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Abstract

®
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The transient gain-absorption properties of the probe field in vertical triple quantum dots
assisted by double tunneling and incoherent pumping are investigated. With a proper intensity
value and detuning of the second tunneling, the transient gain in triple quantum dots with
incoherent pumping can be completely eliminated. In addition, the incoherent pumping affects
both the amplitude of the transient absorption and the steady-state value. The dependence

of transient behaviors on other parameters, such as the radiative decay rate and the pure
dephasing decay rate of the quantum dots, is also discussed. The scheme may have important
applications in quantum information networks and communication.
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1. Introduction

Optically active quantum dots (QDs) are semiconductor nano-
crystals that confine the motion of both electrons and holes in
regions of space with sizes comparable to or smaller than the
exciton Bohr radius. QDs have three-dimensional (3D) car-
rier confinement, while the holes and electrons in QDs only
occupy the states with discrete energies. QDs can be inte-
grated in solid-state devices, and devices such as diodes [1],
lasers [2—4] and single photon sources [5] have been realized.

Furthermore, two or more QDs can form quantum dot mol-
ecules (QDMs) [6]. The simplest QDM system is a double
quantum dot (DQD), which contains two vertically [7, 8] or
laterally [9] coupled QDs. The investigation of the spectrum
of lateral DQDs is in its infancy, because the fabrication of
such structures requires special growth protocols. By contrast,
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much progress has been achieved for vertical DQDs [10-16].
It is also predicted that with a laser field an electron can be
excited in one dot, and then the excited electron can tunnel to
the second dot by applying an external voltage [17, 18].

The development of a growth technique for DQDs opens
up the possibility of fabricating and exploiting triple quantum
dots (TQDs). Previous works have shown that TQDs can
be obtained by both electrostatic gates on a 2D electron gas
[19-21] and self-assembled epitaxial growth [9, 22-24].
Based on the latter method, much work on TQDs has been
done because such nanostructures can be conveniently studied
by optical spectroscopy [25-31].

On the other hand, because transient properties have
potential applications in optical switches [32, 33], the tran-
sient properties of probe fields in atomic systems [34-42]
and semiconductor nanostructures [43—47] are being widely

© 2016 Astro Ltd Printed in the UK
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Figure 1. (a) Schematic energy diagram of the TQD system.

studied. A recent study showed that the transient properties of
the probe field in DQDs exhibit periodic absorption and gain
[48]. However, there has been no investigation of the transient
properties in TQDs with incoherent pumping. In this paper, we
theoretically investigate the transient gain-absorption proper-
ties of the probe field in vertical TQDs assisted by tunneling
coupling and incoherent pumping. The probe field in TQDs
with incoherent pumping can exhibit transient absorption
without any gain, with a proper intensity value and detuning
of the second tunneling. In addition, changing the incoherent
pumping does not bring in transient gain, but it does affect
both the amplitude of the transient absorption and the steady-
state value. Finally, the impact of the radiative decay rate and
the pure dephasing decay rate of QDs is also discussed.

2. Models and equations

Figure 1(a) shows the vertical TQDs system, which contains
three vertically stacked self-assembled InAs QDs. Such QDs
are incorporated into a Schottky diode, and thus each dot is
charged with one electron. The electrons can tunnel between
the QDs coherently due to the thin barrier of GaAs/AlGaAs
and the hole tunneling can be neglected for the off-resonance
of the valence-band energy levels in the latter position. The
optical transition energies controlled by the thickness of the
QDs can be probed with a resonant laser field. If voltage bias
is applied, the conduction-band electron energy levels are res-
onant, leading to strong electron tunneling between the neigh-
boring QDs. As with previous studies [29-31], the system can
be treated as a four-level system (figure 1(b)) containing one
ground state |O>, one direct exciton state |1> and two indirect
exciton states \2) and |3 > The probe field probes the transition
of states [0) and [1), and double tunneling couples states |1)
and \2> and states |2> and |3 >, respectively. An incoherent pump
is also considered, which can be controlled by well-known

sequential tunneling processes [49].
In the frame rotation, the Hamiltonian of such a system is

H = 8,/ 1)(1] + (6, — wi2)2)(2] + (8, — w12 — wn3)|3)(3]

+(2[0) (1] + T2)(1] +BI3)(2] +He.).
ey
Here Q) = py,Ep and 6, = wjg — wp are the Rabi frequency
and detuning of the probe field, respectively. fo; = Ho; - €

0)
(b) Schematic of the level configuration of a TQD system.

is the electric dipole moment of the transition |0) < [1), e is
the polarization vector, Ej, is the electric field amplitude, wp
is the frequency of the probe field and wjy is the frequency of
the transition |1> “ |O> T; and 75 are the tunneling couplings,
depending on the voltage bias and the intrinsic sample barrier.
w1z and wy3, which depend on the effective confinement poten-
tial, are the tunneling detuning of states \1> and |2>, and states
2) and |3), respectively.

Then the density matrix equations of such a system with
incoherent pumping are

. . . . I
Por = 1211 — poo) — 1Tipgp + [15p - (% + ’Y?o + A)] Por>
(2a)
Por = 1Qpp12 = 1Tipoy — 1Tapoy

. L A
+ [l(ép —wn) - (% +5+ 5)] P> (2D)

Po3 = 1Qpp13 = iT2pgy

. I’ A
+ [1(5;) — Wiy — wa3) — (% + 75 + 3)] poz  (20)

P = 1Qp(po1 — p1o) + 1Ti(py1 — p12) — Lo + Mpyy + Apgos
(2d)

Pro = 1 poy + 11(pyy — 1) — iDapy5
10+ Do

— |iw +(F
12 5

P13 = 18ppg3 + 1Tipy; — iTopyy

A
+ '7(110 + 730 + 3)] P12 (2e)

. Lo+ I A
- [1(w12 + w) + (% + ’y‘ljo + ’ygo + E)] P13
(21)
P = 1T1(p1y — p21) +1T2(p30 — P23) — Toopay,  (28)

Poz = 1Tipy3 + 112(p33 — p22)
20 + I30

— |iw —|—(P
23 >

+ 7(210 + Vgo)] P23 (Zh)
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Figure 2. The time evolution of Im(p,) for varying tunneling
intensity 7. The initial conditions of the population are py,(0) = 1
and otherwise p;(0) = 0 (i, j = 0 — 3). The parameters are

ﬁQp = 0.01’Y, ﬁT] = 2’7, 5p = 0, W12 = Wy3z = 0, ﬁF]() =7,

Ty = D3 = 10~*To, finy = 0.5y and 73 = 73, = 10735 All the
parameters are scaled by v = 6.6 ueV.

P33 = 1123 — p35) — L3opss, (2i)

with pog + pyy + oy + p33 = 1 and p; = 7, (i, j = 0,1,2,3).
Lo (i = 1,2, 3)is the radiative decay rate from level |i > to level
|0>, 7?0 (i=1,2,3) is the pure dephasing decay rate of the
transition i) — |0) and A is the incoherent pumping.

In the following, we will plot the time evolution of
the properties of the probe field, which is determined by
the imaginary part of p;, The imaginary part of p,, can
be obtained by solving equations (2a)—(2i). The parameters
used in our calculation are A, ~ 0 — 0.1 eV, ATy, WD ~ 10 —
100 peV, hwia, hwsz ~ —30-30 weV, AA ~0 — 10 eV,
hLig ~ 0 — 6.6 eV, Doy = Iyg = 10*L, Iy, ~ 0~ 6.6 peV
and 75, = 75, = 1073, [291.

3. Results and discussions

First we see the impact of the tunneling 7; on the transient
gain-absorption spectrum, and the time evolution of Im(p,,)
varying the intensity of the tunneling 75 is shown in figure 2.
Without the tunneling 75, the system is reduced to DQDs,
Im(p,,) exhibits periodic absorption and gain, and it eventu-
ally goes to a steady-state value with very small absorption
(dotted line in figure 2). Then, with the tunneling 75, the sys-
tem turns into TQDs. When the value of 7; is not large, i.e.
T, =, as can be seen from the dashed line in figure 2, the
amplitude of the transient gain decreases and, starting with the
second oscillation period, the transient gain is eliminated. In
addition, the steady-state value of Im(p,) exhibits absorption
with a nonzero value. As the solid line in figure 2 shows, with
increasing intensity of the tunneling 75, the transient gain van-
ishes within the first oscillation period. In addition, both the
transient absorption values and the steady-state value increase
obviously. However, with varying tunneling 7, values, the
oscillation frequency of Im(p,,) remains almost unchanged.

.................................

—c032=0
-1t — (932=
) ' ' o (,032=2
2O 2 4 6 8 10

vyt

Figure 3. The time evolution of Im(p,) for varying tunneling
detuning wy3. The other parameters are the same as those used in
figure 2, except that AT, = 7.

Next, in figure 3 we show the impact of the tunneling
detuning wy3 on the transient gain-absorption spectrum. With
zero tunneling detuning, Im(p,,) exhibits transient absorption
over the whole process, and finally reaches a steady-state with
large absorption, as shown in the solid line in figure 3. We then
consider cases where the detuning of the tunneling deviates
from zero. With small detuning, as the dashed line in figure 3
shows, Im(p,,) still exhibits transient absorption without any
transient gain; however, after several oscillation periods, the
value of the transient absorption decreases dramatically and
finally reaches a steady-state with very small absorption.
When the tunneling detuning continues to increase, from the
dotted line in figure 3 one can see that, beginning with the
second oscillation period, transient gain shows up in the spec-
trum. After that, Im(p,,) rises to a positive value again and
goes smoothly to a steady-state that is close to a zero value.

From figures 2 and 3, it can be concluded that the tunneling
intensity 7 and the tunneling detuning w3 have little impact
on the transient oscillation frequency; however, they do have
a significant impact on the transient gain-absorption behav-
ior and steady-state value. With larger tunneling intensity and
smaller tunneling detuning, the transient gain vanishes, and
the steady-state absorption reaches a large value. Compared
with DQDs, the most significant feature of TQDs is the fact
that the transient gain can be eliminated completely with suit-
able parameters.

We will then see the impact of incoherence pumping on
the transient gain-absorption spectrum, and show the time
evolution of Im(p,,) for different incoherence pumping A in
figure 4. When the incoherence pumping A is small, Im(p,,)
always exhibits transient absorption in the process, and after
several oscillation periods Im(p,,) reaches a steady-state with
large absorption, as shown in the dotted line in figure 4. Then,
when the incoherence pumping is increased to 0.5+, as shown
in the solid line in figure 4, the oscillation frequency stays
the same; however, the amplitude of the transient absorption
decreases and it takes Im(p,,) less time to reach a smaller
steady-state value. As can be seen from the dashed line in
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Figure 4. The time evolution of Im(p,,) for varying incoherent
pumping A. The other parameters are the same as those used in
figure 2, except that AT, = 7.

figure 4, with increased incoherence pumping the amplitude
of the transient absorption and the steady-state value continue
to decrease. However, no transient gain shows up. So it can
be concluded from figure 4 that increasing the incoherence
pumping A will not bring in transient gain, but will lead to
a decreased amplitude of the transient gain and steady-state
value.

In figure 5 we plot the time evolution of Im(p, ) for varying
values of 'y‘lio to see the influence of the pure dephasing decay
rate on transient behaviors. When 'yfo =1, Im(p,,) always
exhibits transient absorption without any gain. The transient
gain oscillates for several periods and then goes to a steady-
state with a large absorption value, as shown in the dotted line

in figure 5. Then, when 7?0 decreases to 0.5+, the amplitude of

the transient absorption decreases, and Im(p,) finally reaches
a smaller steady-state absorption value (solid line in figure 5).
Finally, when 7?0 goes to zero, as the dashed line in figure 5
shows, Im(p, ) still oscillates above a zero value and exhibits
absorption without any gain. In addition, both the steady-state
value and the amplitude of the transient gain decrease.

Our final aim is to investigate the impact of the decay rates
on the transient gain-absorption spectrum. In figure 6 we show
the time evolution of Im(p,,) for varying decay rates Ijo. As
can be seen from figure 6, for different values of I}y, Im(p,,)
always exhibits transient absorption without any gain. Within
the first three oscillation periods, the amplitude of the transient
absorption and the oscillation frequency do not change much.
However, after that, the spectrum of the transient absorption
begins to separate and eventfully goes to the steady-state.
With a smaller I3y value, Im(p,,) acquires a smaller steady-
state value and oscillates through more periods.

So, it can be concluded from figures 5 and 6 that, once
the transient gain has been eliminated by choosing suit-
able tunneling parameters, it will not appear even when
the pure dephasing and the radiative decay rates are varied.

Furthermore, with smaller 7;10 and Ijo values, Im(p,,) will
acquire a smaller steady-state value.

vt

Figure 5. The time evolution of Im(p,,) for varying pure dephasing
decay rate '7?0" The other parameters are the same as those used in
figure 2, except that ATy = ~.
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Figure 6. The time evolution of Im(p,,) for varying decay rate Ijo.
The other parameters are the same as those used in figure 2, except
that AT, = 7.

4. Conclusions

In conclusion, we have theoretically investigated the transient
gain-absorption properties of the probe field in vertical TQDs
assisted by double tunneling and incoherent pumping. We
found that with a large intensity and small detuning of the
second tunneling, the transient gain in TQDs with incoher-
ent pumping can be completely eliminated. In this situation,
the increased incoherent pumping will not bring in the tran-
sient gain, but will decrease both the amplitude of the tran-
sient absorption and the steady-state value. We also found that
the transient behavior relies on other parameters, such as the
radiative decay rate and pure dephasing decay rate of QDs.
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