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Abstract In this paper, we have proposed SU(2) non-Abelian electromagnetism gauge
theory. In the theory, photon has self-interaction and interaction between them, which can
explain photon entanglement phenomenon in quantum information. Otherwise, we find
there are three kinds photons γ +, γ − and γ 0, they have electric charge +eγ , −eγ and 0,
respectively, these prediction are accordance with some experiment results.
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1 Introduction

The concept of photon as the quanta of the electromagnetic field dates back to the beginning
of this century. In order to explain the spectrum of black-body radiation, Planck postulated
the process of emission and absorption of radiation by atoms occurs discontinuously in
quanta, i.e., the emission of black-body was energy quantization with value of �ω [1], In
1905, Einstein had arrived at a more drastic interpretation. From a statistical analysis of the
Planck radiation law and from the energetics of the photoelectric effect he concluded that
it was not merely the atomic mechanism of emission and absorption of radiation which is
quantized, but that electromagnetic radiation itself consists of photons [2]. The Compton
effect confirmed this interpretation.
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The foundations of a systematic quantum theory of field were laid by Dirac in 1927.
From the quantization of the electromagnetic field one is naturally led to the quantization
of any classical field, the quanta of the field being particles with well-defined properties.
We have successfully quantized the free Dirac electron, we would like to discuss the ques-
tion of coupling the Dirac electron to a spin-one Maxwell field. The resulting theory had
been called quantum electrodynamics, namely QED. Over the past decades, the quantum
electrodynamics (QED) has attracted a considerable scientific attention [3, 4]. As we have
already stated, QED is an Abelian gauge theory, which based on a U(1) gauge symmetry.
In 1954, Yang and Mills [5] extended the gauge principle to non-Abelian gauge symmetry,
which based not on the simple one-dimensional group U(1) of electrodynamics, but on a
three-dimensional group, the group SU(2) of isotopic spin conservation, in the hope that
this would become a theory of the strong interactions. In particular, because the gauge group
was non-Abelian there was a self-interaction of the gauge bosons, and the U(1) Abelian
gauge theory there was not a self-interaction.

Entanglement [6] is a unique feature of quantum theory having no analogue in classical
physics. Spontaneous parametric down-conversion (SPDC) has been used as a source of
entangled photon pairs for more than two decades [7] and provides an efficient way to
generate non-classical states of light for fundamental tests of nature [8, 9], for quantum
information processing [10–12] or for quantum metrology [13]. Entanglement between two
photons emitted by SPDC can occur in one or several possible degrees of freedom of light
[14], namely polarization, transverse momentum and energy. At present, the two-photon,
three-photon and multi-photon entanglement have been observed in experiment [15, 16].
The photon entanglement is from photon self-interaction and the interaction among photons.

In order to study the photon entanglement, which is from the interaction between pho-
tons, we have extended the Abelian QED to the SU(2) non-Abelian QED, they can describe
the photon self-interaction and the interaction among photons, the theory can explain pho-
ton entanglement phenomenon in quantum information. Otherwise, we find there are three
kinds photons γ +, γ − and γ 0, they have electric charge +eγ , −eγ and 0, respectively,
which are accordance with some experiment results.

2 QED with Abelian U(1) Gauge Theory

In quantum theory, QED is an Abelian gauge theory. It is instructive to show that the theory
ban be derived by the Dirac free electron theory to be gauge invariant and renormalizable.
Consider the Lagrangian for a free electron field ψ(x)

L0 = ψ̄(x)(iγ μ∂μ − m)ψ(x), (1)

the Dirac fields ψ(x) and ψ̄(x) under the U(1) local gauge transformations

ψ(x) → ψ ′(x) = e−iα(x)ψ(x)

ψ̄(x) → ψ̄ ′(x) = eiα(x)ψ̄(x) (2)

where α(x) is a real number. The derivative term will now have a rather complicated
transformation

ψ̄(x)∂μψ(x) → ψ̄ ′(x)∂μψ ′(x) = ψ̄(x)∂μψ(x) − iψ̄(x)∂μα(x)ψ(x), (3)
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The second tern spoils the invariance. We need to form a gauge-covariant derivative Dμ, to
replace ∂μ, and Dμψ(x) will have the simple transformation

Dμψ(x) → [Dμψ(x)]′ = e−iα(x)Dμψ(x), (4)

so that the combination ψ̄(x)Dμψ(x) is gauge invariant. In other words, the action of the
covariant derivative on the field will not change the transformation property of the field.
This can be realized if we enlarge the theory with a new vector field Aμ(x), the gauge field,
and form the covariant derivative as

Dμψ(x) = (∂μ + ieAμ)ψ(x), (5)

where e is a free parameter which we eventually will identify with electric charge. Then the
transformation law for the covariant derivative (4) will be satisfied if the gauge field Aμ(x)

has the transformation

Aμ(x) → A′
μ(x) = Aμ(x) + 1

e
∂μα(x), (6)

Form (1) we now have

L = ψ̄iγ μ(∂μ + ieAμ) − mψ̄ψ, (7)

defining gauge field tensor Fμν as

Fμν = ∂μAν − ∂νAμ, (8)

under a transformation (6), the field tensor Fμν is invariant, and we can structure the
Lagrangian of U(1) gauge field

LA = −1

4
FμνF

μν, (9)

under a transformations (2) and (6), the invariant total Lagrangian of QED is

L = ψ̄iγ μ(∂μ + ieAμ)ψ − mψ̄ψ − 1

4
FμνF

μν. (10)

The following features of (10) should be noted

(1) The photon is massless because a AμAμ term is not gauge invariant and not included
in (10).

(2) The Lagrangian of (10) does not have a gauge field self-interaction.

3 QED with Non-Abelian SU(2) Gauge Theory

In 1954, Yang and Mills extended the gauge principle to non-Abelian symmetry, it is SU(2)
transformation group of isotopic spin. In order to study the photon entanglement, we have
extended the Abelian QED to the non-Abelian QED. In the following, we shall study elec-
tromagnetism interaction with the SU(2) gauge theory. We know the Dirac equation and
K-G equation describe the particles of spin s = 1

2 and s = 0, respectively. they are

[γ μ∂μ − m]ψ(x) = 0, (11)

and

[∂μ∂μ + m]ϕ(x) = 0. (12)

In electromagnetism field, their equation are

[γ μ(∂μ − ieAμ) − m]ψ(x) = 0, (13)
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and

[(∂μ − ieAμ)(∂μ − ieAμ) + m]ϕ(x) = 0, (14)

the spin s = 1
2 charged particle, its SU(2) doublet is

ψ(x) =
(

ψ ′
ψ

)
, (15)

the spin s = 0 charged particle, its SU(2) doublet is

ψ =
(

ϕ′
ϕ

)
. (16)

Where ψ ′ and ϕ′ are particle final states of spin 1
2 and 0.

For (15), under an SU(2) transformation, we have

ψ(x) → ψ ′(x) = e−iT i ·θi

ψ(x), (17)

where T i = 1
2σ

i , σ i(i = 1, 2, 3) are the usual Pauli matrices, satisfying[σi

2
,
σj

2

]
= iεijk

σk

2
i, j, k = 1, 2, 3, (18)

and θ = (θ1, θ2, θ3) are the SU(2) transformation parameters. The free Lagrangian for
electrons field ψ(x)

L0 = ψ̄(x)(iγ μ∂μ − m)ψ(x), (19)

is invariant under the global SU(2) symmetry with θi being space-time independent.
However, under the local symmetry transformation

ψ(x) → ψ ′(x) = u(θ)ψ(x), (20)

with

u(θ) = e−iT i ·θi (x), (21)

the free Lagrangian L0 is no longer invariant because the derivative term transforms as

ψ̄(x)∂μψ(x) → ψ̄ ′(x)∂μψ ′(x) = ψ̄(x)∂μψ(x) + ψ̄(x)u−1(θ)[∂μu(θ)]ψ(x), (22)

To construct a gauge-invariant Lagrangian we follow a procedure similar to that of the
Abelian case. First we introduce the vector gauge fields Ai

μ, i = 1, 2, 3 (one for each group
generator) to form the gauge-covariant derivative through the minimal coupling

Dμ(x) = ∂μ + Aμ(x), (23)

where

Aμ(x) = −igAi
μ(x)T i, (24)

where g is the coupling constant in analogy to e in (5). We demand that Dμψ have the same
transformation property as ψ itself, i.e.

Dμψ → (Dμψ)′ = D′
μψ ′ = D′

μu(x)ψ = u(θ)Dμψ, (25)

This implies that

(∂μ − igT iA′i
μ)(u(θ)ψ) = u(θ)(∂μ − igT iAi

μ)ψ, (26)

or

[∂μu(θ) − igT iA′i
μu(θ)] = −igu(θ)T iAi

μ, (27)
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or

T iA′i
μ = u(θ)T iAi

μu−1(θ) − i

g
[∂μu(θ)]u−1(θ), (28)

which defines the transformation law for the gauge field. For an infinitesimal gauge change
θ(x) � 1,

u(θ) ∼= 1 − i �T · �θ(x), (29)

ignoring the higher order terms of θj , (28) becomes

T iA′i
μ = (1 − iT j θj )T iAi

μ(1 + iT j θj ) − i

g
(−i �T · ∂μ

�θ)(1 + i �T · �θ)

= T iAi
μ + iT iAi

μ(T j θj ) − i(T j θj )T iAi
μ − 1

g
( �T · ∂μ

�θ),

= T iAi
μ + iAk

μθjT kT j − iAk
μθjT jT k − 1

g
( �T · ∂μ

�θ)

= T iAi
μ − iAk

μθj [T j , T k] − 1

g
( �T · ∂μ

�θ)

= T iAi
μ + Ak

μθj εijkT i − 1

g
( �T · ∂μ

�θ) (30)

or

A′i
μ = Ai

μ + εijkAk
μθj − 1

g
∂μθi, (31)

defining gauge field intensity Fα
μν , it is

Fμν = DμAν − DνAμ (32)

and

Fμν = −igFα
μνT

α, (33)

and

− igFα
μνT

α = (∂μ − igAα
μT α)(−igAβ

ν T β) − (∂ν − igAβ
ν T β)(−igAα

μT α)

= −ig∂μAβ
ν T β + ig∂νA

α
μT α − g2Aα

μAβ
ν [T α, T β ]

= −ig(∂μAα
ν − ∂νA

α
μ)T α − ig2εαβνAα

μAβ
ν T ν, (34)

or

Fα
μν = ∂μAα

ν − ∂νA
α
μ + gεαβνAβ

μAα
ν . (35)

From (28), we have

A′
μ(x) = u(θ)Aμ(x)u−1(θ) + u(θ)∂μu−1(θ), (36)

F ′
μν gauge transformation is

F ′
μν = D′

μA′
ν − D′

νA
′
μ

= (∂μ + A′
μ)A′

ν − (∂ν + A′
ν)A

′
μ

= (∂μ + uAμu−1 + u∂μu−1)(uAνu
−1 + u∂νu

−1)

−(∂ν + uAνu
−1 + u∂νu

−1)(uAμu−1 + u∂μu−1), (37)
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the first term is

(∂μ+uAμu−1+u∂μu−1)(uAνu
−1+u∂νu

−1) = (∂μu)Aνu
−1 +u(∂μAν)u

−1

+ uAν(∂μu−1)+(∂μu)∂νu
−1+u∂μ∂νu

−1

+ uAμu−1uAνu
−1+uAμu−1u∂νu

−1

+ u(∂μu−1)uAνu
−1+u(∂μu−1)u∂νu

−1

= u(∂μAν)u
−1+uAν(∂μu−1)

+ u∂μ∂νu
−1+uAμAνu

−1+uAμ∂νu
−1

(38)

and the second term is

(∂ν +uAνu
−1+u∂νu

−1)(uAμu−1+u∂μu−1) = u(∂νAμ)u−1+uAμ(∂νu
−1)

+ u∂ν∂μu−1+uAνAμu−1+uAν∂μu−1

(39)

substituting (38) and (39) into (37), we have

F ′
μν = u[(∂μ + Aμ)Aν − (∂ν + Aν)Aμ]u−1

= u(DμAν − DνAμ)u−1

= uFμνu
−1, (40)

under an infinitesimal gauge change (29), there is

Fμν → F ′
μν = (1 − iT aθa)Fμν(1 + iT bθb), (41)

or

F ′c
μνT

c = (1 − iT aθa)F c
μνT

c(1 + iT bθb)

= Fc
μνT

c + iF c
μνT

cT bθb − iF c
μνT

aT cθa + Fc
μνT

aT cθaT bθb

= Fc
μνT

c + iF c
μν[T c, T b]θb

= Fc
μνT

c − εabcF a
μνT

cθb, (42)

or

F ′c
μν = Fc

μν − εabcF a
μνθ

b, (43)

i.e.,

F ′a
μν = Fa

μν − εcbaF c
μνθ

b = Fa
μν + εabcF c

μνθ
b. (44)

From (40), we have

F ′
μνF

μν′ = uFμνu
−1uFμνu−1 = uFμνF

μνu−1, (45)

and

T rF ′
μνF

μν′ = T ruFμνF
μνu−1 = T rFμνF

μν, (46)
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or

T rFμνF
μν′ = T r[(−igFα

μνT
α)(−igFμνβT β)]

= −g2Fα
μνF

μνβT r(T αT β)

= −1

2
g2Fα

μνF
μνβδαβ

= −1

2
g2Fα

μνF
μνα, (47)

the Lagrangian of gauge field can be taken as

LF = −1

4
Fα

μνF
μνα, (48)

and the total Lagrangian is

L = ψ̄(iγ μDμ − m)ψ − 1

4
Fα

μνF
μνα

= ψ̄(iγ μ∂μ − m)ψ − gψ̄γ μAα
μT αψ − 1

4
Fα

μνF
μνα. (49)

The U(1) and SU(2) gauge theory of Abelian and non-Abelian have been introduced in
many quantum field theory books [17–19]. In this paper, we apply the non-Abelian gauge
theory to describe the electromagnetic interaction, and obtain some new results:

(1) The photon is massless because a AμAμ term is not gauge invariant and not included
in (49).

(2) The Lagrangian of (49) has a photon self-interaction, because of the term 1
4F

α
μνF

μνα

in (49) contains products of three and four factors ofAμ, i.e., there are the three-photon
and four-photon vertex diagrams.

(3) In SU(2) gauge theory, there are three kinds photons γ +, γ − and γ 0, they have three
different electric charge +eγ , −eγ and 0. In the electromagnetism interaction, the
charge is conservative. The initial state particle charge is e, and the final states particle
charge is e − e′, where the e′ are +eγ , −eγ and 0, respectively. The electric charge
quantity of photon is more less than the electric’s. i.e., eγ /e � 1. In Refs. [20–22],
these experiments have given the ratio of photon electric charge and electron electric
charge eγ /e < 3.4 × 10−5.

4 Conclusion

In this paper, we have proposed SU(2) non-Abelian electromagnetism gauge theory. In the
theory, photon is massless, and it has self-interaction and interaction between them, there
are the three-photon and four-photon vertex, which can explain photon entanglement phe-
nomenon in quantum information theory. Otherwise, we find there are three kinds photons
γ +, γ − and γ 0 in the SU(2) gauge theory, and they have electric charge +eγ , −eγ and 0,
respectively, which are accordance with some experiment results.
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