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A B S T R A C T

In this paper, we propose extended Nijboer–Zernike (ENZ) method for aberration retrieval by incorporating
lasso variable selection method which can improve the accuracy of aberration retrieval. The proposed model is
computed by the state-of-art algorithm of the Bregman iterative algorithm (Bregman, 1967 [1]; Cai et al., 2008
[2]; Yin et al., 2008 [3]) for L1 minimization problem with adaptive regularized parameter choice based on the
strategy (Ito et al., 2011 [4]). Numerical simulations for real world and simulated phase data validate the
effectiveness of the proposed ENZ AR via lasso.

1. Introduction

Parameter estimation based aberration retrieval methods using
focal plane images usually adopt Zernike polynomials to represent
aberration linearly. In 2002, an extended Nijboer–Zernike (ENZ)
diffraction which is based on Debye diffraction approximation and
the Zernike expansion of generalized pupil function was introduced,
providing an analytic description of the focal field over a large volume
and realizable solutions for the aberration coefficients [5,6]. For the
cases of high numerical aperture (NA) and large Fresnel number (FN),
the ENZ approach agree well with the more rigorous Rayleigh–
Sommerfeld-I (RSI) diffraction integral providing that enough expan-
sion terms are used for approximation [7], and was incorporated into
the Ignatowsky–Richards/Wolf formalism for the vectorial treatment
[8,9].

Dirksen et al. [10] proposed an ENZ aberration retrieval (AR) to
identify lens imperfections from the intensity point spread function
(PSF) of the optical system, which has been subsequently applied in the
field of high resolution optical lithography, where the optical defects of
the projection lens can be derived from recorded point source images in
a photoresist layer [11]. Moreover, ENZ AR was applied to estimate
optical path aberrations in telescopes, particularly non-common path
aberrations of NACO adaptive optics in very large telescopes (VLTs)
[12]. Antonello and Verhaegen [13] considered combining convex
optimization methods with the ENZ theory for phase retrieval.

The AR process is an inverse problem based on diffraction and
statistical parameter estimation. The aberration is usually linearly

represented by Zernike expansions, where the variables are the
Zernike coefficients. In principle, Zernike expansions have infinite
terms, but in practice, only the first Q terms are retained for ENZ AR
assuming that the truncated terms can be neglected, where Q is defined
empirically over a given range. The estimation variance increases with
respect to the number of Zernike terms, whereas a small number of
terms would truncate some large coefficients, enhancing the bias and
hence increasing the mean square error (MSE). The detailed explana-
tions for the above phenomena can be found in [14, pp. 156–159].

Selecting the important terms of Zernike polynomials is difficult
and important. For example, Q=45 was chosen to estimate NACO non-
common path aberrations [12]. When the real and imaginary parts of
the NZ coefficients are viewed as different variables, there are 89
variables for Q=45, because the first term of ENZ coefficient only has
real value. However, as shown in Fig. 4 in [12], most coefficients of
these 89 variables, say 67%, are near to 0. Thus, the sparsity of the
expansion coefficients should also be considered in the physical
modeling and numerical computation. The sparsity of the expansion
coefficients is a key feature in the proposed AR model (Section 3).
Moreover, van Haver and Janssen [15] proved that the generalized
pupil function expressed by ENZ is convergent, which means that the
coefficients of the ENZ expansions tend to zero when the number of
terms increases. This is the theoretical foundation for the sparsity
property of ENZ expansion coefficients.

In the following, we adopt the methodology of the paper [16] to
justify that the parameter vector formed by ENZ coefficients is sparse.
We use randomized wavefronts to investigate the distribution of the
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expansion coefficients qualitatively. Wavefronts were simulated using
the method in [17] to generate 1000 random phases by first 21 terms of
Frits Zernike expansion, where the phase should satisfy the following
requirement pv π rms π< 2 , = 0.2 (rad). Here we explain the above
requirement in detail. In the paper [17], the ratio D r/ 0 should be
predetermined, where D is the diameter of the telescope, and r0 is
atmospheric coherent length. For the given ratio D r/ 0, the correspond-
ing rms of the wavefront can be determined. In fact, the above
mechanism can be realized by pre-determining the values of rms. For
the reason to choose pv π< 2 , we want to avoid the occurrence of phase
wrapping. When the phase wrapping happens, more coefficients of
ENZ are needed to fit the wavefront. Some of wavefronts are shown in
Fig. 1. These phases at constant amplitude generated 1000 generalized
pupils, which were then expressed by ENZ via (2.1) by choosing the
parameter Q=91 in ENZ. We refer to [13, Appendix], for the detailed
deduction of the relationship between the Zernike coefficients and the
ENZ coefficients. Separating the real and imaginary parts of each
coefficients, thus each generalized pupil has 181 coefficients. For 1000
generalized pupils, we count those 181 000 coefficients and draw their
histogram to estimate the priori distribution of the coefficients via ENZ,
see Fig. 2a. The x-axis denotes the values of 181 000 coefficients, while
the y-axis represents the percentage of the same values of 181 000
coefficients. As shown in the figure, the histogram peaks at zero and
falls off much faster than the counterparts of standard Gaussian
distribution. For example, the coefficients of less than 0.01 are about
60% of the total coefficients, and the coefficients of less than 0.1 are a
bit more than 91% of the total coefficients, which means that the
sparsity of the coefficients via ENZ should be taken into account during
ENZ aberration retrieval. Moreover, we characterize the distributions
of 181 000 coefficients in terms of the shape of their logarithm, as
shown in Fig. 2b. The logarithms of the probabilities shown in the y-
axis of Fig. 2a are plotted in blue color. Also, we plot the logarithm of
the probability density function of the standard Gaussian and
Laplacian distribution in green and dark color, respectively. As shown
in Fig. 2b, the logarithmic histogram peaked at zero and falls off much

faster than the standard Gaussian distribution, even faster than
Laplacian distribution in the log domain. This kind of distribution is
usually called “sparse”.

Variable selection is where variables with high correlations to the
observation data are preferentially chosen. It can solve the problem
with sparse prior. Some common methodologies for variable selection
are cross validation, hypothesis testing, and regularization [18].
Regularization using the least absolute shrinkage and selection opera-
tor (lasso) was introduced by Tibshirani [19], which can capture
important features of the model without training sets. Lasso can be
efficiently solved by considering data sparsity. The lasso estimates
linear regression coefficients through L1-constrained least squares.
Noting the form of the L1-constrained term in lasso, Tibshirani
suggested that lasso estimates can be interpreted as posterior mode
estimates when the regression parameters have Laplacian priors [19].

In this paper, by incorporating lasso variable selection into ENZ AR
(lasso ENZ AR), we can improve the accuracy of the estimation through
utilizing a large number of ENZ AR and trading off the terms adaptively
with respect to those coefficients which approach 0. This produces a
dynamically adaptive variable selection strategy in the ENZ AR process.
The proposed lasso ENZ AR can be computed efficiently via the state-
of-art algorithm of the Bregman iterative algorithm [1–3] for L1

minimization problem with adaptive regularized parameter choice
based on the strategy [4].

The paper is organized as follows. ENZ AR is reviewed in Section 2.
The lasso ENZ AR algorithm is developed in Section 3, and simulations
for ENZ AR and lasso ENZ AR are performed in Section 4. Final
conclusions are summarized in Section 5.

2. Aberration retrieval using extended Nijboer–Zernike
diffraction

2.1. Extended Nijboer–Zernike diffraction

The generalized pupil function can be expressed using Nijboer–

Fig. 1. Some simulated random phases.

Fig. 2. The distributions of the ENZ coefficients. (a) Histogram. (b) Logarithmic histogram. (For interpretation of the references to color in this figure caption, the reader is referred to
the web version of this paper.)

B. Wang et al. Optics Communications 385 (2017) 78–86

79



Zernike coefficients [20] as

∑Pupil ρ θ β R ρ mθi( , ) = ( )exp( ),
n m

n
m

n
m

,

| |

(2.1)

where β{ }n
m are coefficients of the Nijboer–Zernike expansions;m and n

are integers such that n ≥ 0, n m− | | is even and n m− | | ≥ 0. The first
β0

0 is real, and βn
m is complex for m b≠ 0, ≠ 0.

Let us introduce a variable vector, β, to denote the coefficients β{ }n
m

in (2.1), which is used to denote an unknown variable vector to
estimate aberration in Section 2.2. Given a non-negative increasing
integer sequence, q, the integers m, n in (2.1) can be viewed functions
of q, denoted by gn q n: → , gm q m: → , so the qth element of β is βgn q

gm q
( )
( ).

For example, for the 22th element of β, n m= 6, = −4, and for the 35th
element of β, n m= 7, = 7. Indeed, n gn q= ( ) is an increasing function
of q, whereas this is not true for m gm q= ( ).

The radial polynomials in (2.1) are [11,20]:
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Thus, R ρ( )n
m| | can be constructed before aberration retrieval for a

specific choice of m, n, and ρ. Pupil is a linear function of βn
m. The

light field on the focal plane can be expressed as [6]:

∑U r φ f β V r f mφi i( , ; ) = 2 ( , )exp( ),
n m

m
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m
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, (2.3)
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2

2 , where NA is the numerical aperture, F# is

the F-number, and z is the defocus distance, λ is the wavelength, and
r φ( , ) are polar coordinates on the image plane. The Bessel series [5]
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where Jm is a Bessel function of the first kind with order m, and
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where q = n m+ | |
2 , p = n m− | |

2 , and l j p= 1, 2,…; = 0,…, .

2.2. The ENZ AR modeling

From (2.3), the PSF intensity in the focal region can be expressed as
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where
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are the remaining second order cross terms, ′ means omission of n=0
terms in the sum, ″ means omission of n m= = 01 1 or n m= = 02 2 terms
in the sum, and Re {} denotes the real part of a complex number.

The calculated PSF intensity in the focal region, I r φ f( , ; ), is used to
estimate coefficients β{ }n

m using (2.6), as shown in Fig. 3. The ENZ AR
process, which was previously proposed in [10,12,21], has four main
steps:

(1) Input the collected PSFs Ib. Set the maximum iteration step K,
I I= b

(0) , C = 0(0) and k=0.
(2) Assume that I k( ) can be described as linear combinations of the

entrance pupil aberrations β{ }n
m . This is equivalent to omitting the

cross terms of (2.6). And then estimate β{ }n
m k( ).

(3) Calculate C k( +1) using (2.7) by β{ }n
m k( ).

(4) Set I I C= −k
b

k( +1) ( +1), k k= + 1. If k K> , exit. Else go to (2).

The extended ENZ AR algorithm (extended ENZ AR) of ENZ AR [10]
was proposed in [21], and its detailed descriptions are listed in
Algorithm 1.

Algorithm 1. Extended ENZ AR.

Input: the collected PSFs Ib, the maximum iteration step K

Output: the variable vector β K( )

Main Procedure:
1: Initialization:

2: Set C = 0(0) ;
3: Using (A.23), (A.27), (A.30) and (A.33), calculate W.
4: Using (A.25), (A.29), and (A.30), calculate H.
5: M WH= .
6: for k K= 0, 1, 2, … do

7: I I C← −d
k

b
k( ) ( ).

Fig. 3. Generalized pupil and through focus light fields can be linearly expanded by combinations of β{ }n
m coefficients. The measured through focus PSFs are inputs for estimating β{ }n

m .
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8: Create z k( ) from Id
k( ) by (A.22), (A.26), and (A.30).

9: L Wz=k k( ) ( ).

10: β M M M L← ( )k T T k( ) −1 ( ).

11: Using (2.7), calculate C k( +1).
12: end for

3. Extended Nijboer–Zernike aberration retrieval variable
selection via lasso

3.1. Variable selection via lasso

As reviewed in Section 1, variable selection is the process of
selecting a subset of relevant variables for use in model construction.
Lasso has been shown to be an efficient method for variable section,
and so we incorporate lasso into ENZ AR.

First, let us review some well-known results on the linear model
[18]. Suppose we have a linear model

δAx y+ = , (3.1)

where A A A A= ( , ,…, )Q0 2 −1 are N-vectors representing the covariates
and y is the vector of responses for N samples. We can always assume
that the covariates have been standardized to have mean 0 and unit
length by location and scale transformations, and that the response has
mean 0. The noise vector, δ, satisfies δ N σ I∼ (0, )N

2 , and IN is an N-
dimension identity matrix. Thus,

∑ ∑ ∑y A A= 0, = 0, = 1.
i

N

i
i

N

ij
i

N

ij
=0

−1

=0

−1

=0

−1
2

(3.2)

Lasso [18] is a constrained version of ordinary least squares (OLS) [19]
and estimates X by the optimization

tx Ax y s t x= arg min ∥ − ∥ , . . ∥ ∥ ≤ ,
x

2
2

1 (3.3)

where t is a predefined parameter. Lasso tends to shrink OLS
coefficients toward 0, more so for small values of t [22]. Thus lasso
can provide a better variable selection than OLS.

For the numerical method for lasso, firstly note that (3.3) can be
transformed to an unconstrained optimization problem

⎧⎨⎩
⎫⎬⎭F Jx x y Ax y x= arg min ( ; ) = 1

2
∥ − ∥ + ( ) ,

x
2
2

(3.4)

where J μx x( ) = ∥ ∥1 is convex and non-differentiable, μ is a regular-
ization parameter to trade off model accuracy Ax y∥ − ∥2

2 with x∥ ∥1
which enforces the sparsity of x. Usually, μ can be determined by some
classical criteria, such as discrepancy [23,24], heuristic rules [4,25] or
an adaptive method [4]. Many algorithms have been proposed to solve
lasso, such as iterative reweighed least squares (IRLS) [26], least angle
regression (LARS) [22], and the Bregman iterative algorithm [1–3],
which is equivalent to augmented Lagrangian iteration [27,28] and has
been established in [3]. In this paper, we adopt the Bregman iterative
algorithm to solve the proposed lasso ENZ AR. The Bregman iterative
algorithm [3] for (3.4) can be described as follows: set the initial vector
y y=(0) , for k do= 0, 1, 2,…,

Fx y y← arg min ( ; ),k k
x

( +1) ( )
(3.5)

y y y Ax← + ( − ).k k k( +1) ( ) ( +1) (3.6)

Let us briefly describe the key idea of the Bregman iterative algorithm.
Firstly, the Bregman distance [3] induced by a convex function J (·) is
defined as

D J J Ju v u v p u v p v( , ) = ( ) − ( ) − 〈 , − 〉, where ∈ ∂ ( )J
p

where J v∂ ( ) denotes the set of subdifferential of J at v. Because
D Du v v u( , ) ≠ ( , )J J

p p , D u v( , )J
p is not a distance in the usual sense. Yet,

it measures the closeness between u and v in the sense that
D u v( , ) ≥ 0J

p , and D Du v w v( , ) ≥ ( , )J J
p p for any point w being a convex

combination of u and v. Instead of solving (3.4) with the constrains, in
the following alternative version of each Bregman iteration, a problem
in the form of

D x z Ax dmin ( , ) + 1
2

∥ − ∥J
x

p
2
2

(3.7)

is solved, and the iteration is

x p p z x d y← solve (3.7) with ≔ , ≔ , ≔ ,k k k( ) ( −1) ( −1) (3.8)

p p A y Ax← + ( − ),k k T k( ) ( −1) ( −1) (3.9)

for k = 1, … starting x 0=(0) and p 0=(0) . In (3.8) the Bregman
distance D x y( , )J

p is introduced to be regarded as the regularized
version of J x( ) and in (3.9), p k( ) is determined by the optimality
condition of (3.8):

J0 x p A Ax y∈ ∂ ( ) − + ( − ),k k T k( −1) ( −1) ( −1)

which gives update (3.9). Assuming that (3.5) and (3.8) are computed
exactly, one can verify that, for all iterations k, iterations (3.5) and (3.6)
and (3.8) and (3.9) are equivalent through the identity
p A y Ax= ( − )k T k k( ) ( ) ( ) ; see Theorem 3.1 of [3]. Subproblem (3.5) can
be efficiently solved by state-of-art algorithms such as gradient projec-
tion for sparse reconstruction (GPSR) [29], fixed-point continuation
(FPC) [30], sparse reconstruction by separable approximation
(SpaRSA) [31], etc. In this paper, we adopt SpaRSA to solve (3.5),
see [31] for details. The SpaRSA utilizes the proximity operator [31] to
regularize the nondifferential functional J (·), i.e., in the each iteration,
it has the following step:

α
Jx z v z→ arg min 1

2
∥ − ∥ + 1 ( ),k k

kz
( +1) ( )

2
2

where v x A Ax y= − ( − )k k
α

T k( ) ( ) 1 ( )
k

and αk is some positive real number.

This form is considered frequently in the literature, often under the
name of iterative shrinkage/thresholding (IST) algorithms [31].

3.2. ENZ AR via lasso

Before we apply lasso in ENZ AR, the covariate matrix columns
should be standardized to have zero mean and unit length by location
and scale transformations. The center operator matrix is then

P I 1
N

= − ,N N N N× × (3.10)

where IN N× is an N-by-N identity matrix, N N× is an N-by-N matrix of
1s. And the center transformation of M is

 PM= , (3.11)

where  M M= − ∑ij ij N k
N

kj
1

=0
−1 . Let

   diagU = (∥ ∥ , ∥ ∥ , ∥ ∥ ,…,∥ ∥ , ),Q0 2 1 2 2 2 −1 2 (3.12)

where  ∥ ∥ = ∑j i
N

ij2 =0
−1 2 , and the unit transformation of M is

A U= ,−1 (3.13)

where  A = / ∑ij ij k
N

kj=0
−1 2 . Thus, the lasso ENZ AR model is

μAx y xmin ∥ − ∥ + ∥ ∥ ,
x

2
2

1 (3.14)

where βx U= and y PL= .
We adopt the adaptive method [4] to determine μ. The strategy for

choosing regularization parameters in nonsmooth Tikhonov functional
(3.14) is solely based on the value function of (3.14). The fixed point
algorithm [4, Algorithm 1] for choosing regularization parameters
balances the fidelity Ax y∥ − ∥2

2 with the penalty x∥ ∥1. As suggested in
[4], the initial value for μ is set to a small positive number and the input
parameter γ of [4, Algorithm 1] is set to a tiny positive constant
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number. The detailed description of the adaptive method is described
in [4, Algorithm 1].

We propose Algorithm 2 for lasso ENZ AR based on the Bregman
iterative algorithm [3]. Let SpaRSA μx b A= ( , , ) denote the output of
the SpaRSA algorithm [31] for the constrained optimization problem

μAx b xmin {∥ − ∥ + ∥ ∥ }x 2
2

1 with the inputs b, A, μ(0), γ.

Algorithm 2. ENZ AR via lasso.

Input: the collected PSFs Ib, the maximum iteration step K, γ and

μ(0)

Output: the variable vector β K( )

Main Procedure:
1: Initialization:

2: Set C = 0(0) ;
3: Form W by (A.23), (A.27), (A.30) and (A.33).
4: Form the matrix H by (A.25), (A.29), and (A.30).
5: M WH= .
6: Form P by (3.10).
7:  PM= .
8: Form U by (3.12).

9: A U= −1.
10: for k K= 0, 1, 2,…, do

11: I I C← −d
k

b
k( ) ( ).

12: Form z k( ) from Id
k( ) by (A.22), (A.26) and (A.30).

13: y PWz=k k( ) ( ).

14: b y= k(0) ( ).
15: for j J= 0, 1, 2…, do

16: SpaRSA μx b A= ( , , )j j k( ) ( ) ( ) .

17: v Y Ax= −k j( ) ( ).
18: if εv∥ ∥ <2 then
19: break.
20: end if

21: b b v= +j j( +1) ( ) .
22: end for

23: μ =k
γ

v

x
( +1) ∥ ∥

∥ ∥k
2
2

( ) 1
.

24: β U x=k k( ) −1 ( ).

25: Calculate C k( +1) by (2.7).
26: end for

4. Simulation

We compared Algorithm 2 with Algorithm 1 for the synthesized
data, six common aberrations in optical systems, and simulated data.
The characteristics of the optical system are shown in Table 1.

The simulations were implemented in three steps:

(1) We simulated three PSFs (images intra, in, and extra focus) from
(2.6) with the first 91 leading terms, β{ }m

m . We added Gaussian
white noise to them and simulated four noise levels (40 dB, 35 dB,
30 dB, and 25 dB) measured using signal–noise ratio (SNR).

(2) ENZ AR was used to estimate β{ }n
m (by Algorithms 1 and 2

separately) using the simulated images. We set Q=91 in AR
process. In the following experiments, we choose γ = 0.01 always,
and μ = 1 × 10(0) −12 in Algorithm 2.

(3) It is easy to see that the generalized pupil functions generated by
the two different parameter vectors β and βα , respectively, where α
is constant, have the same phase. Thus in the following, β{ }n

m
is

standardized by dividing by β0
0
to ensure that the first component

of β{ }n
m

is 1, and then comparing experimental results on residual

square error, β β β∥ − ∥ /∥ ∥2
2 2, where β is the true parameter

vector discussed above. We denote β to be obtained by
Algorithms 1 and 2 separately.

Remark 1. Here we explain the reason for β and βα having the same
phase. Firstly, it is noted that the generalized pupil function is
determined by (2.1). So the phase of each term in right hand of the
generalized pupil is composed from mθ and the phase of the
corresponding component of β. When α is real, then β and βα have
the same phase. While α is complex number, β and βα only difference
with each other up to a constant phase, which is named piston in
optics. Usually if two phases difference with each other in terms of
piston, they can be viewed as having the same phase.

Different noise levels were chosen, and the above procedures were
executed hundreds of time for each noise level. The estimated MSEs of
β from Algorithms 1 and 2 were calculated by the following:

∑ β βMSE
N

= 1 ∥ − ∥ ,
i

N

i i
=1

2
2

(4.1)

∑ β βSTD
N

MSE= 1
− 1

(∥ − ∥ − ) ,
i

N

i i
=1

2
2 2

(4.2)

where i means the ith test. N is the total number of test.

4.1. Random aberration examples

We used the method in [17] to generate 100 random phases
(pv π rms π< 2 , = 0.2 (rad)) by first 21 terms of Frits Zernike expansion.
Some of them are shown in Fig. 1. These phases at constant amplitude
generated 100 generalized pupils, which were then expressed by ENZ
through (2.1), for Q=91 in ENZ. Then, we get 100 β{ }n

m as the test data
set. We compared the MSEs of outputs from Algorithms 1 and 2 for
these random aberrations. The error bars are shown in Fig. 4, where
each data point was the MSE (averaged over the 100 experimental
results and calculated by (4.1)) at the given SNR, and the error bar is a
distance of standard deviation of residual square errors (STD, calcu-
lated by (4.2)) above and below the curve so that each bar is symmetric
and 2STD long. Algorithm 2 consistently produces a superior estimated
parameter vector at those noise levels compared to Algorithm 1.

Table 1
Characteristics of the optical system.

Light source diameter (μm) 0.25
Numerical aperture 0.5
Wavelength (μm) 0.2
Polar angle sampling (deg) 10
Polar radius sampling pix λF4 /( #)
Expected focus f (μm) −1/0/1 Fig. 4. The error bars of ENZ AR and lasso ENZ AR at different noise levels for 100

random aberrations.
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4.2. Simulation results for real aberration

The phase shown in Fig. 5a was observed from measurement of
non-common path aberrations from a 1.23 m adaptive optics telescope
in Changchun China. The NZ coefficients which can represent the field
with constant amplitude and phase (Fig. 5a, rms π= 0.14 (rad)) are
shown in Figs. 5b and c. We repeated the same simulations for ENZ AR
and lasso ENZ AR, with error bars shown in Fig. 6. When the noise STD

is 0.5, the original ENZ AR produces marginally improved estimated
result. However, as STD increases, lasso ENZ AR performance im-
mediately supersedes ENZ AR, and continues to provide improved
estimates as STD continues to increase.

5. Conclusion

We highlighted that the ENZ coefficients to represent an optical
field are sparse, and proposed lasso ENZ AR to model variable selection
for ENZ AR, providing a reliable solution algorithm. Lasso ENZ AR
shows two advantages over ENZ AR. The first is reforming the
traditional empirical variable selection into an adaptive selection
method, and numerical and real data examples validate that lasso
ENZ AR provides improved estimation accuracy of the parameter
vector.
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Appendix A. Linear least squares form for ENZ AR

If we neglect the cross-terms,

I r φ f I r φ f C r φ f( , ; ) = ( , ; ) − ( , ; ),appr (A.1)

we may assume that the noise ε r φ f( , ; ) for each pixel of the imaging plane is Gaussian random, independent, and identical distributed, i.e.,
ε r φ f N σ( , ; ) ∼ (0, )2 , where N σ(0, )2 denotes a Gaussian distribution with mean 0 and variance σ2. Let I r φ f( , ; )b denote the measured PSF, then

I r φ f I r φ f ε r φ f( , ; ) = ( , ; ) + ( , ; ).b (A.2)

We define Id:

I r φ f I r φ f ε r φ f( , ; ) = ( , ; ) + ( , ; ),d appr (A.3)

and for two integral functions, we introduce the inner product [10]

∫ ∫A B A r f B r f rdrdf〈 , 〉 = ( , ) *( , ) ,
−∞

+∞

0

+∞

(A.4)

where B r f*( , ) is the complex conjugate function of B r f( , ). If

⎪

⎪

⎧
⎨
⎩

χ r f
Re V r f V r f m
Re V r f V r f m

i
i

( , ) =
8 [ ( , ) *( , )], if = 0,
4 [ ( , ) *( , )], if ≠ 0,n

m
m

n
m

m
n
m

0
0

0
0

(A.5)

Fig. 5. Phase of non-common path aberrations and NZ coefficients (representing the field with constant amplitude and the given phases). (a) Phases. (b) Real part of NZ coefficients. (c)
Imaginary part of NZ coefficients.

Fig. 6. The error bars of ENZ AR and lasso ENZ AR for different noise levels for the
aberration shown in Fig. 5.
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⎪

⎪

⎧
⎨
⎩

ψ r f
Im V r f V r f m
Im V r f V r f m

i
i

( , ) =
− 8 [ ( , ) *( , )], if = 0,
− 4 [ ( , ) *( , )], if ≠ 0,n

m
m

n
m

m
n
m

0
0

0
0

(A.6)

then χ ψ n n〈 , 〉 = 0, ∀ , ′n
m

n
m
′ , following [21].

Substituting (2.6) and (A.1) into (A.3), applying Fourier cosine transform to both sides, and operating the inner products with χn
m and ψn

m

respectively,

⎧
⎨⎪
⎩⎪

χ χ β β Re β χ χ Cε χ CI χ

β Im β ψ ψ Cε ψ CI ψ
m n n

1
2

〈 , 〉( ) + ∑ ′ ( )〈 , 〉 + 〈 , 〉 = 〈 , 〉,

∑ ′ ( )〈 , 〉 + 〈 , 〉 = 〈 , 〉,
= 0; , ′ = 0, 2, …n n n n n n d n

n n n n n d n

0
0

′
0

0
0 2

0
0 0 0

′
0 0

′
0 0

′
0

0
0 0 0

′
0 0

′
0 0

′
0

(A.7)

⎪

⎪

⎧
⎨
⎩

β Re β Re β χ χ Cε χ CI χ

β Im β Im β ψ ψ Cε ψ CI ψ
m n n m m

∑ [ ( ) + ( )]〈 , 〉 + 〈 , 〉 = 〈 , 〉

∑ [ ( ) + ( )]〈 , 〉 + 〈 , 〉 = 〈 , 〉
= 1, 2,…; , ′ = , + 2, …n n

m
n

m
n
m

n
m m

n
m

d
m

n
m

n n
m

n
m

n
m

n
m m

n
m

d
m

n
m

0
0 −

′ ′ ′

0
0 −

′ ′ ′ (A.8)

where

∫CI r f
π

I r φ f mφ dφ( , ) = 1
2

( , ; )cos( ) ,d
m

π
d

0

2

(A.9)

∫Cε r f
π

ε r φ f mφ dφ( , ) = 1
2

( , ; )cos( ) ,m
π

0

2

(A.10)

⎧

⎨
⎪⎪

⎩
⎪⎪

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

Cε χ
N σ

π
Δ χ m m π Δ

N σ
π

Δ χ
, ∼

0,
2

1, , if = 0 or = / ,

0,
4

〈1, 〉 , others,

m
n
m

φ n
m

φ

φ n
m

′

2

′
2

2

′
2

(A.11)

⎧

⎨
⎪⎪

⎩
⎪⎪

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

Cε ψ
N σ

π
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N σ
π

Δ ψ
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2
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0,
4

1, , others,

m
n
m

φ n
m

φ

φ n
m

′

2

′
2

2

′
2

(A.12)

where Δφ is the sampling step of φ on the focal-plane.
Similarly, if we apply Fourier sine transform,

⎪

⎪

⎧
⎨
⎩

β Im β Im β χ χ Sε χ SI χ

β Re β Re β ψ ψ Sε ψ SI ψ
m n n m m

− ∑ [ ( ) − ( )]〈 , 〉 + 〈 , 〉 = 〈 , 〉

∑ [ ( ) − ( )]〈 , 〉 + 〈 , 〉 = 〈 , 〉
= 1, 2,…; , ′ = , + 2, …n n

m
n

m
n
m

n
m m

n
m

d
m

n
m

n n
m

n
m

n
m

n
m m

n
m

d
m

n
m

0
0 −

′ ′ ′

0
0 −

′ ′ ′ (A.13)

where

∫SI r f
π

I r φ f mφ dφ( , ) = 1
2

( , ; )sin( ) ,d
m

π
d

0

2

(A.14)

∫Sε r f
π

ε r φ f mφ dφ( , ) = 1
2

( , ; )sin( ) ,m
π

0

2

(A.15)

⎛
⎝⎜

⎞
⎠⎟Sε χ N σ

π
Δ χ m m π Δ, ∼ 0,

4
1, , if ≠ 0 and ≠ / ,m

n
m

φ n
m

φ′

2

′
2

(A.16)

Sε χ m m π Δ〈 , 〉 = 0, if = 0 or = / ,m
n
m

φ′ (A.17)

⎛
⎝⎜

⎞
⎠⎟Sε ψ N σ

π
Δ ψ m m π Δ〈 , 〉 ∼ 0,

4
1, , if ≠ 0 and ≠ / ,m

n
m

φ n
m

φ′

2

′
2

(A.18)

Sε ψ m m π Δ〈 , 〉 = 0, if = 0 or = / .m
n
m

φ′ (A.19)

Since m π Δ0 < < / φ in (A.13), (A.17) and (A.19) will not appear in (A.13).

Since we use only the first Q terms in ENZ expansion, let us introduce the symbol ⌈ ⌉n k+ 1 −
2

max to denote the cardinality of the set

a V a n{ | exists and ≤ }a
k

max , and define

⎧
⎨⎪
⎩⎪

⎡
⎢⎢

⎤
⎥⎥

T
m

n k m=
0, if = 1,

2 ∑ + 1 −
2

, if ≤ 0,m
k
m max
=0

(A.20)

n gn Q= ( ),max (A.21)

where mmax is the absolute maximum of m in the first Q terms of the ENZ expansion.
First, let RH ∈ T Q

C
×(2 −1)mmax , Rz ∈ T

C mmax, and ε R∈C
Tmmax. Set H = 0C and for m m= 0, 1, 2,…, max, let
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⎪

⎪⎧⎨
⎩

i
CI χ T i T i
CI ψ T i T i

z [ ] =
, , if ≤ < and is even,
, , if ≤ < and is odd,

d
m

i m T
m

m m

d
m

i m T
m

m m
C

+ − −1

+ − −1

m

m

−1

−1 (A.22)
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2
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4
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4
1, , if ≤ < and is odd,

C

φ
i m T
m

m m

φ
i m T
m

m m

φ
i m T
m

m m

+ − −1
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m

m

m

−1

−1

−1 (A.23)

ε ωi N σ i T i T[ ] ∼ (0, ( [ ]) ) ≤ < ,C C m m
2 2

−1 (A.24)
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⎩
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T i T i

ψ ψ
Q j Q gm j Q m

T i T i

H [ , ] =

1
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Second, we introduce the matrix RH ∈ T T Q
S

( − )×(2 −1)mmax 0 , and vectors RZ ∈ T T
S

−mmax 0 and ε R∈S
T T−mmax 0. Set H = 0S and for m m= 1, 2,…, max, let

⎪

⎪⎧⎨
⎩

i
SI χ T T i T T i
SI ψ T T i T T i
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m
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ε ωi N σ i T T i T T[ ] ∼ (0, ( [ ]) ) − ≤ < − ,S S m m
2 2

−1 0 0 (28)
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Finally, let
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and (A.7), (A.8) and (A.13) can be expressed as the linear system

β εH z+ = , (A.31)

where

⎧
⎨
⎪⎪

⎩
⎪⎪

β i

β i

β Re β i Q

β Im β Q i Q

[ ] =

( ) , if = 0,
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× ( ), if − 1 < ≤ 2 − 2.
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gn i
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0
0 2

0
0

( )
( )

0
0

( )
( )

(A.32)

To ensure each component of the random vector has the same variance, we introduce the weighted matrix

ωdiag τW 1= ( ( + )) ,−1 (A.33)

where diag(u) is a diagonal matrix with diag u u( ) =ii i, 1 is a vector with each component being 1 and τ is a very small real value such that each
component of ω τ1+ is nonzero. Left multiplying both sides of (A.31),

β δM L+ = , (A.34)

where L Wz= , δ εW= , M WH= . The matrix M is called the covariate matrix [22], and has dimension Q Q2 × (2 − 1), since Q is small. Thus, we can
solve (A.34) with low computation costs by linear least squares:

β βM L M M M L= arg min ∥ − ∥ = ( ) .
β

T T
2
2 −1

(A.35)
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