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Abstract Based onmutual information (MI), this paper pro-
poses a systematic analysis of tracking a multi-plane object
with multiple cameras. Firstly, a geometric model consisting
of a piecewise planar object and multiple cameras is setup.
Given an initial pose guess, the method seeks a pose update
that maximizes the global MI of all the pairs of reference
image and camera image. An object pose-dependent warp is
proposed to ensure computation precision. Six variations of
the proposed method are designed and tested. Mode 1, i.e.,
computing the 2nd-order Hessian of MI at each step as the
object pose changes, leads to the highest convergence rates;
Mode 2, i.e., computing the 1st-order Hessian of MI once at
the beginning, occupies the least time (0.5–1.0 s). For objects
with simple-textured planes, applying Gaussian blur first and
then use Mode 1 shall generate the highest convergence rate.
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1 Introduction

Single camera tracking methods are widely used in many
applications. However, sometimes the object cannot be
tracked by only one camera due to occlusion, bad imaging
condition, and camera’s limited field of view. Binocular cam-
eras systems [1] are obtaining increasingly more attentions,
and multi-camera tracking [2,3] is becoming a trend. With
the development of the digital processors, organizing multi-
ple cameras [4,5] in one system is a wise choice for object
tracking that requires high precision.

The tracking of a 3D object that can be described as a
set of 2D planes is a problem of warping the planes through
a set of homographes depending on the pose of the object.
The properties of homographes ensure that the warped image
is computable without the need to render the model anew
[6]. To track a piecewise planar object with multiple cam-
eras requires computing all the warps between each plane of
the object and each camera. Tracking methods which ensure
high precision imply large amounts of calculation, making it
impractical to apply such methods to real-time applications.
Computation complexity is a huge challenge.

A visual tracking [7] methodology generally matches a
large set of distinctive elements from a model surface to the
current image. These elements can be local features, such as
feature points, lines and small geometrical shapes, or global
features, like area of the object surface.

SIFT [8] (scale invariant features transform) and SURF
[9] (speeded up robust features) are two of the popular local
feature detectors. However, the possible presence of outliers
(false identifications) can lead to a less stable and precise
pose estimation in these methods. Robust statistics meth-
ods like RANSAC [10] (Random sample consensus) and
M-estimators [11] can remove these outliers, whereas a sta-
ble result is guaranteed only when the reliable features subset
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is sufficiently large. Thesemethods are also challenged when
the object surface shows a significant curvature or the surface
has an overall particular texture pattern, but a few distinctive
local key points.

Template-based registration finds the pose parameters
that optimizes of a function that describes the similarity
or difference between a template and the current image.
The most simple registration function is SSD [12] (sum of
squared differences), whereas it is very sensible to scene
variations. More complex algorithms include SCV [13]
(sum of conditional variance) and NCC [14] (normalized
cross-correlation). They perform better than SSD for global
illumination variations, but are not robust against occlusion.
MI [15–17] (mutual information) as the registration function
is quite insensitive to changes in lighting condition and to
partial occlusions, but are complex to implement [18]. MI
measures the amount of information that one image contains
of the other. The MI value of the corresponding images is
maximal if the images are correctly geometrically aligned.

Reported work on MI focused on image registration [19],
image quality index [20], motion segmentation [21], and
monocular camera tracking [22,23]. However, Fraissinet-
Tachet [24] proposed a multi-camera and multi-plane object
tracking method usingMI. In this method, theMI derivatives
with respect to the pose parameters do not depend on the rel-
ative pose between the planes and the cameras; therefore,
its convergence rate is low and drops severely as the angle
between planes increases.

This paper proposes schemes to increase convergence rate
by implementing an object pose-dependent warp. We first
present a geometrical model which is consisted of multi-
ple cameras and a multi-plane object. A pose-dependent
warping update method is then proposed. Using MI, we
illustrate an incremental method for finding the object pose
with respect to each of the cameras. The complexity of the
algorithm is reduced by simultaneously computing all the
warps between the planes and cameras. Six variations of the
proposed algorithm are tested with both intricate-textured
images and simple-textured images.

Note that our previous paper published in JMIV has
theoretically proven the appropriate form for the second
derivative of MI [25]. This paper thoroughly explains the
calculation process of second derivative of MI; proposes
an approach to largely increase the convergence radius for
objects with simple-textured planes, that is to apply Gaussian
blur on images first, and then use Mode 1, i.e., computing
2nd-order Hessian of MI at each step as the object pose
updates.

The structure of this paper is as follows. Section 2
describes the geometric model of the entire system. Sec-
tion 3 explains the proposed algorithm in detail. Section 4
illustrates the architecture of the proposed algorithm and the
six different variations of the method. Section 5 analyzes the
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Fig. 1 Geometric model of the system

performance of the proposed algorithm from different per-
spectives, and Sect. 6 concludes the paper.

2 Geometric Model

The geometric model of our system is illustrated in Fig. 1.
It consists of one piecewise planar object Cobj, m virtual
local cameras C̃1 to C̃m , and n practical cameras C1 to Cn

(m, n ∈ N and m, n ≥ 1).
ObjectCobj includesm planes pi , each definedby a normal

vector ni and a point on the plane P i (i ∈ {1, 2, . . . ,m}).
Each plane pi has a virtual local camera C̃i looking at it from
the negative space defined by the plane. The relative position
and orientation (pose) between the plane and its associated
local camera is fixed. Therefore, the captured image of each
local camera always remains the same, independent from the
displacement of the object. All of the local cameras share the
same intrinsic parameters (including focal length, principal
point, and pixel size), and their relative pose to the associated
planes is identical. With appropriate parameters, the images
taken by the local cameras will be exactly the planes of the
object. Note that these local cameras do not exist physically;
they are modeled to facilitate the understanding and C++
implementation of the system. The set of cameras, C1 to Cn ,
do exist physically. They are fixed with respect to the world
coordinate CW , and their intrinsic and extrinsic parameters
are known.

The system includes m local cameras and n cameras, and
the relative pose between each pair of local camera and cam-
era has to be calculated. In total, there are m · n pairs to be
considered.

3 Proposed Algorithm

3.1 Image Warping

Take the pair of local camera C̃m and cameraCn for instance,
we denote I ∗

C̃m
as the image captured by local camera C̃m ,

i.e., the reference image, and ICn the image seen by camera
Cn . Given a pose T , there exists a warp ωT [see Eq. (1)] that
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