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Unmanned aerial vehicle (UAV) remote imaging is affected by the bad weather, and the obtained images have the dis-

advantages of low contrast, complex texture and blurring. In this paper, we propose a blind deconvolution model based 

on multiple scattering atmosphere point spread function (APSF) estimation to recovery the remote sensing image. Ac-

cording to Narasimhan analytical theory, a new multiple scattering restoration model is established based on the im-

proved dichromatic model. Then using the L0 norm sparse priors of gradient and dark channel to estimate APSF blur 

kernel, the fast Fourier transform is used to recover the original clear image by Wiener filtering. By comparing with 

other state-of-the-art methods, the proposed method can correctly estimate blur kernel, effectively remove the atmos-

pheric degradation phenomena, preserve image detail information and increase the quality evaluation indexes. 
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Unmanned aerial vehicle (UAV) remote imaging is in-
fluenced by bad weather (fog or haze), illumination 
variation and motion blur, so the image quality decreases 
greatly, which seriously impacts its application in envi-
ronmental monitoring and battlefield reconnaissance 
field. Currently, most atmospheric remote sensing image 
restoration algorithms only consider single scattering 
effect of atmospheric light. The method proposed by He 
et al[1] using the dark channel principle combined with 
atmospheric optical physics model can remove the haze 
to a certain extent, but the color change is not obvious. 
Wang et al[2] adds minimum and guide filtering based on 
Ref.[1], which effectively deals with the shadow part of 
small area in the image, but the algorithm is time con-
suming. Therefore, Liu et al[3] proposes a fast color con-
version method of interval estimation to improve the 
processing speed and robustness of the algorithm. Due to 
the long distance between the UAV aerial camera CCD 
and the captured ground target, the multiple scattering of 
atmospheric particles cannot be easily ignored, the tradi-
tional algorithm[4] based on the Nayar single scattering 
model[5] is no longer valid, and the results cannot meet 
the needs of practical engineering. To this end, Pei et al[6] 

proposed a multiple scattering model based on Bouguers 
exponential law, which showed that scattering has an 

effect on the aggregation of all radiance in the neighbor-
hood. Based on the above analyses, we propose a new 
deconvolution model based on multiple scattering at-
mosphere point spread function (APSF) estimation, 
which can significantly improve the speed, keep the clear 
detail information and remove the artificial ringing ef-
fect. 

The spectrum can be affected by the absorption and 
scattering of gas molecules and aerosol molecules in the 
atmosphere. According to the Bouguers exponential law, 
with the increase of the aerosol optical thickness, the 
radiation energy of the scene is attenuated in exponential 
form. The atmospheric transmittance in homogeneous 
media can be expressed as 

( )( ) e d xt x   ,                              (1) 

where β denotes the scattering coefficient of the atmos-
phere medium, and d is the optical depth.  

As shown in Fig.1, the absorption of atmospheric par-
ticles causes the attenuation of light energy, and the 
transmission direction of some light is changed several 
times due to the multiple scattering effect. Therefore, we 
should consider not only the attenuation of light in the 
original direction of propagation, but also the increase in 
other directions. 

Nayar[4] assumes that the light that deviates from the 
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original propagation direction does not enter the field of 
view again, so the scattering effect happens only once. A 
single scattering restoration is modeled as 

 ( ) ( ) ( ) 1 ( )I x J x t x A t x   ,                  (2) 

where x denotes two dimensional coordinate position of 
a pixel, I(x) is the observed image, J(x) represents scene 
radiant energy, and A is the atmospheric light.  

 

Fig.1 Illustration of multiple scattering in the UAV 
remote imaging 
 

The above model is ideal for imaging, but in the real 
environment, such as haze, fog, snow, and other complex 
weather conditions, the concentration of particles in the 
atmosphere is too high. The scattered light is most likely 
to re-enter the field of view. Considering the influence of 
atmospheric multiple scattering, the amount of radiation 
received at pixel x is influenced by its neighbour pixels. 
A point light source is transmitted to the CCD image 
surface and becomes a diffuse spot, forming blur. As 
shown in Fig.2, we can use the APSF to describe the 
redistribution of the point light source on the CCD image 
plane, and the degradation process can be formed as 

)()()( xhxExE
AJI

 ,                        (3) 

where EI denotes the actual amount of radiation received 
by a detector, EJ 

represents the radiation before the target 
scene decay, hA is the degraded atmospheric blur kernel, 
and   is the convolution operator. 
 

 

Fig.2 The relation between object and image under 
the influence of atmosphere 

 
According to Eq.(3), the single scattering restoration 

model in Eq.(2) can be improved as 
   ( ) ( ) ( ) 1 ( )AI x J x h t x A t x    ,               (4) 

where  ( ) AJ x h represents the amount of scene radiation 
affected by multiple scattering effects. The degradation 

model is more effective for long range imaging and bad 
weather conditions. 

Similar to He et al[1], we use the dark channel prior to 
solve the atmospheric transmittance. The minimum filter 
is described as 

 
dark

, , ( )
( ) min {min[ ( )]}c

c r g b y Ω x
J x J y

 
 ,                 (5)

           
where Jdark(x) represents the dark channel of the pixel 
located at x, Jc

 denotes color channel, and Ω(x) is the 
local area centered at x. The maximum luminance point 
in the dark color image is selected as the atmospheric 
background radiation A. If there is no atmospheric inter-
ference in the imaging process, Eq.(5) tends to 0, and the 
transmittance can be obtained by Eq.(4) as 

 ( ) , ,

( )
( ) 1 min min

c

cy Ω x c r g b

I y
t x

A 

  
    

  
.                (6) 

Through the above analyses, given A and t(x), Eq.(4) 
can be converted into the following  expression 

( ) AJ t h  B .                            (7) 

Then in the following description, (J*t) will be recorded 
as f, and the subscript A is omitted for simplicity, i.e., 
Eq.(7) becomes 

f h n  B ,                             (8) 

where B is the blur image, n is an optical device noise, 
and h is the point spread function (PSF). 

Because of the gradient distribution of the blurred im-
age is denser than that of the clear image, and the sparse 
of the dark channel is relatively small[7], we add the L0 
norm sparse priors of gradient and dark channel to pro-
pose a novel regularization model to estimate APSF blur 
kernel as 

2 2

2 2 0 0,
min ( )

f h
f h γ h μ f λ D f     B ,      (9)            

where the first term is the distance term to ensure the 
minimum error between the restored image and the ob-
served image, the second term is the penalty term to 
prevent the optimal solution over-fitting, the third term 
on image gradients retains large gradients and removes 
tiny details, and the fourth term is a dark channel prior 
on the original image. γ, μ and λ are balance parameters. 

For Eq.(9), we choose the coordinate descent method 
to solve the blur kernel h, and convert it into the follow-
ing two forms as 

2

2 0 0
min ( )

f
f h μ f λ D f    B ,          (10) 

2 2

2 2
min

h
f h γ h  B

 
.                   (11) 

Because of the existence of the L0 norm and the 
nonlinear function D(f) in Eq.(10), it is a 
non-deterministic polynomial (NP) problem. We 
minimize the L0 norm problem by the half-quadratic 
splitting method[8], by introducing auxiliary variables u 
and g, then the objective function in Eq.(10) can be 
rewritten as
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2 2 2

2 2 2, ,
min ( )
f u g

f h α f β D f       B g u
 

0 0
μ λg u ,                              (12) 

where u denotes image dark channel D(f), and g=(gw, gv) 
corresponds to image gradients in the horizontal and 
vertical directions. α and β are penalty parameters, when 
they tend to infinity, Eq.(12) is close to Eq.(10). We can 
solve f, u and g by alternating iteration, respectively. 
Under the given f, solving auxiliary variables u and g is 
an element-wise minimization problem[9]. It does not 
involve nonlinear functions D(f). Thus, the closed 
solution can be obtained as 

2
( ),  ( )

0,   otherwise     

λ
D f D f

β
  


u ,                      (13) 

2
,    

0, otherwise     

μ
f f

α
   


g .                       (14) 

Therefore, we only need to deal with the nonlinear 
minimization problem for solving f: 

2 2 2

2 2 2
min ( )

f
f h α f β D f      B g u .      (15) 

In order to convert it into a linear problem, we propose 
a linear matrix operator M based on look-up tables (LUT) 
to map the vector image f to the dark channel D(f). 
Setting )(argmin )(z zfy xN , M satisfies the following 

conditions: 
1,         

( , )
0,  otherwise

z y
x z


 


M .                   (16) 

Multiplying the xth row of M with f under the given 
brightness value of pixel y, f(y) is equivalent to D(f)(x). 
As shown in Fig.3, the three squares on the intermediate 
value f are used to calculate the dark elements in the 
adjacent image patches, where the minimum intensity 
value in each patch is marked with different colors. 
Transposed matrix M is an inverse transform. 

 

 

Fig.3 Matrix maps image to dark channel 
 

Thus, Mf=D(f) strictly holds. Eq.(15) can be rewritten 
as 

2 2 2

2 2 2
min hf

f α f β f     T B g M u ,       (17) 

where Th 
is the convolution matrix form of h, B, g and u 

represent their vectors, respectively. Through the fast 
Fourier transform[10], the solution can be obtained as 

1 ( ) ( ) ( ) ( ( ) ( ) ( ) ( )

( ) ( ) ( ( ) ( ) ( ) ( ))
h w w v v

h w w v v

F F βF α F F g F F g
f F

F F h β α F F F F

     

          

T B u

T
.  (18) 

Eq.(18) is added to Eq.(11) to alternatively solve the 
problem, and then the blur kernel h can be obtained. Fi-
nally, the Wiener filter is used in the frequency domain to 
restore the clear image. 

In this paper, the experiments are performed using 
Matlab2014a on a Windows 7 platform with an Intel i7 
CPU at 3.3 GHz and 8 GB memory. The parameters of 
the algorithm are set as γ=2 and λ=μ=0.005, and we ad-
just λ according to the distance of atmospheric transmis-
sion distance. In order to balance accuracy and speed, we 
set max_iter=10. The neighborhood size of calculating 
dark channel is 35×35. Compared with single scattering 
restoration models of Wang[2] and Liu[3] and blind de-
convolution algorithm of Liao[8], Krishnan[11], Daniel[12], 
Yu[13] and Pan[14] based on multiple scattering model, 
recovery effect are analyzed in detail. Finally, the inter-
ception of multi frame images from UAV aerial video 
collected by the small satellite 158HD flight platform are 
used to further test our method. The restoration image is 
analyzed by various quality evaluation indexes, and the 
running time values of these methods are compared. 

We perform blur kernel estimation experiments on 
data sets in Ref.[1]. In Fig.4(a), the city is affected by fog, 
and the blur kernels estimated by the traditional algo-
rithms have the same shape of the cross star as shown in 
Fig.4(b)—(f). Fig.4(h) show the severe blurred image 
influenced by haze and snow. As shown in Fig.4(i)—(m), 
the error blur kernels estimated by the traditional algo-
rithms are shown as a white stripe with irregular distri-
bution which covers the entire area. But our method can 
correctly estimate the PSF as shown in Fig.4(g) and (n), 
and the performance is significantly improved. 

             

Fig.4 PSF estimation results 

Fig.5 shows the results of quantitative analysis. The 
sum of squared error (SSD) values of blur kernel esti-
mated by Krishnan[11], Daniel[12], Pan[14], Liao[8], Yu[13] 
are too high, and the SSD value of our algorithm is ob-
viously decreased, which greatly improves the precision 
of blur kernel estimation.  

Figs.6—8 shows the results of aerial image restoration 
under three different weather conditions. Fig.6(a) and (g) 
are the city images affected by fog and haze, Fig.7(a) and
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(g) show the images with mountains and clouds, and 
Fig.8(a) and (g) show the building images under wind 
and snow conditions, respectively. 

 

Fig.5 Quantitative analysis comparison 

   

Fig.6 Restoration of aerial city images affected by 
fog and haze 
In images processed by Liu, detail is obvious, but the 

overall brightness is darker, and smooth effect is poor. 
The images processed by Daniele have high contrast and 
gorgeous color, but a serious color cast weakens the de-
tails. In images processed by Wang, the color approxi-
mates to the true value, the detail information is obvious, 
but the mountains and woods have the halo effect obvi-
ously. The algorithms of Liao and Krishnan have poor 
ability to resist the Gaussian white noise, and there is a 
serious artificial ringing effect, some of which are resid-
ual blur, the image sharpness decreases, and the texture 
information lost. The restored images obtained by our 
algorithm hasve the advantages of moderate brightness 
and contrast, rich texture details, strong anti-noise ability 
and good visual effect. 

 

Fig.7 Restoration of images with cloud and mountains 

 

 

Fig.8 Restoration of aerial images with wind and snow 
 
Fig.9 shows six frame images from UAV aerial video 

collected by the small satellite 158HD flight platform. As 
shown in Fig.9(c) and (f), there is a moving target in 
shooting. The recovery images of Wang have obvious
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halo effect around the moving target, such as ships and 
cars. The recovery images of Krishnan algorithm have  
serious ringing effect, and the textures of car body and 
ship are blurred, which greatly affects the recognition of 
moving targets. Fig.9(b) and (d) show the images taken 
in rain, the images are gray and white, which interferes 
with the identification of stationary targets, such as white 
houses and dams. Daniel algorithm has poor immunity 
against interference of partial white objects, and appears 
color cast phenomenon, such as the color of dam, sky 
and green land. The contrast of image processed by Liu 
is moderate, and the details are more obvious, but the 
overall color is darker, and the smoothing effect of the 
abrupt change of the depth of field is poor, such as dams, 
sky, the edge of house and the green space, so the whole 
visual effect is not in a good quality. For the remote im-
ages shown in Fig.9(a) and (e), light transmission proc-
ess is longer, so the effect of atmospheric particle scat-
tering is more obvious. Because the contrast of three 
regions in the original image is strong, such as waters, 
green land and soil, the algorithms of Pan and Yu can 
effectively estimate the blur kernel by using the natural 
gradient priors, and only a small part of the region is 
slightly foggy, the overall contrast is moderate, and the 
recovery effect is good. For the above images, it is ob-
served that our algorithm is better than the current 
state-of-the-art recovery algorithm, and our algorithm 
can basically solve the UAV remote sensing image res-
toration. 

   

Fig.9 UAV aerial image restoration 
 

This paper adopts five kinds of objective evaluation 
index[15,16], which are the mean brightness (GM), contrast, 
gray mean gradient (GMG), Laplacian sum (LS) and in-
formation entropy (H), to quantitatively evaluate UAV 
remote sensing atmospheric degradation restoration im-
age of the above six frames. The average evaluation in-
dexes and the running time of the compared algorithms 
are shown in Tab.1. 

Tab.1 Performance evaluation results of algorithms 

Methods   GM  Contrast    GMG     LS    H Time (s)

Liao 86.354  6.216 8.647 5.675 4.647 12.78 

Krishnan 76.458  5.267 4.971 3.148 3.971 22.45 

Daniel 47.164  9.697 10.657 6.634 5.113 15.34 

Pan 64.187 12.364 11.323 10.147 6.657  8.62 

Yu 68.549 14.679 10.667 7.941 5.984  6.25 

Wang 58.647 16.213 12.637 8.617 6.314  3.64 

Liu 52.416 13.698 12.425 9.671 7.147  4.68 

Ours 70.367 18.677 13.687 12.367 8.679  3.08 

 
It is observed that our algorithm can significantly im-

prove all indexes, and the results are consistent with the 
subjective evaluation. Due to our method based on L0 
norm regularization model and the L1 norm total varia-
tion regularization method of Daniel are relatively close 
on mathematical theory, which all obtain the optimal 
solution by using the prior condition, so the results are 
similar. The method of Daniel is a simple mathematical 
problem which is based on Bayesian principle to filter 
the trivial solution. While we explore the physical prop-
erties of the image in all kinds of weather, the natural 
priors of image gradient and dark channel are added, so 
our result is better than Daniele’s in actual atmosphere 
degraded image restoration project. The speed of our 
algorithm is several times faster than those of regulariza-
tion methods of Krishnan and Daniel. Compared with the 
ratio regularization of Liao and Yu, there is a significant 
improvement, but we also need to calculate the image of 
dark channel, the main spending time is slightly better 
than those of single scattering physical model algorithm 
of Wang and Liu. Our algorithm is accelerated by fast 
Fourier transform (FFT). The processing time on a 
512×512 image is only about 3 s. 

We propose a new blind deconvolution model based 
on multiple scattering APSF estimation for remote sens-
ing image restoration, and it can effectively remove the 
atmospheric degradation under complex weather condi-
tions. Our multiple scattering restoration model can per-
fectly describe the physical characteristics of atmos-
pheric transmission by using the L0 norm sparse priors 
of gradient and dark channel estimate APSF blur kernel 
to restore the original clear image. The experimental re-
sults show that the restored image retains the details, 
greatly improves the operation speed, and can effectively 
suppress the ringing effect at the edge of image. The 
contrast, GMG, LS and information entropy are signifi-
cantly improved, which are all superior to those of the 
state-of-the-art algorithms.  
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