped optical fibers: a challenging active medium for near-IR lasers and optical amplifiers. *Light: Sci. Appl.* **2012**, *1*. e12. - (2) Qin, W. P.; Liu, Z. Y.; Sin, C. N.; Wu, C. F.; Qin, G. S.; Chen, Z.; Zheng, K. Z. Multi-ion cooperative processes in Yb³⁺ clusters. *Light: Sci. Appl.* **2014**, *3*, e193. - (3) Xiang, G. T.; Zhang, J. H.; Hao, Z. D.; Zhang, X.; Pan, G. H.; Luo, Y. S.; Lü, W.; Zhao, H. F. Importance of Suppression of Yb³⁺ De-Excitation to Upconversion Enhancement in β -NaYF₄: Yb³⁺/Er³⁺($\alpha\beta$ -NaYF₄ Sandwiched Structure Nanocrystals. *Inorg. Chem.* **2015**, *54*, 3921–3928. - (4) Stoneman, R. C.; Esterowitz, L. Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers. *Opt. Lett.* **1990**, *15*, 486–488. - (5) Wegh, R. T.; Donker, H.; Oskam, K. D.; Meijerink, A. Visible Quantum Cutting in LiGdF₄:Eu³⁺ Through Downconversion. *Science* **1999**, 283, 663–666. - (6) Lee, T.; Luo, L.; Diau, E. W. G.; Chen, T. M.; Cheng, B. M.; Tung, C. Y. Visible quantum cutting through downconversion in green-emitting K_2GdF_5 : Tb^{3+} Phosphors. *Appl. Phys. Lett.* **2006**, 89, 131121. - (7) Li, J.; Chen, Li.; Hao, Z. D.; Zhang, X.; Zhang, L. G.; Luo, Y. S.; Zhang, J. H. Efficient Near-Infrared Downconversion and Energy Transfer Mechanism of Ce³⁺/Yb³⁺ Codoped Calcium Scandate Phosphor. *Inorg. Chem.* **2015**, *54*, 4806–4810. - (8) Xiang, G. T.; Zhang, J. H.; Hao, Z. D.; Zhang, X.; Pan, G. H.; Luo, Y. S.; Lü, S. Z.; Zhao, H. F. The energy transfer mechanism in Pr^{3+} and Yb^{3+} codoped β-NaLuF₄ nanocrystals. *Phys. Chem. Chem. Phys.* **2014**, *16*, 9289–9293. - (9) Yu, K. H.; Chen, J. H. Enhancing Solar Cell Efficiencies through 1-D Nanostructures. *Nanoscale Res. Lett.* **2009**, *4*, 1–10. - (10) van der Ende, B. M.; Aarts, L.; Meijerink, A. Near-Infrared Quantum Cutting for Photovoltaics. *Adv. Mater.* **2009**, *21*, 3073–3077 - (11) van der Zwaan, B.; Rabl, A. P rospects for PV: a learning curve analysis. Sol. Energy 2003, 74, 19–31. - (12) Richards, B. S. Sol. Energy Mater. Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers. *Sol. Energy Mater. Sol. Cells* **2006**, *90*, 2329–2337. - (13) Strümpel, C.; McCann, M.; Beaucarne, G.; Arkhipov, V.; Slaoui, A.; Švrček, V.; del Caňizo, C.; Tobias, I. Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials. Sol. Energy Mater. Sol. Cells 2007, 91, 238–249. - (14) Li, J.; Zhang, J. H.; Zhang, X.; Hao, Z. D.; Luo, Y. S. Cooperative downconversion and near infrared luminescence of Tm³⁺/Yb³⁺ codoped Calcium Scandate phosphor. *J. Alloys Compd.* **2014**, 583, 96–99. - (15) Trupke, T.; Green, M. A.; Würfel, P. Improving solar cell efficiencies by down-conversion of high-energy photons. *J. Appl. Phys.* **2002**, *92*, 1668–1674. - (16) Shockley, W.; Queisser, H. J. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. *J. Appl. Phys.* **1961**, 32, 510–519. - (17) Li, Y.; Pan, Y. Influence of Yb^{3+} doping concentration on upconversion luminescence of Er^{3+} in Lu_2O_3 phosphor. *Optik* **2013**, 124, 5131–5134. (18) Jiang, S.; Liu, J.; Lin, C. L.; Bai, L. G.; Xiao, W. S.; Zhang, Y. F.; Zhang, D. C.; Li, X. D.; Li, Y. C.; Tang, L. Y. Pressure-induced phase transition in cubic Lu_2O_3 . *J. Appl. Phys.* **2010**, *108*, 083541. - (19) Li, R. M.; Gai, S. L.; Wang, L. Z.; Wang, J.; Yang, P. P. Facile synthesis and multicolor luminescent properties of uniform Lu_2O_3 :Ln (Ln = Eu^{3+} , Tb^{3+} , $\text{Yb}^{3+}/\text{Er}^{3+}$, $\text{Yb}^{3+}/\text{Tm}^{3+}$, and $\text{Yb}^{3+}/\text{Ho}^{3+}$) nanospheres. *J. Colloid Interface Sci.* **2012**, *368*, 165–171. - (20) Xu, Q.; Lin, H.; Teng, H.; Chen, C.; Zhou, S. M. Energy transfer mechanisms of quantum cutting near infrared luminescence in Ho³⁺/Yb³⁺ co-doped Y₂O₃ transparent ceramics. *J. Non-Cryst. Solids* **2014**, 403 84–87 - (21) Guo, L. N.; Wang, Y. H.; Zhang, J.; Wang, Y. Z.; Dong, P. Y. Near-infrared quantum cutting in $\mathrm{Ho^{3+}}$, $\mathrm{Yb^{3+}}$ -codoped $\mathrm{BaGdF_5}$ nanoparticles via first and second-order energy transfers. *Nanoscale Res. Lett.* **2012**. 7, 636. - (22) Zhou, X. J.; Wang, Y. J.; Zhao, X. Q.; Li, L.; Wang, Z. Q.; Li, Q. X. Near-Infrared Quantum Cutting via Downconversion Energy Transfers in Ho³⁺/Yb³⁺ Codoped Tellurite Glass Ceramics. *J. Am. Ceram. Soc.* **2014**, *97*, 179–184. - (23) Dutta, P.; Rai, S. Optical transitions and frequency upconversions of Ho³⁺ and Ho³⁺/Yb³⁺ ions in Al(NO₃)₃-SiO₂ solgel glasses. *Optik* **2011**, *122*, 858–863. - (24) Li, S. F.; Miao, Z.; Peng, Y.; Zhang, Q. Y. Optical properties and cooperative luminescence of Yb-doped borate-silicate glasses. *Chin. Phys. Soc.* **2006**, *55*, 4315–4320. - (25) Lin, H.; Chen, D. Q.; Yu, Y. L.; Yang, A. P.; Wang, Y. S. Near-infrared quantum cutting in Ho³⁺/Yb³⁺ codoped nanostructured glass ceramic. *Opt. Lett.* **2011**, *36*, 876–878.