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Abstract: A modeling method is proposed for a dynamic fast steering mirror (FSM) system with dual inputs and
dual outputs. A physical model of the FSM system is derived based on first principles, describing the dynamics and
coupling between the inputs and outputs of the FSM system. The physical model is then represented in a state-space
form. Unknown parameters in the state-space model are identified by the subspace identification algorithm, based
on the measured input-output data of the FSM system. The accuracy of the state-space model is evaluated by
comparing the model estimates with measurements. The variance-accounted-for value of the state-space model is
better than 97%, not only for the modeling data but also for the validation data set, indicating high accuracy of the
model. Comparison is also made between the proposed dynamic model and the conventional static model, where
improvement in model accuracy is clearly observed. The model identified by the proposed method can be used for
optimal controller design for closed-loop FSM systems. The modeling method is also applicable to FSM systems
with similar structures.

Key words: Fast steering mirror; Dynamic system; Input-output coupling, Physical modeling; Subspace
identification
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1 Introduction

Fast steering mirrors (FSMs) have been widely
used in various applications, e.g., telescope systems
(Cao et al. 2009; 2012), retina imaging (Mu et al.,
2008), and wireless laser communication (Raj et al.,
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2015), for rapid and accurate beam tracking and
alignment.

FSM is generally composed of a plane mirror
and multiple actuators supporting the mirror (Lu
et al., 2013). The actuators deform in response to
applied driving voltages or currents. Hence, the ori-
entation of the mirror surface and the direction of
the reflected beam are changed (Portillo et al., 2001).
The direction of the beam is measured, for instance,
by position sensitive devices (PSDs) or cameras. The
measurement is then fed to the controller and a
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control signal is generated such that the beam di-
rection is controlled in real time (Arancibia et al.,
2006).

Although proportional-integral-derivative (PID)
controllers have been commonly used for control of
closed-loop FSM systems (Tang et al., 2011; Alvi
et al., 2014; Yu et al., 2015), model-based control
approaches (Hinnen et al., 2008; Song et al., 2011)
have shown great potential to further improve the
performance of closed-loop FSM systems. In such
a case, an accurate model of the open-loop FSM
system is crucial for model-based controller design.
However, as the sampling rate of the position sensor
increases (e.g., to the order of kHz), the dynamics
of the FSM becomes evident (Wang and Rao, 2015).
Furthermore, as the inputs to the FSM system (e.g.,
control signals to the actuators) do not necessarily
have a one-on-one correspondence with the sensor
outputs (e.g., displacement of the beam spot in the
PSD), the input and output channels of the FSM
system are coupled, which adds to the difficulty in
modeling the dynamics of the FSM system (Hei
et al., 2015).

A physical model of an FSM was derived in Hei
et al. (2015), where the dynamics and coupling of the
FSM were considered. Coefficients in the model were
calculated from physical parameters of each compo-
nent. A dynamic model of an FSM system was pro-
posed in Wang and Rao (2015) in the form of a trans-
fer function, describing the dynamic transfer from
the control signal of one actuator to the displace-
ment of a light spot in the sensor. Coefficients in
the transfer function were estimated from the input-
output data of the FSM system. An artificial neural
network was also used in the modeling and controller
design of an FSM system and good correction per-
formance was achieved in a 500-m free-space optical
communication experiment (Raj et al., 2015).

Since deformable mirrors (DMs) used in adap-
tive optics (AO) systems are similar to FSMs in the
sense that DMs also exhibit dynamics and input-
output coupling behavior, the methods for DM mod-
eling can be used for modeling of the FSM sys-
tem. For instance, a state-space model describing
the dynamics and coupling in the AO system has
been built and used for model-based controller de-
sign (Song et al., 2011). The coefficients in the state-
space model were identified with high accuracy by
a subspace identification approach (Verhaegen and

Verdult, 2007; Chiuso et al., 2010), based on the
input-output data of the AO system.

As physical modeling helps gain insight into the
mechanism of the system while data-driven identi-
fication methods (e.g., subspace identification) are
able to provide numerical models with high accu-
racy, these two methods are combined in this study
to model a dynamic input-output coupled FSM sys-
tem, by taking advantage of both methods. A model
of the FSM system is achieved with both physical
insight and high numerical accuracy, which can be
used for model-based controller design in the future.
Furthermore, the modeling method proposed is suit-
able not only for the FSM system investigated in this
study, but also for other FSM systems with similar
structures.

2 System description

A schematic of the FSM system under investi-
gation is illustrated in Fig. 1. The incident beam is
reflected by the FSM and transmitted to the PSD.
The sensor signal is filtered and amplified. The co-
ordinates of the beam centroid are calculated and
the displacement of the beam spot is determined.
In closed-loop operation, the control signal of the
FSM is generated by a feedback controller, based
on the displacement measurement. However, in this
study, we consider only modeling of the open-loop
FSM system (as denoted by the dashed box) with
the feedback controller absent.

Incident beam Open-loop FSM system

FSM PSD

    DAC &
FSM driver

  Filtering & 
amplification

Centroid coordinate
   & displacement
       calculation

Control 
 signal
 (input)

Controller
      Beam
displacement
    (output)

Fig. 1 Schematic of a closed-loop fast steering mirror
(FSM) system. The open-loop FSM system included
in the dashed box is modeled in this study, with the
control signal as the input and the displacement of
the beam spot in the PSD as the output
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The input of the open-loop FSM system is the
control signal to the FSM, denoted as u(k) for dis-
crete time k. The output is the displacement of the
beam spot, denoted as y(k). Because the FSM has
two pairs of actuators in different structures (i.e.,
two control channels) and the PSD provides the
displacements of the beam spot in both horizon-
tal and vertical directions, the control signal u(k)

and sensor signal y(k) are both two-dimensional vec-
tors, i.e., u(k) = [u1(k), u2(k)]

T ∈ R
2 and y(k) =

[y1(k), y2(k)]
T ∈ R

2. Here u1(k) and u2(k) are con-
trol signals to two actuator pairs; y1(k) and y2(k)

are displacements of the beam spot in the horizontal
and vertical directions, respectively.

3 Modeling by physical principles

The geometric configuration of the FSM and
PSD is shown in Fig. 2a, where the incident beam

is reflected by the FSM and the displacement of the
reflected beam spot is measured by the PSD. When
the mirror surface is deflected, the beam spot has a
displacement of xd in the horizontal direction of the
PSD (denoted as xc) and a displacement of yd in the
vertical direction (denoted as yc).

The distribution of actuators in the FSM is
shown in Fig. 2b, where (a1, a2) and (b1, b2) denote
two pairs of actuators in different structures (i.e.,
push-and-pull). When control signals are applied,
actuators deform in pairs (Fig. 2c). The coordinate
axis x′

c is defined along the actuator pair (a1, a2) and
y′c is along the pair (b1, b2). In most cases, there
is an angle between axes xc and x′

c (denoted as θ1),
such that the deflection of one pair of actuators leads
to spot movement in both directions of xc and yc in
the PSD. Hence, coupling exists between the control
signals to the actuator pairs and spot displacement.

n m

O

O
P

Fig. 2 Operation principle of an FSM: (a) geometric configuration of the FSM and PSD in Cartesian coordi-
nates; (b) distribution of actuators in the FSM (four actuators are structured in two pairs pushing and pulling
the mirror surface in the x′

c
- and y′

c
-direction); (c) mirror surface deflected by a pair of push-pull actuators

(a1, a2) in the x′
c
-direction
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3.1 Modeling of the fast steering mirror

To see how the mirror surface deflects with con-
trol signals, the cross section of the FSM is depicted
in Fig. 2c for the actuator pair (a1, a2). Here, ϕ1 is
the deflection angle of the FSM when control signal
u1 is applied to the actuator pair (a1, a2). Plane P

represents the mirror surface after deflection. The
forces generated by two actuators are denoted as Fa1

and Fa2 .
Without lose of generality, each actuator is mod-

eled as a second-order mass-damper system. The re-
lationship between the mirror’s torque (denoted as
M) and the deflection angle ϕ1 can be written as
(Raj et al., 2015; Wang and Rao, 2015)

M =[J + (ma1 +ma2)d
2]ϕ̈1 + (ca1 + ca2)d

2ϕ̇1

+ (ka1 + ka2)d
2ϕ1, (1)

where J is the moment of inertia, d the distance
between the actuator and the center of the mirror
surface, ma1 and ma2 the masses, ca1 and ca2 the
damping coefficients, and ka1 and ka2 the elastic co-
efficients of the two actuators.

Because the two actuators are of the same type,
it is reasonable to assume that the forces generated
by two actuators have the same magnitude but in
the opposite direction, i.e., Fa1 = −Fa2 . The torque
M and the force Fa1 are related by

M = 2Fa1
︸︷︷︸

F1

·d, (2)

where F1 = 2Fa1 is an intermediate variable. Com-
bining Eqs. (1) and (2), we have

F1 = 2Fa1 = m1ϕ̈1 + c1ϕ̇1 + k1ϕ1, (3)

where m1 = [J+(ma1 +ma2)d
2]/d, c1 = (ca1 +ca2)d,

and k1 = (ka1 + ka2)d denote the equivalent mass,
equivalent damping coefficient, and equivalent elastic
coefficient of the actuator pair (a1, a2), respectively.

The force F1 generated by the actuator pair is
determined by the control signal u1 as

F1 = p1u1, (4)

where p1 is a coefficient representing the transfer
from the control signal to actuator force. Therefore,
the control signal u1 and deflection angle ϕ1 are re-
lated as

u1 =
1

p1
(m1ϕ̈1 + c1ϕ̇1 + k1ϕ1). (5)

Similar to Eq. (5), we have

u2 =
1

p2
(m2ϕ̈2 + c2ϕ̇2 + k2ϕ2) (6)

for the connection between the control signal u2 to
the pair (b1, b2) and resultant deflection angle ϕ2.
Here, p2 is a coefficient, and m2, c2, and k2 denote
the equivalent mass, equivalent damping coefficient,
and equivalent elastic coefficient of the actuator pair
(b1, b2), respectively.

FSM’s deflections in directions of x′
c and y′c are

manipulated by actuator pairs (a1, a2) and (b1, b2)

independently. When two actuator pairs are excited
simultaneously, the total angular deflections in di-
rections of x′

c and y′c are determined by Eqs. (5) and
(6), respectively.

3.2 Modeling of the FSM-PSD system

Referring to Fig. 2c, two vectors are defined,
namely n and m. Note that n is the unit normal
vector of plane P , m is a unit vector in plane P , and
the projection of m on plane xcoyc is in the axis x′

c.
When the mirror surface is in its nominal position
(i.e., ϕ1 = 0), the projections of m in the axes xc,

yc, and zc are cos θ1, sin θ1, and 0, respectively. As
the mirror surface is deflected by ϕ1 from its nominal
position, the projections of m in the axes xc, yc, and
zc change to cosϕ1 cos θ1, cosϕ1 sin θ1, and sinϕ1,
respectively. Therefore, m can be represented as

m = (cosϕ1 cos θ1, cosϕ1 sin θ1, sinϕ1) (7)

in the coordinate system defined by xc, yc, and zc.
Since vectors n and m are orthogonal to each

other, i.e., n ⊥ m, n can be represented as

n = (− sinϕ1 cos θ1, − sinϕ1 sin θ1, cosϕ1). (8)

Hence, each point in plane P satisfies

− sinϕ1 cos θ1 ·xp− sinϕ1 sin θ1 ·yp+cosϕ1 ·zp = 0,

(9)
where xp, yp, and zp are coordinates of the point in
plane P .

The projection of deflection angle ϕ1 in axis xc

(denoted as ϕ1x) can be calculated by setting yp = 0

in Eq. (9), i.e.,

tanϕ1x =
zp
xp

=
sinϕ1 cos θ1

cosϕ1
= tanϕ1 cos θ1. (10)
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Similarly, the projection of deflection angle ϕ1 in axis
yc can be calculated by taking xp = 0 in Eq. (9) as

tanϕ1y =
zp
yp

=
sinϕ1 sin θ1

cosϕ1
= tanϕ1 sin θ1. (11)

Because FSMs are used mainly for precise beam
alignment, angle ϕ1 is usually of the order of mrad
(1 mrad=10−3 rad); e.g., the FSM used in our ex-
perimental setup has a range of ±6 mrad. It is ap-
proximated that

tanϕ1 ≈ ϕ1, tanϕ1x ≈ ϕ1x, tanϕ1y ≈ ϕ1y. (12)

Therefore, we have
{

ϕ1x ≈ ϕ1 cos θ1,

ϕ1y ≈ ϕ1 sin θ1.
(13)

When the actuator pair (b1, b2) is excited, the
FSM is deflected along axis y′c. Denote the angle of
deflection as ϕ2. Similar to Eq. (13), the projection
of ϕ2 in axes xc and yc can be represented as

{

ϕ2x ≈ ϕ2 cos θ2,

ϕ2y ≈ ϕ2 sin θ2.
(14)

Since we have θ2 = θ1+
π

2
, Eq. (14) can be rewritten

as {

ϕ2x = −ϕ2 sin θ1,

ϕ2y = ϕ2 cos θ1.
(15)

Combining Eqs. (13) and (15), when two pairs of
actuators are excited simultaneously, FSM’s angu-
lar deflection in the directions of xc and yc can be
written as

{

ϕx = ϕ1x + ϕ2x = ϕ1 cos θ1 − ϕ2 sin θ1,

ϕy = ϕ1y + ϕ2y = ϕ1 sin θ1 + ϕ2 cos θ1.
(16)

In most cases, the distance between the FSM
and the PSD (denoted as L) is much larger than the
displacement of the spot in the PSD. The displace-
ments xd and yd can be approximated as

{

xd ≈ 2Lϕx,

yd ≈ 2Lϕy.
(17)

Setting H = 2L and substituting Eq. (16) into
Eq. (17), we have

{

xd = H cos θ1 · ϕ1 −H sin θ1 · ϕ2,

yd = H sin θ1 · ϕ1 −H cos θ1 · ϕ2.
(18)

The connection among the control signal, de-
flection angle, and spot displacement in the PSD has
been revealed so far in Eqs. (5), (6), and (18). Dy-
namics in the FSM and the coupling between control
signals and spot displacement are clearly visible.

3.3 Representation of the FSM system in
state-space form

To have an accurate model which can be used for
controller design for the FSM, parameters in Eqs. (5),
(6), and (18) need to be known with high accuracy,
which is impractical in many cases. Alternatively, a
numerical model of the FSM system can be identified
based on the input-output data of the system using
a subspace identification method.

In subspace identification, the FSM system is
represented in state-space form as (Verhaegen and
Verdult, 2007)

{

x(k + 1) = Ax(k) +Bu(k),

y(k) = Cx(k) +Du(k) + v(k),
(19)

where u(k) ∈ R
2 is the input to the system (i.e.,

control signal), y(k) ∈ R
2 is the output of the sys-

tem (i.e., spot displacement), x(k) ∈ R
n is the state

vector, n is the dimension of the state vector, and
v(k) ∈ R

2 is the measurement noise.

The dynamics of the system are embraced in the
system matrix A ∈ R

n×n, input matrix B ∈ R
n×2,

and output matrixC ∈ R
2×n. The matrixD ∈ R

2×2

represents the direct transfer from the input to the
output.

The transfer function T (z) of the system can
also be calculated from the state-space form as

T (z) =
Y (z)

U(z)
= C(zI −A)−1B +D, (20)

where z is the z-transform operator. U(z) and Y (z)

are the z-transforms of u(k) and y(k), respectively.
For static models, matrices A, B, and C are all zero,
giving y(k) = Du(k).

To see how the physical model is connected with
the state-space model, Eqs. (5), (6), and (18) are
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written in the state-space form as
⎧
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⎪
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⎪
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⎡

⎢

⎢

⎣

ϕ̈1

ϕ̈2

ϕ̇1

ϕ̇2

⎤

⎥

⎥

⎦

︸ ︷︷ ︸

ẋ

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

− c1
m1

0 − k1
m1

0

0 − c2
m2

0 − k2
m2

1 0 0 0

0 1 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

︸ ︷︷ ︸

A

·

⎡

⎢

⎢

⎣

ϕ̇1

ϕ̇2

ϕ1

ϕ2

⎤

⎥

⎥

⎦

︸ ︷︷ ︸

x

+

⎡

⎢

⎢

⎢

⎢

⎢

⎣

p1
m1

0

0
p2
m2

0 0

0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

︸ ︷︷ ︸

B

·
[

u1

u2

]

︸ ︷︷ ︸

u

,

[

xd

yd

]

︸ ︷︷ ︸

y

=

[

0 0 H cos θ1 −H sin θ1
0 0 H sin θ1 −H cos θ1

]

︸ ︷︷ ︸

C

·

⎡

⎢

⎢

⎣

ϕ̇1

ϕ̇2

ϕ1

ϕ2

⎤

⎥

⎥

⎦

︸ ︷︷ ︸

x

,

(21)
where x = [ϕ̇1, ϕ̇2, ϕ1, ϕ2]

T is the system variable.
u = [u1, u2]

T and y = [xd, yd]
T represent the input

and output of the system, respectively. Dynamics
of the system are clearly visible in matrix A. The
input-output coupling is visible in matrix C. Note
that the state-space model in Eq. (21) is in continu-
ous time and the goal is to show mainly the connec-
tion between the physical model and the state-space
model. During the identification process, system ma-
trices A, B, C, and D in Eq. (19) are solved from
the input-output data u(k) and y(k).

4 Principles on subspace identification

According to Eq. (19), the state vector x(k) at
discrete time k can be described as

x(k) = Akx(0) +

k−1
∑

i=0

Ak−i−1Bu(i), (22)

where x(0) denotes the initial state. Substituting
Eq. (22) into Eq. (19) yields

y(k) =CAkx(0) +

k−1
∑

i=0

CAk−i−1Bu(i)

+Du(k) + v(k). (23)

Consider a given set of input and output vectors
of size M , namely u(k) and y(k), k = 0, 1, . . . ,M−1.

The firstM elements of y(k) can be written in matrix
form as (Jansson and Wahlberg, 1996; Verhaegen
and Verdult, 2007)

⎡

⎢

⎢

⎢

⎣

y(0)

y(1)
...

y(M − 1)

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

C

CA
...

CAM−1

⎤

⎥

⎥

⎥

⎦

x(0)

+

⎡

⎢

⎢

⎢

⎣

D 0 · · · 0

CB D · · · 0
...

...
...

CAM−2B CAM−3B · · · 0

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

u(0)

u(1)
...

u(M−1)

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

v(0)

v(1)
...

v(M − 1)

⎤

⎥

⎥

⎥

⎦

. (24)

By defining

ΓM =

⎡

⎢

⎢

⎢

⎣

C

CA
...

CAM−1

⎤

⎥

⎥

⎥

⎦

, (25)

HM =

⎡

⎢

⎢

⎢

⎣

D 0 · · · 0

CB D · · · 0
...

...
...

CAM−2B CAM−3B · · · D

⎤

⎥

⎥

⎥

⎦

,

(26)

and

YM (0) = [y(0),y(1), . . . ,y(M − 1)]T, (27)

UM (0) = [u(0),u(1), . . . ,u(M − 1)]T, (28)

VM (0) = [v(0),v(1), . . . ,v(M − 1)]T, (29)

Eq. (24) can be written in a compact form as

YM (0) = ΓMx(0) +HMUM (0) + VM (0). (30)

Promote Eq. (30) to k = 1, 2, . . . , N . A data matrix
can be obtained as

[YM (1),YM (2), . . . ,YM (N)]

=ΓM [x(1),x(2), . . . ,x(N)]

+HM [UM (1),UM (2), . . . ,UM (N)]

+ [VM (1),VM (2), . . . ,VM (N)]. (31)
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Eq. (31) can be rewritten in a compact form as

Y = ΓMX +HMU + V , (32)

by defining

Y = [YM (1),YM (2), . . . ,YM (N)], (33)

U = [UM (1),UM (2), . . . ,UM (N)], (34)

X = [x(1),x(2), . . . ,x(N)], (35)

V = [VM (1),VM (2), . . . ,VM (N)]. (36)

The noise V can be ignored if the measurement
noise is small enough compared to the signal and can
be eliminated by filtering. Eq. (32) is then further
simplified to

Y = ΓMX +HMU . (37)

To eliminate the term U in Eq. (37), a projection
matrix is defined as

Π = I −UT(UUT)−1U (38)

such that UΠ = 0. Thus, multiplying both sides of
Eq. (37) by Π gives

OM = Y Π = ΓMXΠ . (39)

The singular-value decomposition of matrix OM can
be performed as

OM = UsSV
T
s = Us

⎡

⎢

⎢

⎢

⎣

s1 0 · · · 0

0 s2 · · · 0
...

...
...

0 0 · · · sn

⎤

⎥

⎥

⎥

⎦

V T
s ,

(40)
where S ∈ R

n×n, and s1, s2, . . . , sn are the singular
values of OM .

The column space of matrices OM and ΓM are
the same provided that the system is persistently
excited and can be derived from Eqs. (39) and (40)
as

ΓM = US , X̂Π = SV T
S . (41)

Matrices A and C can be estimated directly from
ΓM , based on the definition in Eq. (25).

Eq. (37) can also be expressed as

YM = [ΓM ,CB,CD]

⎡

⎣

X(0)

vec(B)

vec(D)

⎤

⎦ , (42)

where CB and CD are proportion matrices, defined
by

CB =

⎡

⎢

⎢

⎢

⎢

⎣

0

uT(1)⊗C
...

∑N−2
τ

(

uT(1 + τ) ⊗CAN−2−τ
)

⎤

⎥

⎥

⎥

⎥

⎦

,

CD =

⎡

⎢

⎢

⎢

⎣

uT(1)⊗ Il
uT(2)⊗ Il

...
uT(N)⊗ Il

⎤

⎥

⎥

⎥

⎦

.

(43)
The operator ‘⊗’ represents the Kronecker product
of two matrices and vec(B) represents a vector con-
structed by stacking the columns of matrix B on top
of each other. Thus, system matrices B and D and
state vector X(0) can be calculated by the linear
least-squares method as

⎡

⎣

X(0)

vec(B)

vec(D)

⎤

⎦ = [ΓM ,CB,CD]†YN , (44)

where [ΓM ,CB,CD]† is the generalized inverse ma-
trix of [ΓM ,CB,CD].

At this point, system matrices A, B, C, and
D are obtained and system output y(k) can be esti-
mated from input u(k).

5 Experimental setup

An experimental setup is built to validate the
modeling method (Fig. 3). The structure of the setup
follows the design in Fig. 1. A beam emitted from
a He-Ne laser (0.8 mW, 632.8 nm, HNR INT-R, Le-
iChou, China) is reflected by a piezoelectric FSM
and projected onto a PSD (S5991-01, Hamamatsu,
Japan). The photocurrent of the PSD is amplified
by a current-voltage amplifier with four amplification
channels and converted to voltage signals. The volt-
age output is collected by a data acquisition card
(PCI-6251, National Instruments, USA). The cen-
troid coordinates of the laser spot in the PSD are cal-
culated by a computer based on four-channel voltage
signals. The displacement of the spot is determined
by comparing the spot with its nominal position.

The piezoelectric FSM consists of a piezoelec-
tric deflection platform (XS-330.8 SL, XMT Tech-
nology, China) and a plane mirror with a diameter
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of 25 mm and roughness of λ/4 (Edmund Optics,
USA). The deflection angle of the FSM is in the
range of ±6 mrad. An FSM controller (XE509-S3,
XMT Technology, China) is used for voltage ampli-
fication with an input voltage range of 0–10 V and
an output range of 0–150 V.

FSM

Laser

PSD

Fig. 3 Photo of the experimental setup. The direction
of the laser beam is manipulated by the FSM and the
displacement of the spot is measured by the PSD

6 Experiments and results

6.1 Preliminary test

To test the dynamics and coupling of the FSM
system, a step voltage is applied to one channel of
the FSM with a magnitude of 6 V, while a constant
voltage of 5 V is applied to the other input channel.
The sampling frequency of the data acquisition card
is set to 10 kHz.

The dynamics and coupling of the system are
evident in Fig. 4, which shows the displacement of
the laser spot with respect to time. Both output
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Fig. 4 Step response of the system. Dynamics and
coupling are clearly visible

channels are affected although the step voltage is ap-
plied to only one input channel, which demonstrates
the coupling between the input and output channels.
Dynamics of the FSM are also clearly visible with a
rise time of about 4.9 ms.

6.2 Model identification and validation

The procedures for model identification and val-
idation are depicted in Fig. 5. Random signals with
a magnitude in the range of 4–6 V (Fig. 6) are gen-
erated by the computer as the input signal u(k),
k = 1, 2, . . . , N1 (N1 = 104) to the FSM. The posi-
tion of the laser spot in the PSD is collected and the
displacement y(k) is calculated. This set of data is
referred to as the ‘modeling data set’.

Another set of random voltage signals (104 sam-
ples as well) are generated and used to excite the
FSM system and the displacement of the laser spot

Input u(k) FSM system Displacement y(k)

Modeling: subspace
      identification

Dynamic-coupling model:

FSM system

(Modeling)

(Validation)

Fig. 5 Flowchart of the modeling and validation pro-
cess. The system matrices A, B, C, and D are identi-
fied by a subspace identification algorithm. The accu-
racy of the model is evaluated by fresh measurement
data
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Fig. 6 Signals of two input channels for model iden-
tification. The input voltage has a random amplitude
in the range of 4–6 V
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is collected for validation of the model. This set is
called the ‘validation data set’.

Based on the modeling data set {u(k),
y(k)}N1

k=1, matrices A, B, C, and D are identified
using a subspace identification toolbox (Verhaegen
et al., 2007).

To evaluate the accuracy of the model, the
variance-accounted-for (VAF) value of the model is
calculated as

VAF =

[

1− var(y − ŷ)

var(y)

]

× 100%, (45)

where y is from measurement and ŷ is the estimated
output from the model. The function var(·) denotes
the variance of the data sequence. VAF measures
the consistency between the model output and the
measurement. A greater VAF value indicates a more
accurate model of the system (the maximum VAF is
100%).

The system order n is preliminarily determined
from the singular values (Fig. 7a) in the singular-
value matrix S of Eq. (40). A gap is clearly visible
between the second and third singular values and
the difference between singular values is negligible
beyond the third singular value. Therefore, the sys-
tem order is preliminarily set to n = 2. An optimal

 

 

 

 

Modeling data
Test data
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2 9876543

Fig. 7 Determining the system order n by comparing
the singular values of matrix S (a) and VAF of the
models with different system orders (b). The VAF
reaches as high as 97% by a second-order dynamic
model

model is then selected by comparing VAF values for
different orders (Fig. 7b). For n ≥ 2, VAF values
are stable around 97.5%, regardless of the modeling
or validation data. This is consistent with the ob-
servation in singular values. The estimated system
output is compared with measurement and only a
small discrepancy exists (Fig. 8), indicating that the
system can be modeled accurately by a second-order
dynamic model.

To evaluate the accuracy of the model even fur-
ther, different signals are applied to test the model
and the VAF values are calculated.

Sinusoidal signals are applied to two input chan-
nels simultaneously, with the amplitude in the range
of 4–6 V. The frequency of the signal is 50 Hz in both
channels and the phase difference between two chan-
nels is π. The measurements, estimates, and residual
are shown in Fig. 9. The VAF value of two channels
is 99.82% on average.

Ramp signals are also applied to both channels
simultaneously with the amplitude in the range of
2–8 V. Residual are also shown in Fig. 10. The VAF
value of two channels is 97.48% on average.

Tests by different signals all indicate that high
accuracy is achieved in the model.

6.3 Comparison between dynamic and static
models

Based on the input and output data of the mod-
eling data set, a static model is built by linear least-
squares fitting as

Ds = GQT(QQT)−1, (46)

where Ds ∈ R
2×2 is the static model of the system.

Matrices G and Q are constructed as

G = [y(1),y(2), . . . ,y(N)], (47)

Q = [u(1),u(2), . . . ,u(N)]. (48)

The VAF values for the static model are calcu-
lated and compared with those of the dynamic model
(Table 1). The VAF for the static model is about 55%
for the validation data set, indicating a significant
discrepancy between the model estimates and mea-
surement. In contrast, the dynamic model estimates
the system output much more accurately, with the
VAF better than 97% (an improvement in the VAF
of more than 40% compared with the static model).
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Fig. 8 Comparison between model estimate and measurement in the case of random input signals (only the
first 100 ms is plotted). A VAF of more than 97% is achieved for both output channels
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Fig. 9 Comparison between measurements and model estimates in the case of sinusoidal excitations
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Fig. 10 Comparison between measurements and model estimates in the case of ramp excitations
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Therefore, the accuracy of the dynamic model is
verified.

Table 1 Comparison of VAF between the dynamic
and static models

Model type
VAF (%)

Modeling set Validation set

Static model 57.16 54.97
Dynamic model 97.47 97.33

7 Conclusions

Modeling of an FSM system was discussed, with
the dynamics and input-output coupling of the FSM
system considered. To achieve high accuracy in
the model and to gain insight into the underlying
physics, the model was built based on physical prin-
ciples and identified from input-output data of the
system by subspace identification.

Experimental results showed that the VAF val-
ues for the dynamic-coupling model are all better
than 97%, in the cases of sinusoid, ramp, and random
test signals, indicating high accuracy of the model.

Future work will focus on controller design for
the closed-loop FSM system.
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