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a b s t r a c t

In non-null aspheric testing, retrace error forms the primary error source, making it hard to recognize the
desired figure error from the aliasing interferograms. Careful retrace error correction is a must bearing on
the testing results. Performance of three commonly employed methods in practical, i.e. the GDI (geo-
metrical deviation based on interferometry) method, the TRW (theoretical reference wavefront) method
and the ROR (reverse optimization reconstruction) method, are compared with numerical simulations
and experiments. Dynamic range of these methods are sought out and the application is recommended.
It is proposed that with aspherical reference wavefront, dynamic range can be further enlarged. Results
show that the dynamic range of the GDI method is small while that of the TRW method can be enlarged
with aspherical reference wavefront, and the ROR method achieves the largest dynamic range with
highest accuracy. It is recommended that the GDI and TRW methods be applied to apertures with small
figure error and small asphericity, and the ROR method for commercial and research applications calling
for high accuracy and large dynamic range.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Non-null aspheric testing is increasingly employed for its
flexible and versatile measurement properties, especially for
testing aspherics with large apertures, large departures or differ-
ent parameters. By now, several non-null interferometric testing
ways have been proposed, such as the SNI (sub-Nyquist inter-
ferometry) [1], the PCI (partially compensating interferometry) [2],
the SSI (subaperture stitching interferometry) [3–5], the NASSI
(non-null annular subaperture stitching interferometry) [6] and
the TWI (Tilted Wave Interferometry) [7], etc. With non-null
configurations, not only the aspheric testing range is enlarged, but
also the time and costs are saved compared to the null config-
urations [8].

In a null test, rays impinge perpendicularly onto the test sur-
face. However in a non-null arrangement, most rays impinge in
directions that differ from the normals of the test part and travel
through different paths from the origin after reflection, thus re-
trace error is induced [9,10]. In the final detected interferograms,
fringe deformation caused by the retrace error is aliasing with that
due to the aspheric figure error. Distinguishing these two major
errors, that is, the retrace error correction, takes up the core al-
gorithm in non-null aspheric test for the purpose of figure error
extraction. An appropriated retrace error correction method di-
rectly impacts the accuracy of the testing results and the efficiency
of the figure error reconstruction process.

Much effort has been put on this issue as listed in Table 1. Based
on aberration expressions, Huang [11] derived the propagation
errors due to non-common path through theoretical prediction. By
empirically mapping the interferometer errors, Evans [12] pro-
posed a correction method with aberration expansions and several
measurements of a tilted off-axis flat in advance, reducing the
error deviations from 150 nm to around 30 nm. It is applicable to
“black box” systems but limited to low spatial frequency. With the
third-order aberration theory, Murphy [13] presented a calibrating
method. However, it not allows for full error characterization of
the system and becomes sophisticated when imaging configura-
tion is more than one singlet lens. For “black box” system correc-
tion, there are another two methods. One is the GDI (geometric
deviation based on interferometry) method, which assumes the
imaging system is perfect during the correction and is a common
process in subaperture stitching tests [14]. The other is the per-
turbation method [15–17] that describes the interferometer with
characteristic functions. Several priori measurements with the
reference surface at different locations are required for system
error calibration and figure error reconstruction based on the
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Table 1
Retrace error correction methods for non-null aspheric testing.

Method Based on Model box Prior knowledge

Huang Aberration expansions Black Relative pupil positions
Evans Several measurements of tilted flat off-axis
Murphy White Parameters of the imaging system
GDI Perfect imaging Black shape of the incident reference sphere
Perturbation Perturbation theory Black Calibration priori done with several measurements
Separate correction Theoretical wavefront White System prescription, calibrated priori to the test
TRW
ROR Optimized matching White System prescription, calibrated priori to the test
Reverse ray tracing
Reverse optimization System prescription, calibrated during the test
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perturbation theory. Limitation of this method in practice is me-
chanical stability and a need of higher-order correction to improve
accuracy [15]. In order to further characterize the interferometer,
“white box” model is employed, in which once or multiple ray
tracing of the system is utilized for retrace error correction. As
shown in Table 1, based on theoretical wavefront obtained by ray
tracing the interferometer model once, system inherent retrace
error is corrected with separate correction method [9] or TRW
(theoretical reference wavefront) method [18]. To correct retrace
error induced also by the figure error of the test part, the idea of
optimized matching of data from system model and experiments
with multiple ray tracing and optimization of the model is first
presented by team of Greivenkamp, called the reverse optimiza-
tion method [10,19]. Calibration of the system model is accom-
plished while solving the tested figure error. Considering that
multiple measurements and iterations are needed with compu-
tationally intensive and long time, it is better for system calibra-
tion. Also based on optimized matching, the ROR method (reverse
optimization reconstruction) [6,20] and reverse ray tracing
method [21,22] correct retrace error on a calibrated interferometer
model. The latter ray traces reversely from the detector to the test
surface, while the other sequentially. Retrace error is almost
completely corrected in ideal simulations of both cases. It is no-
table that for “white box” model, system calibration is very im-
portant and has been given much attention to [10,19,23–26].

In this paper, three practical methods, i.e. the GDI, TRW and
ROR methods, are analyzed and compared with successive tested
figure errors and non-null wavefronts to exhibit the performance
trends and dynamic ranges, instead of specifically independent
testing cases as reported in previous literatures. Dynamic ranges
are sought out. It is suggested to employ aspherical reference
wavefronts for dynamic range enlargement, which also does much
favor to the calibration of “white box” system in the meantime if
the generator of the test wave is singlet lens. Experiments are
presented for demonstration and application of the three methods
are recommended based on the analyses.
2. Algorithms

Assume that the figure error of the tested asphere is Wasp. In a
certain non-null system, test wavefront carrying the information
of Wasp coherences with the reference wavefront, forming the non-
null interferogram which is then imaged onto the detector. By
interferograms analyzation, the wavefront detected at image plane
noted as Wdet can be extracted, which is an aliasing of the in-
formation of Wasp and retrace error. With retrace error corrected,
Wasp is able to be reconstructed from Wdet.
2.1. The GDI method

It is known in a null test, OPD between the reference wave and
the test wave is twice the Wasp if the incident rays reflect once on
the test part. Figure error is obtained as half of the detected wa-
vefront. As for non-null test, shape difference between reference
wavefront and the tested asphere is not only Wasp, but also the
geometric deviation (Wgdv) between reference wavefront and the
nominal aspheric shape. With the GDI method, Wasp is obtained as

≈ − ( )W
1
2

W W . 1asp det gdv

To simplify the calculation of Wgdv , spherical reference wave-
front is usually employed in actual applications. Assuming that the
shape of the nominal asphere and the reference wavefront is ρ( )f
and ρ( )S respectively at the radial coordinate ρ, Eq. (1) is written
as

ρ ρ α ρ≈ − ( ) − ( ) ⋅ ( ) ( )
⎡⎣ ⎤⎦f SW

1
2

W cos , 2asp det

where α ρ( ) represents for the normal angle of the asphere. As
shown in Eq. (2), besides the nominal shape of the tested asphere,
priori knowledge of the algorithm is the curvature radius of the
spherical reference wavefront. It must be said that this algorithm
is based on the assumption that the imaging system is perfect. Or
in the strict sense, it solves the non-null problem the way of a null
configuration.

2.2. The TRW method

Retrace error has much to do with the system structure, since
most reflected rays propagate through parts of the optical ele-
ments that are different from those of the incident. Understanding
how rays propagate in the system helps with a further correction.
Aided by ray tracing program, interferometric system is able to be
modeled and calibrated for a “white box” system to show the light
paths of both the reference and test waves. Retrace error is cor-
rected with the TRW method by ray tracing the interferometric
system model once.

Suppose the actual system has been modeled and calibrated in
a ray tracing program, in which the test part is modeled with its
nominal shape. After ray tracing the model once, OPD on the im-
age plane can be obtained, noted as ′W det. ′W det is called the
theoretical wavefront, which expresses the inherent retrace error
of the system. Since the model is according to the actual system,
Wdet on the detector deforms from ′W det due to the existence of the
aspheric figure error to be tested. This situation is similar to a null
test [18]. According to the coherence testing principle, aspheric
figure error can be obtained as



Fig. 1. System layout for non-null aspheric testing.
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( )≈ − ′ ( )W
1
2

W W . 3asp det det

2.3. The ROR method

To further correct the additional retrace error which is un-
predictable caused by the unknown aspheric figure error, the ROR
method employs “white box” system modeling with multiple ray
tracing to realize an optimized data matching. Similarly, the in-
terferometric system is modeled and calibrated according to the
real one except the test part. Assuming the deformation of the
nominal asphere in the model is *Wasp and the corresponding
wavefront on the image plane obtained by ray tracing is *Wdet. *Wdet

will be the same as Wdet if *Wasp is the same as the actual figure
error Wasp. By changing *Wasp to make *Wdet optimized matching
Wdet, the figure error induced retrace error is also taken into cal-
culation at the same time with multiply iterative ray tracing. Both
inherent and unpredictable retrace errors are corrected during this
process. In order to map the figure error and the wavefront un-
iquely, orthogonal polynomials are advocated for characterizing of
the concerned zones as

∑ ∑

∑ ∑

≈ * ≈ *

≈ * ≈ *
( )

= =

= =

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

B U B U

C V C V

W , W ,

W , W ,
4

i

M

i i
i

M

i i

j

N

j j
j

N

j j

asp
1

asp
1

det
1

det
1

where Ui ( = ⋯i M1, 2, , ) and Vj ( = ⋯j N1, 2, , ) are orthogonal
polynomials for figure error and wavefront expression, M and N
are the total terms of the employed polynomials, Bi and Cj are the
corresponding coefficients of Wasp and Wdet, while *Bi and *C j are
those in the modeled system. Among these, Cj can be easily got via
polynomials fitting of Wdet and *C j can also be obtained via fitting

*Wdet, which is acquired by ray tracing the model once. Setting *Bi

as variables, the change of *Bi will result in a change of *C j . Trace
the model iteratively after each round change of *Bi according to
the objective function, until *C j is close enough or optimized
matching to Cj. The objective function is set up as
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where *|Bi o is the optimal solution of *Bi , ωj
2 is the optimization

weight and c is an additional constraint to restrict the solution
space. The figure error is then reconstructed as
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3. Simulation analyses and comparisons

Numerical experiments are executed to evaluate the perfor-
mances of the GDI, TRW and ROR methods of retrace error cor-
rection for non-null aspheric testing. In the simulations, the
methods are applied to aspherics with only one circular aperture.
For sub-aperture stitching tests, the retrace error correction pro-
cess of each aperture is the same as the case of one circular
aperture.
A Twyman-Green interferometric system with laser wave-
length of λ¼632.8 nm is employed to carry out the simulations.
Fig. 1 shows the system layout, in which the incident plane wave is
divided into two by the beam splitter. One wave is reflected by the
reference mirror serving as the reference wave. The other in the
test arm propagates through the transmission lens and is trans-
formed into a wavefront that is different from the nominal as-
pheric shape, forming the non-null condition. Reflected by the
asphere, the test wave then interferes with the reference one at
the beam splitter. Interferogram is then imaged onto the detector
by imaging lens. Since absolutely accurate adjustment can never
come true in practice but the system can be carefully adjusted and
modeled [10,18,23–26], the dominant aberration terms will be the
primary aberrations. Therefore, the simulation results in this sec-
tion are also preprocessed with the primary aberrations corrected.

3.1. Retrace error correction in different non-null degrees

Greater non-null degree of a testing system induces larger re-
trace errors demanding to be corrected. In the system based on the
Twyman-Green interferometer, fringe frequency of the detected
interferogram will be higher in a greater system non-null degree.
Thus numerical experiments are executed in different non-null
degrees with different maximum fringe frequencies of the inter-
ferogram to elaborate the retrace error correction results with the
three methods. According to the Nyquist sampling principle, the
maximum fringe frequency in the simulation is controlled to be
less than 0.25 λ/pixel.

Transmission lens utilized here is an aplanat lens of f/2, pro-
ducing a spherical wavefront with curvature radius of 270.9 mm.
To achieve different system non-null degrees, Φ50 aspheres with
different asphericity are tested with the nominal sag of the surface
expressed as
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where r is the radial coordinate of the asphere, k represents for the
conic coefficient, c is the curvature of vertex, Ai is the coefficient of
r2i and N is the number of terms added to the conic base. Table 2
lists the aspheric prescription in this simulation with all test parts
sharing the same conic base. In addition, to keep the comparability
of the results, distribution of the actual figure error of all tested
aspheres is the same as illustrated in Fig. 2(a), whose PV (peak-to-
valley) is 0.5 λ and RMS (root-mean-square) is 0.07 λ.

To solve the figure error with the GDI method, deviation be-
tween the nominal aspheric shape and the spherical wavefront
with curvature radius of 270.9 mm is subtracted from half of the
corresponding wavefront on the image plane in each testing case.
As for the TRW and ROR methods, the system is modeled with
nominal shape of the tested asphere in each case for theoretical
wavefront extraction and figure error reduction. Testing results
after retrace error correction with the three methods in different
non-null degrees (the maximum fringe frequency of the detected
interferogram from 0 to 0.24 λ/pixel) are displayed in Fig. 2(b),
showing the time consumption and RMS values of the residual



Table 2
Aspheric prescription. (a–l corresponding to the max. fringe freq. of 0.02–0.24 λ/pixel on the interferogram).

Conic base k¼�1 c¼1/270 A1¼0

No. a b c d e f
Coefficients A2 0 4.7e�9 6.5e�9 8.2e�9 9.8e�9 1.1e�8

A3 0 8.7e�14 1.08e�14 1.65e�14 1.04e�13 5.87e�13
No. g h i j k l
Coefficients A2 1.3e�8 1.4e�8 1.6e�8 1.8e�8 1.9e�8 2.1e�8

A3 2.12e�13 8.57e�13 4.44e�13 1.56e�14 5.99e�13 1.36e�13

Fig. 2. (a) Distribution of the actual figure error (b) RMS of the residual figure error
after retrace error correction with the GDI, TRW and ROR methods in different non-
null degrees with the maximum fringe frequency of the interferogram from 0 to
0.24 λ/pixel.

Fig. 3. Retrace error correction results of testing (a) figure errors from
RMS¼0.005 λ to 0.5 λ and (b) the detailed figure errors from RMS¼0.005 λ to
0.05 λ in the system non-null degree with the maximum fringe frequency of 0.02 λ/
pixel.
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error between the reconstructed figure errors and the actual figure
error. It can be seen that the GDI and TRW methods take much
shorter time (about 1.3 s) for retrace error correction than the ROR
method (about 6.6 s). However, these two methods lead to larger
errors as the maximum fringe frequency (the system non-null
degree) increases. Relation between the accuracy and the non-null
degree is almost linear with the TRW method, while that of the
GDI method has much to do with the high-order coefficients of the
test part, or in other words the high-order aberrations. To achieve
an accuracy of better than λ/100 RMS, the non-null degree of the
system should be kept with the maximum fringe frequency of the
detected interferogram less than 0.08 λ/pixel with the GDI meth-
od, and 0.12 λ/pixel with the TRW method respectively. While for
the ROR method, testing results show that RMS of the residual
figure error maintains in a magnitude of 10�6 λ. It is proved to be
able to correct all the retrace errors caused by the non-null con-
figuration theoretically, which is irrelevant to the non-null degree
of the system. For the time consumption calculation here, we only
count the time of retrace error correction and figure error re-
construction procedures. The computer employed for the calcu-
lation has four cores with the CUP frequency of 3.3 GHz and RAM
of 3 GB.

3.2. Retrace error correction of testing different figure errors

From the above analyses, it is known that the GDI and TRW
methods are fast in retrace error correction, but large non-null
degrees leads to large errors. To guarantee the accuracy with these
two methods, non-null degree of the testing system should be
kept relatively low. However, besides non-null degree, testing ac-
curacy is also affected by the unknown figure error, which also
induces retrace error to the system. In order to understand to what
range the figure error can be tested with acceptable accuracy in
low non-null degree, numerical experiments are executed with
the maximum fringe frequency of 0.02 λ/pixel in ideal conditions,
to test figure errors from RMS¼0.005 λ to 0.5 λ. Corresponding PV
of these figure errors are from 0.05 λ to 5 λ. The distributions of
the actual figure errors and the system prescription (including
nominal shape of the test asphere, transmission lens) are the same
as those of the first testing case in Part 3.1.

To correct the retrace error, the same deviation between the
nominal aspheric shape and the spherical wavefront is subtracted
from half of the corresponding wavefronts at the image plan in
different testing cases with the GDI method. As for the TRW and
ROR methods, the system model is the same in different testing
cases since their difference is only the figure error to be tested.
Therefore, theoretical wavefronts of the TRW method in these
cases are also the same. Testing results of the time consumption
and RMS of the residual figure errors with the three methods are
displayed in Fig. 3 with respect to the tested figure errors. Al-
though the non-null degree has been controlled as low as the
maximum fringe frequency of 0.02 λ/pixel, retrace error correction
with the GDI and TRW methods still induce more errors as the
tested figure error becomes larger. It is shown in Fig. 3(a) that with
the GDI and TRW methods, RMS of the residual figure error stays



Table 3
Structure of the employed PCL.

Surface Radius Thickness (Nd, Vd) Semi-Diameter Conic

1 89.148 10.6 (1.516780, 22.5 0
2 �50.678 64.28) 22.5 0
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less than λ/200 in ideal conditions only when RMS of the tested
figure error is less than 0.15 λ. In testing figure error larger than
0.2 λ RMS, results of the RMS error will be over λ/100. As for the
ROR method, the RMS of the residual figure error still maintain in
a magnitude of 10�6 λ, which keeps high accuracy in all testing
cases. However, the time needed for retrace error correction with
the ROR method increases from about 6.6 s to about 13.1 s and
then to about 21.6 s as the enlargement of the tested figure error.
In contrast, time consumption of the GDI and TRW algorithms
keeps around 1.3 s unchangeably.

Considering the figure error around RMS¼0.05 λ can usually be
achieved in precision optical elements manufacturing, Fig. 3
(b) details the results of testing figure errors from RMS¼0.005 λ to
0.05 λ. An accuracy of better than λ/500 RMS is achieved with the
GDI and TRW methods in this case, but the error keeps larger with
the GDI method than the TRW method. It is known from Fig. 3
(b) that for testing polished optics with RMS less than 0.05 λ in
low system non-null degree, acceptable results can be achieved
with all the three methods.

From Fig. 3 we can know that the testing error increases with the
GDI and TRW methods as the tested figure error becomes larger. For
relatively high accuracy, the figure error to be measured should be
less than 0.2 λ RMS in low system non-null degree of 0.02 λ/pixel. As
the system non-null degree increases, the system induced residual
error becomes larger as mentioned above, leading to the upper limit
of the aspheric figure error that can be tested decreases with the GDI
and TRW methods. As for the ROR method, it corrects all the retrace
errors accurately irrelevant to the tested figure error, but takes more
time as the figure error becomes larger. To be noted, all the results
are obtained in ideal emulational conditions.

3.3. Spherical vs. aspherical reference wavefront

The above numerical experiments are all executed with sphe-
rical reference wavefronts, which are commonly employed in non-
null aspheric tests especially with the GDI method to facilitate the
calculation. However, the dynamic range for testing a single
aperture with spherical reference wavefront is limited as the as-
phericity of the test part increases.

Take concave parabolic mirrors with diameter of 100 mm and F
number of 5, 2, 1.2 and 1.05 respectively as the test part for in-
stance. Asphericity of the aspherics successively increases as the
decreases of the F number. Best-fit spheres are employed as the
incident test wavefronts for aspheric measurement and Fig. 4(a)–
(d) shows the corresponding interferograms on the image plane. It
is seen that Fig. 4(a) and (b) from the aspherics with F number of
Fig. 4. (a)–(d) are interferograms of testing aspherics with F number of 5, 2,
1.2 and 1.05 respectively employing best-fit spherical wavefronts, (e)–(h) are
the corresponding interferograms of testing the same aspherics employing
aspherical wavefronts.
5 and 2 are resolvable in the whole aperture, but fringe fre-
quencies of (c) and (d) from testing aspherics with F number of
1.2 and 1.05 are too high to be recognized by the detector at one
time. In this case, if the whole aperture aspheric is to be tested still
with spherical wavefront, sub-apertures have to be divided. Test-
ing the aspheres with F number of 1.2 and 1.05 in a single aperture
at one time, the aspheric maximum diameter has to be reduced
from 100 mm to 67 mm and 60 mm respectively (the maximum
fringe frequency is controlled to be 0.08 λ/pixel).

Fortunately, if we substitute the test wavefront from spherical
to aspherical whose shape is more close to the test part, the dy-
namic range for aspheric testing can be enlarged and the non-null
degree of the system can be better reduced. Fig. 4(e)–(h) shows the
interferograms of testing the same aspheres corresponding to (a)–
(d) with aspherical wavefronts. All the interferograms are able to
be resolved in the whole aperture. Obviously, it is also acceptable
to test aspherics with larger diameters in one single aperture.

To obtain the aspherical reference wavefront, a singlet lens
(PCL, partial compensating lens) is employed as the transmission
lens instead of an aplanatic lens which generates spherical wa-
vefront. The structure of the PCL employed here is listed in Table 3.

With the singlet lens PCL, the system structure is much
more simplified. Since an aplanatic lens contains at least three
surfaces while PCL contains only two, errors induced by optics
manufacturing and element calibration are reduced. In other
words, not only the dynamic range is enlarged with aspherical
wavefronts, but also the TRW and ROR methods are promoted
fortunately, which need system modeling as accurate as possible
for retrace error correction. Both the complexity of system cali-
bration and the system modeling errors are reduced. Although
aspherical wavefront is usually not employed in the GDI method
for calculating complication, it is especially appropriate for the
application of the TRW and ROR methods providing dynamic
range enlargement and precision guarantee.
4. Experimental results

To illustrate the results, a Twyman-Green system shown as
Fig. 1 with a frequency stabilized laser at wavelength of
λ¼632.8 nm is set up to carry out the experiments. In the test
arm, transmission lens is installed to transform the incident plane
wave to the test wavefront. Since system modeling is required
during the retrace error correction procedure with TRW and ROR
methods, system modeling and calibration are implemented in
advance by testing standard sphere to be coincident with the re-
sult obtained with Zygo phase-shifting Fizeau interferometer [24].

4.1. Experiments with spherical reference wavefront

In the experiment, a concave parabolic mirror with diameter of
158 mm and F number of 2.59 is tested. To correct retrace error
with the GDI, TRW and ROR methods, spherical reference wave-
fronts are employed with an aplanatic lens as the transmission
lens. As analyzed above, since the system non-null degree may
also affect the testing results, two different non-null degrees are
achieved to measure the same asphere by utilizing different re-
ference spheres with curvature radius of 821.3 mm and 821.8 mm
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respectively. Fig. 5(a) and (b) shows the interferograms in these
two cases, whose maximum fringe frequency is 0.06 λ/pixel and
0.10 λ/pixel respectively.

Retrace error is then corrected with the three methods sepa-
rately in the two system non-null degrees. Fig. 5(c) and
(d) displays the testing results obtained from interferograms
shown in Fig. 5(a) and (b) respectively with the GDI method,
Fig. 5. (a) and (b) are interferograms detected with spherical reference wave-
fronts in the non-null degree with the maximum fringe frequency of 0.06 λ/
pixel and 0.10 λ/pixel respectively, (c) and (d) are the corresponding results
obtained with the GDI method in the case of (a) and (b), (e) and (f) are results
with the TRW method, (g) and (h) are those with the ROR method, (i) is the
result obtained with the autocollimation method for contrast. (unit: λ).

Table 4
PV and RMS values of the testing results. (unit: λ).

Maximum fringe frequency Method PV RMS

0.06 λ/pixel GDI 0.5843 0.1093
TRW 0.5342 0.0743
ROR 0.5096 0.0889

0.10 λ/pixel GDI 0.6923 0.1452
TRW 0.5292 0.0716
ROR 0.5171 0.0878

– Null 0.517 0.091
(e) and (f) shows the results obtained with the TRWmethod, while
(g) and (h) are the results obtained with the ROR method. For
contrast, the same aspheric is tested employing the autocollima-
tion null testing method with Zygo GPI interferometer and Fig. 5
(i) shows the figure error result.

It is seen that large retrace errors are still left in Fig. 5(c) and
(d) with the GDI method. Since the test asphere has relatively large
aperture and figure error with smaller F number, it is hard to
correct the retrace error to an acceptable extent in both non-null
degrees. As the system non-null degree becomes higher, the re-
sults deviate more from the null test. Fig. 5(e) and (f) shows the
results obtained with the TRW method, which illustrate more si-
milar topographic maps to (i) than (c) and (d). As for the ROR
method, better consistency to the null test is shown in (g) and (h).
To further evaluate the testing results, PV and RMS values of each
test are listed in Table 4. For the TRW and ROR methods, the re-
sults are considered to be stable in the two system non-null de-
grees with RMS errors of the TRW method around λ/50 and those
of the ROR method less than λ/200. While for the GDI method, the
RMS error increases as the system non-null degree becomes larger.
The results are agreed with the numerical analyses above. To be
noted, since the autocollimation method misses the center part
information of the test aspheric and its accuracy is also affected by
many factors, the testing result of (i) only provides a hint for the
comparison.

4.2. Experiments with aspherical reference wavefront

Dynamic range of testing a single aperture with spherical wa-
vefront is very limited as the increase of the asphericity of the test
part. For example, in the test of a concave parabolic mirror with
diameter of 101 mm and F number of 1.19, if spherical wavefront is
still employed, the fringes on the detected interferogram will be
too dense to be resolved over the full aperture as shown in Fig. 6
(a). Sub-apertures have to be divided and tested separately to
obtain the whole aperture result with stitching procedure. To test
the full aperture aspheric at one time, PCL detailed in Table 3 is
substituted to the aplanat lens as the transmission lens providing
aspherical wavefront for the testing. Fig. 6(b) and (c) displays the
interferograms detected in this case. The maximum fringe fre-
quency of each interferogram is 0.025 λ/pixel and 0.045 λ/pixel
respectively achieved by altering the location of the test part..

Since the reference wavefront is aspherical, retrace error is
therefore corrected with the TRW and ROR methods separately.
Fig. 7(a) and (b) display the testing results obtained with the TRW
method in the two different non-null degrees shown as Fig. 6
(b) and (c), while those of the ROR method are displayed in Fig. 7
(c) and (d). For contrast, the same asphere is also tested employing
the autocollimation method with Zygo GPI interferometer. Fig. 7
(e) shows the null test result.

From Fig. 7, it is seen that when testing an asphere with figure
error around 0.3 λ PV, both TRW and ROR methods are able to
illustrate acceptable results similar to the null test in the system
Fig. 6. (a) is the interferogram detected with spherical reference wavefront,
(b) and (c) are interferograms detected with aspherical reference wavefronts in
the non-null degree with the maximum fringe frequency of 0.025 λ/pixel and
0.045 λ/pixel respectively.



Table 5
PV and RMS values of the testing results. (unit: λ).

Maximum frequency Method PV RMS

0.025 λ/pixel TRW 0.2669 0.0379
ROR 0.2782 0.0331

0.045 λ/pixel TRW 0.2922 0.0304
ROR 0.2777 0.0364

– Null 0.272 0.035

Fig. 7. (a) and (b) are testing results with the TRW method in different system
non-null degrees of Fig. 6(b) and (c) with the maximum fringe frequency of
0.025 λ/pixel and 0.045 λ/pixel respectively, (c) and (d) are the corresponding
results obtained with the ROR method, (e) is the result obtained with the au-
tocollimation method. (unit: λ).

Table 6
Comparative results of the three methods.

Evaluation items GDI TRW ROR

System Modeling No Yes Yes
Reference Wavefront Spherical Either spherical or aspherical
Non-null Degree Max fringe frequencyo0.05 λ/pixel Within

resolution
Figure Error RMSo0.07 λ RMSo0.07 λ Within

resolution
Residual Error Larger than ROR Larger than

ROR
Small

Time Consumption E1 s E1 s 6–20 s
Applied to Sub-
Apertures

Yes Yes Yes
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non-null degrees of less than 0.05 λ/pixel. Consistency of the to-
pographic maps is kept well to the null test result with both
methods in this case and the result also agrees with the numerical
analyses above. Table 5 lists the PV and RMS values of these tests.
Errors between the non-null tests and the null test are very small.

To be noted, since the algorithms of the GDI and TRW methods
employ point to point calculation, they are sensitive to the en-
vironment noise in practical measurements. This noise influence
can be restrained by environment control and high frequency fil-
tering of the detected wavefront. On the other hand, adjusting
accuracy also affects the results. In most cases, the position error
tolerance of the test part within a 10 μm decentration, 10 s tilt and
15 μm defocus is acceptable.
5. Discussion and conclusions

Retrace error correction in non-null aspheric testing is essential
which directly affects the accuracy of the testing results. Three
practical retrace error correction methods for non-null aspheric
testing are analyzed for the testing of a single circular aperture.
Dynamic range of these methods (applicable non-null degrees,
figure error scale, time consumption, et al.) are sought out to guide
practical application. Although the figure error distribution em-
ployed in the simulation is specific, different distributions with the
same RMS values share similar testing accuracy and tendency.
General comparative results are concluded in Table 6.

With the GDI and TRWmethods, more errors will be induced as
the tested figure error or the system non-null degree increases.
The scale of the tested figure error depends on the system non-
null degree and high-order aberrations affects more to the GDI
method. As for the ROR method, the asphere is able to be tested as
long as the interferogram is resolvable. Moreover, it is proposed
that by employing aspherical reference wavefront, the dynamic
range can be further enlarged. Especially in subaperture stitching
tests, subaperture number with aspherical reference wavefront is
usually less than that with a spherical one [6]. With PCL to simplify
the system structure for aspherical wavefront generating, the ca-
libration work and system modeling error is reduced and pro-
motes the application of the TRW and ROR methods.

Due to the properties of large dynamic range, less structure
alteration for different aspherics and high accuracy, the ROR
method is recommended for commercial instruments and re-
search works. While the GDI and TRW methods are more appro-
priate for fast tests of apertures with small figure error in low
system non-null degrees.
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