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Abstract: Phase-induced amplitude apodization (PIAA) is a promising technique in high 
contrast coronagraphs due to the characteristics of high efficiency and small inner working 
angle. In this letter, we present a new method for calculating the diffraction effects in PIAA 
coronagraphs based on boundary wave diffraction theory. We propose a numerical propagator 
in an azimuth boundary integral form, and then delve into its analytical propagator using 
stationary phase approximation. This propagator has straightforward physical meaning and 
obvious advantage on calculating efficiency, compared with former methods based on 
numerical integral or angular spectrum propagation method. Using this propagator, we can 
make a more direct explanation to the significant impact of pre-apodizer. This propagator can 
also be used to calculate the aberration propagation properties of PIAA optics. The 
calculating is also simplified since the decomposing procedure is not needed regardless of the 
form of the aberration. 
© 2017 Optical Society of America 
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1. Introduction

The Phase-induced Amplitude Apodization (PIAA) coronagraph, which was first proposed by 
Guyon [1], is a very promising technique for high contrast imaging of exo-planets. It employs 
sets of (at least two) aspherical optical elements to achieve the pupil apodization. Hence, it 
has good performance offering high contrast, high throughput and smaller inner working 
angle [2,3]. One important issue for PIAA coronagraph design is the computing of diffraction 
effects, because the high contrast apodization redistribute light from the edge of the entrance 
pupil to a more widely area of the exit pupil, which dramatically amplifies the diffraction 
effects, and notably influences the final contrast performance. However, in the case of PIAA, 
as Vanderbei pointed out [4], Fresnel diffraction modeling does not work well. Various 
alternative methods with higher accuracy have been proposed [4–8]. Propagators in [4–6] are 
based on Huygens wavelet propagation, which has the form of 2-dimensional surface integral 
or a reduced radial integral using Bessel functions. In [7], Pueyo derived a modification of the 
angular spectrum propagation algorithm that can be used for PIAA systems. In [8], Krist 
optimized this method by combining it with S-Huygens method (proposed in [5]) to reduce 
the number of wavefront components, and the calculating efficiency was proved to be higher. 

In this paper, we will derive another propagator of diffraction effects in PIAA optics 
based on boundary wave diffraction theory. According to boundary wave diffraction theory, 
the diffraction fields can be described in terms of boundary diffraction waves with the form of 
1-dimensional boundary integral, and depending on the situation, the geometrically incident
wave [9]. The same method has been successfully used in the design and calculation of
external occulter [10]. First, we will approach the specific expression of boundary wave
integral in PIAA systems. Then, we will derive an analytical propagator on the basis of the
line integral form, using stationary phase approximation, and compare the calculating speed
and accuracy with former methods. When pre-apodizer is used, which is a method for
mitigating diffraction effects in PIAA systems proposed in [6], we can make a more direct
explanation to the effects of pre-apodizer, although an additional term should be added in the
propagator. In the last section, we use the analytical propagator for calculating the aberration
propagation through PIAA optics. Compared to the decomposing strategy proposed in [5, 11],
this propagator is more direct and simplified.

2. Boundary wave diffraction theory in PIAA optics

We start from the basic form of boundary wave diffraction theory [12]. The diffraction field 
at the exit pupil can be expressed as 

( ) ( ) ( ),
,

( ) ( ),
G B

B

U P U P U P P in illuminated region

U P U P P in shadow region

= +
 =

     

    
(1)

where ( )
G

U P  is the geometrical propagation wave, and ( )
B

U P  represents the boundary wave. 

Here the diffraction is assumed to occur on the input surface of L1, and the boundary 
diffraction theorem is applied on the edge of L1. In a circularly symmetric PIAA system (see 
Fig. 1), assumed pure geometrical optics, the amplitude profile at the exit pupil can be exactly 
expressed as the apodization function A, and the electric field distribution is 

0( , ) ( ) ,jkP
GU r A r eθ =  (2)

where k is the wave number, and P0 is the constant defined in [13], representing the optical 
path length for an on-axis ray through the system. 
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The boundary wave term in vector form is expressed as [14] which shown in Eq. (3). 
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n is the refractive index of the two lenses L1 and L2. n is −1 when the optical elements are 
both mirrors. p


 represents the unit vector of the geometrically reflective ray of the incident

ray. S represents the distance from the point (r1, θ) on the edge of L1 to the point ( r ,θ ) on 
L2, with s


 as the corresponding unit vector,
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    (4) 

Fig. 1. PIAA system composed by a pair of specially figured lenses. Light incomings from the 
top. The maximum size of L1 is noted by r1. L1 is a little oversized in order to mitigate the 
diffraction effects. 

In the case that the two lenses have the same aperture size, that is, r1max = r2max, the ray on 
the edge of L1 is remapped to the exact edge of L2. Hence, the incident ray, the normal vector 
of L1, and the reflective ray are all along z-axis, and the p


 vector is (0,0, 1)T− . When we

calculate the output wave at the exact bound of L2, which means (0,0, 1)Ts = −
 and 

1 0p s− ⋅ = 
, and the integral is infinite. However, in actual PIAA cases, L1 is slightly 

oversized (usually several percent) compared with L2, in order to mitigate the diffraction 
effects [5, 6, 11]. The infinite situation will be avoided. The oversized part of L1 is the 
constant-curvature extension of the original part. Considering that the curvature at the edge of 
L1 is usually very weak when the mitigating method of [10] has been used, we make an 

approximation that p


 is still (0,0, 1)T−  in the oversized case. The differential element dl


can be expressed as 

1 (sin , cos , 0) .Tdl r dθ θ θ= ⋅ −


(5)

Using expression (4) and (5), we transfer (3) to the scalar form, 

( ) ( ) ( ) ( )
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1
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 (6) 

Substitute (2) and (6) into (1), then we can obtain the diffraction field at the exit pupil 
within the maximum aperture of L2, 
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 (7) 

Here we shift the phase by 0jkPe−  for simplification. Equation (7) is the boundary wave 
expression of the output field through PIAA optics. It is composed by a geometrical 
apodization function and an azimuthal integral along the boundary of L1. The reduction from 
2D integral to 1D integral is very important to the calculating efficiency, as proposed in [5]. 
While the difference from [4, 5] is that we do not use Bessel function in the integral and the 
only oscillating term in the integrand is jkSe . 

3. Stationary phase approximation and the analytical expression

Since the boundary wave integral has the form of exponential oscillating, we can approach 
the integral expression by stationary phase approximation [12]. By the stationary phase 
approximation, 1-dimensional integral with the following form can be calculated by 
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where x0 are the critical points which satisfy
0

( ) 0f x′ = . Here we should make the assumption 

that k is very large and g(x) changes slowly. For the boundary wave diffraction Eq. (6), 
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where 
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Hence, the critical points are 
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When m is even, 
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1
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For any stationary point, we obtain 
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Also we can obtain the result when m is odd, 
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Hence, 
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Substitute Eq. (16) into (7), we obtain an analytical expression of the diffraction field, 

( ) ( ){ }1 0

1 1( , ) ( ) (1 4 ) ( ).
jk n Z h r h r P

U r A r e I Iθ π  − + − 
−= + ⋅ +

   (17)

Equation (17) can be used as the analytical propagator of diffraction effects in PIAA 
optics. Compared to former numerical propagators, the physical meaning of Eq. (17) is much 
more straightforward: the propagator can be divided into the geometrical part and the 
diffractive part. The diffractive part is determined by the boundary wave of two edge points. 
One have the same azimuth angle as the calculated point, and another is the opposite point. 

Furthermore, from the view of calculation efficiency, using Eq. (17) will be even faster 
since all of the calculation is done in one analytical expression. The improvement on 
propagator’s calculating efficiency is significant to PIAA systems, due to the need of active 
wavefront control and iterative system performance modeling [8]. 

Fig. 2. The output fields calculated by four different methods: boundary wave integral (a), 
stationary phase approximation of boundary wave (b), S-Huygens approximation of 2D 
integral (c), and hybrid PASP method (d) proposed by Krist [8]. The radius of the second 
mirror is 50mm, and the first mirror is 2% oversized. The mirror separation is 500mm. The 
incoming light wavelength is 800nm. 
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Fig. 3. PSFs at the focus of PIAA system, corresponding to the three output fields (b), (c), and 
(d) obtained above. The PSFs were computed by 10,000 points discretization. 

To prove the efficiency and accuracy of Eq. (17), we take the case of a reflective PIAA 
system with post apodization but without pre-apodizer as an example. Cases with pre-
apodizer will be dealt with in the next section since it is a little more complicated. A typical 
Gaussian amplitude profile approximately matching a high contrast profile 

( )2
10( ) r RA r a e−= ⋅  (18)

is employed, where a is a normalization parameter. For mitigating the diffraction effects, as 
Pluzhnik proposed [6], we oversize the first mirror by 2% and employ a post-apodizer, 
limiting the minimum value of the apodization to 0.1. Figure 2 shows the diffraction field at 
the exit pupil, respectively calculated using the boundary wave diffraction integral expression 
(7), the analytical expression by stationary phase approximation (17), the S-Huygens 
approximation, and the hybrid PASP method. From the results (a) and (b), we can conclude 
that the stationary phase approximation shows very high accuracy, since the maximum 
difference is less than 1.7% in amplitude and 0.015 rad in phase. Results (c) and (d) show 
very good accordance, 0.5% difference in amplitude and 0.005 rad difference in phase. It is 
easy to understand since the edge diffraction effects in hybrid PASP method is actually 
calculated by S-Huygens method. The relative difference in amplitude between (b) and (c) (d) 
is less than 2% at most positions, while the maximum difference is no more than 20% 
(occurred at the very near edge). The phase discrepancy near the edge is about 0.24 rad. This 
discrepancy can be distinguished in the figure but actually very small, since the electric field 
near the edge is very weak. This is mainly owing to the divergent tendency of boundary wave 
diffraction theory near the edge of the illumination area. Although the first mirror is oversized 
and the infinity value is avoided, the discrepancy of boundary wave theory and Kirchoff 
theory has an increasing trend. But anyhow it does not change the imaging contrast obviously 
(see Fig. 3 for the corresponding point spread functions, all results can be reduced to below 
10−10), because the contribution of the edge to the final PSF is very weak. Hence, these results 
verify that the boundary integral and the stationary phase approximation have sufficient 
precision for diffraction analysis in PIAA optics. 

On the other hand, from the view of efficiency, we compared the four methods on a 
normal PC by calculating 10000 points at the output surface. The two 1D integration 
methods, S-Huygens approximation and boundary wave integration, were executed based on 
adaptive Gauss-Kronrod (15th and 7th order formulas) numerical methods, due to its high 
efficiency on the quadrature of oscillating integrands. The relative error upper-band was set to 
10−4. In the calculation by hybrid PASP algorithm, the highest sampling frequency was 100. 
The relative errors at most points were below 10−4 compared to the case that the highest 
sampling rate is doubled. In the premise of same calculation accuracy, we can now compare 
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the efficiency. The analytical propagator Eq. (17) finished the calculation within one second, 
while the hybrid PASP method cost about 2~3 minutes (did not include the time for the edge 
diffraction term computed by S-Huygens method since this procedure is needed only once 
and can be done previously), and the S-Huygens method cost over 40 minutes. The boundary 
wave integration cost about 10 minutes, also faster than S-Huygens method, although both of 
them have a 1D integration form. This difference is mainly due to the Bessel function term in 
S-Huygens integration making the integrand more oscillating. This comparison demonstrates
that the stationary phase approximation of boundary wave is a very efficient method for PIAA
propagation.

4. Propagation of PIAA with pre-apodizers

The concept of pre-apodizer in PIAA systems was first proposed by Pluzhnik [6] for 
mitigating the diffraction effects. The function of pre-apodizer can be quantitatively explained 
by boundary wave diffraction theory, but first we should do a little modification to Eq. (17) 
when a pre-apodizer is used. 

According to the extension theory of boundary wave diffraction raised by Suzuki [15], 
when the boundary wave diffraction theory is applied to the aperture with non-uniform 
transmittance distribution, every point where the gradient of the transmittance is not zero will 
be the origin of a secondary wave. Here, for simplicity, we will not derive the theorem but 
directly use the conclusion of Suzuki (Eq. (13) and (14) in [15]). Thus, the boundary wave 
term at the exit pupil within L2 can be expressed as 

( )1

1 1
( , ) ( ) ( , ) .

4 4BU r T r W dl T r W ndS
τ

θ θ
π π

= ⋅ − ∇ × ⋅ 
  

 (19)

where T describes the transmittance distribution on the aperture, W


 is the vector form
integrand in Eq. (3), S is the input aperture surface and n


 is the normal vector of S. The first

term in Eq. (19) is same as the normal condition while only multiplied by the transmittance 
function on the edge of L1. Obviously, for mitigating diffraction effects, when we choose the 
transmittance as zero on the edge of L1, or a continuous edge in another word, the first 
diffraction term is reduced to zero. As to the second term, the transmittance within the 
working part of L1 is uniform and the apodization is only employed in the oversized part so 
that it does not influence the PIAA. Thus, the integration in the second term is only within the 
oversized surface. Considering that an exponential oscillating term is contained in W


, we can

also use 2D stationary phase approximation to evaluate the integration. From the geometrical
theorem of PIAA optics [13], it is easy to understand that for a given point at the exit pupil,
the only stationary phase point is the geometrically corresponding point at the entrance pupil,
and hence there will not be any stationary phase point in the oversized part. So the
contribution of the second term is actually so small that can be neglected in the propagation.
Hence, the PIAA system will show exactly geometrical propagation characteristics when a
proper pre-apodizer used.

From these analyses, we can conclude three requirements that a pre-apodizer function 
should satisfy: 

1. The transmittance at the outer edge of L1 should to be zero, so as to make the first
term zero in Eq. (19), or realize a continuous edge in another word.

2. The transmittance and its first-order derivative at the edge of working part on L1
should be continuous. This requirement comes from the condition for Stokes
theorem holding [15], which is the origin of Eq. (19). 
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3. The first-order derivative at the outer edge of L1 should also be equals to zero. This is
a necessary condition to make the second term in Eq. (19) convergent, since the

value of W


 is infinity at the outer edge. 
Inversely, we can also know that any pre-apodizer function meeting the three 

requirements above will make the PIAA system “diffraction-free”, for example, the widely 
used cosine-tapered function. The mitigating effects have been demonstrated numerically by 
Pluzhnik [6]. We also did the same demonstration with the same PIAA system with Chapter 3 
and a cosine-tapered pre-apodizer. The output field in Fig. 4(a), calculated by S-Huygens 
method, shows smooth profile without any high-frequency oscillations or Arago spot. The 
PSF at the first focus also shows good accordance with the geometrical results. In addition, 
we calculate the second term in Eq. (19) and its contribution to final PSF numerically. The 
results are showed in Fig. 5. The output field contribution of this term is usually at the level of 
10−6, and increases rapidly at the very near edge. The relative proportion is nearly 50% at the 
bound, but similar as the results in Section 3, its contribution to final imaging contrast is very 
small (See Fig. 5(b)). The highest relative change is at the level of 10−3 except at several 
“valley” points. So this proves additionally that the diffraction term can be neglected when a 
proper pre-apodizer is used, and the PIAA system will show exactly geometrical propagation 
properties. 

Fig. 4. Output fields and PSFs of a “diffraction-free” PIAA system with cosine-tapered pre-
apodizer. 

Fig. 5. (a) Output field of the second term of Eq. (19) and (b) its contribution to final PSF. In 
(a), the upper line is the profile of the apodization function, representing the geometrical 
propagation properties of PIAA systems. The lower line is the contribution of the second term 
of Eq. (19), representing the diffraction part properties. 

5. Aberration propagation through PIAA optics

By use of Eq. (17), calculating the propagation of aberrations through PIAA optics is also 
more simplified. Suppose the incoming light has both amplitude errors and phase errors, the 
input field is written as 

( , )( , ) ( , ) .pjkE r

AE r E r e θθ θ= (20)

The only difference from the derivation of (19) is the change of g(θ), 
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Similarly, the final output field can be written as 

1{ [ ( ) ( )] }
1 1 1 1

1
( , ) ( ) ( ( ), ) [ ( , ) ( , )]

4
jk n Z h r h r PU r A r E R r e I E r I E rθ θ θ θ π

π
− + −

−= + ⋅ + +
       (22) 

Equation (22) can be used as an analytical aberration propagator for PIAA systems. It 
should be noted here that the input field is non-uniform when wavefront errors exist, and we 
should employ Eq. (19) rather than Eq. (17) rigorously. However, in actual cases, the 
wavefront errors are at the level of 1/100 λ, and the derivatives of the errors are even smaller. 
Hence we neglect this factor and still use Eq. (17) for calculation, as long as the aberration 
scale is small and the frequency is not high. Numerical results compared to the former two 
methods also verified this point. We take a simple case as an example, assuming a 1/100 λ 
spherical aberration on the same PIAA optics as Section 3. Figure 6 shows the output field 
distribution along the axial direction calculated by Eq. (22) (a), S-Huygens method (b), and 
hybrid PASP method (c) respectively, as well as the imaging contrast (also along the axial 
direction) of the three fields (d). The corresponding 2D images are shown in Fig. 7. The 
appearance is similar to the condition with no aberrations. The three results show good 
accordance at most points but differ at the near edge. From the 2D images in Fig. 7, the 
discrepancy at the very near can be seen more directly. While this difference still does not 
change the imaging contrast obviously. That means the propagator based on boundary wave 
diffraction is also suitable to the aberration propagation in PIAA optics. Compared to former 
methods, this analytical propagator has obvious improvement on simplification. The former 
methods for calculating the aberration propagation are based on decomposing the aberration 
into particular form, Zernike polynomials in [5] and harmonic ripples in [8, 11].While using 
Eq. (22), the output field can be directly obtained without the procedure of decomposing, no 
matter what form the aberration is. 

Fig. 6. The output fields calculated by three different methods: stationary phase approximation 
of boundary wave(a), S-Huygens approximation of 2D integral(b), and hybrid PASP method 
(c) proposed by Krist [8].The relative difference in amplitude between (b) and (c) (d) is less
than 1.5% at most positions, while the maximum difference is no more than 21% (occurred at
the very near edge). The discrepancy in the phase near the edge is about 0.25 rad. However, all
of the corresponding PSFs show good accordance while the main differences occur at the
“valley” points. 
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Fig. 7. Up: The phase of output fields calculated by three different methods, corresponding to 
the results in Fig. 6 (a) ~(c). From the 2D images, the discrepancy at the very near can be seen 
directly. Bottom: The PSFs at the focal plane of the corresponding electric fields (a) ~(c), 
stationary phase approximation (d), S-Huygens approximation (e), and hybrid PASP method 
(f) respectively.

6. Summary

In summary, for the first time, we proposed an analytical propagator for calculating the 
diffraction effects and aberration propagation in PIAA optics based on boundary wave 
diffraction theory. The expression has straightforward physical meaning, composed of a 
geometrical part and a boundary wave part. We compared this propagator with former 
amateur methods, and the results verify the effectiveness and accuracy. According to this 
propagator, we also present an analytical expression without any decomposing procedure for 
calculating the aberration propagation through PIAA systems. 

The analytical propagator presents much improvement on simplification and efficiency 
than former numerical propagators, and hence, is very meaningful to future PIAA system 
design and error budgeting. It can be used in system design and evaluation to predict not only 
the design performance but also the realistic system with errors. Lots of time can be saved in 
the iteration process of design and analysis. Furthermore, the most pressing need for an 
efficient propagator is for wavefront control [8]. Setting up the response matrix needs 
tremendous times of propagation calculation (determined on the number of DM actuators and 
sensing wavelength), and the analytical propagator will also save much time on this 
procedure. 

In next step, we will focus on the application of this analytical propagator on the systems 
with complicated apertures. The propagator in this paper is not suitable to this case since the 
integrand is infinite at the exact edge but there is no chance of oversizing for spiders of other 
obscures. In this case, a recent theory called uniform theory of boundary wave diffraction will 
be considered [16], and the integration should be done along the axial direction, which may 
also make the propagator more complicated. 
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