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Baseline correction is a very important part of pre-processing. Baseline in the spectrum signal can induce
uneven amplitude shifts across different wavenumbers and lead to bad results. Therefore, these ampli-
tude shifts should be compensated before further analysis. Many algorithms are used to remove baseline,
however fully automated baseline correction is convenient in practical application. A fully automated
algorithm based on wavelet feature points and segment interpolation (AWFPSI) is proposed. This algo-
rithm finds feature points through continuous wavelet transformation and estimates baseline through
segment interpolation. AWFPSI is compared with three commonly introduced fully automated and
semi-automated algorithms, using simulated spectrum signal, visible spectrum signal and Raman spec-
trum signal. The results show that AWFPSI gives better accuracy and has the advantage of easy use.

� 2017 Published by Elsevier Ltd.
1. Introduction Higher order polynomial fitting may estimate some spectral infor-
Spectroscopy provides detailed information and is routinely
used in various application areas including biological processes
and chemical analysis. The identification and quantification of
the raw signals by spectral analysis methods are hindered because
of the inherent artifacts such as noise and baseline. Therefore, to
obtain meaningful information and deeper insight, baseline needed
to be removed and the noise should be eliminated [1–6].

Baseline correction is a very important part of pre-processing.
Various phenomenons like fluorescence, phosphorescence and
black body radiation induce uneven amplitude shifts across differ-
ent wavenumbers, manifesting itself as slowly varying curve called
baseline. These amplitude shifts have to be compensated before
proceeding with further analysis. There are many methods for
baseline correction [7–12]. Manual baseline correction relies on
user’s experience, noise level and baseline characteristic. This kind
of methods is not completely accurate. Automatic baseline correc-
tion can be broadly divided into fully automated [13–16] and semi-
automated [17,18]. For fully automated baseline correction, the
most commonly used method is polynomial fitting (PF) [4,19].
Selecting the appropriate polynomial order is extremely important.
mation as background and can be affected by high frequency noise
synchronously. Another automated method is small window mov-
ing average (SWMA) [16]. This is a moving window based method
where at each point only three intensity values around this point
are used for baseline estimation. It tends to have bias towards
noise levels. Adaptive iteratively reweighted penalized least
squares (AIRPLS) [17] is a recently introduced semi-automated
method. The obvious disadvantage for this kind of method is the
need to set parameters. Although default parameters are available
for different signals, the accuracy and precision depend on further
optimization.

Wavelet based method is widely used in chemometrics, phar-
maceutics and bioinformatics, etc. [20]. Wavelet is localized both
in time or space as well as frequency. In this study, an automated
baseline correction method by means of continuous wavelet trans-
formation and segment interpolation is proposed, called auto-
mated segment interpolation based on wavelet feature points
(AWFPSI) algorithm.
2. Method

AWFPSI algorithm is developed based on the ideal of continu-
ous wavelet transformation. The baseline is estimated using a sim-
ple linear interpolation. The algorithm is divided into five steps:
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Fig. 1. Simulated spectrum signal. (a) Single peak and (b) overlap peak.

Table 1
The correspondence between wavelet extreme points and the spectral feature points.

Peak style Single peak Overlap peak Spectrum signal Wavelet signal Spectral first derivative

Starting point A1 A2 Minimum Minimum �
Left inflection point B1 B2, F2 Rising edge Maximum �
Peak C1 C2, G2 Maximum Minimum _
Right inflection point D1 D2, H2 Trailing edge Maximum �
Valley None E2 Minimum Minimum _
Ending point E1 I2 Minimum Minimum �

Table 2
Simulated pure spectrum signal.

Peak position (cm�1) 645 1090 1535 2130 2200 2270
Peak height 3 6 9 6 6 6
FWHM 25 30 35 40 45 50
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Step1: pre-processing

Pre-processing is required to eliminate effects of unwanted sig-
nals. It is necessary to minimize the noise of the raw signals to
increase the accuracy of the feature recognition. Savitzky-Golay
(SG) filter [14] is a commonly used smoothing method. The SG
filter is a moving window based on local polynomial fitting proce-
dure. In this study, the size of moving window is three and polyno-
mial order is zero. Three-point zero-order Savitzky-Golay filter can
reduce the noise through the minimum window and retain all
important spectral bands.

Step 2: continuous wavelet transformation

The continuous wavelet transformation of signal s(t) at scale a
(a 2 R) and translational value b (b2R) can be expressed by the fol-
lowing integral:

sw a; bð Þ ¼ 1
aj j

Z þ1

�1
s tð Þw t � b

a

� �
dt ð1Þ

where w(t) is a continuous function in both the time domain and
the frequency domain called mother wavelet. When the signals
are decomposed with continuous wavelet transformation, we can
extract some local extreme values from wavelet coefficients. These
extreme values correspond to the feature points in the spectrum
signal, including peak, valley, starting point, ending point and
inflection point. There are many wavelet families available in the
literature such as Harris, Daubechies, Biorthgonal, Ceiflets and Sym-
lets and different wavelet families have different mother wavelets.
A series of functions which can be obtained by the scale and trans-
lation of the mother wavelets are wavelet basic functions.

Using the wavelet basic functions, frequency-like information
from the spectrum signals can be extracted. In order to extract
the extreme values, the wavelet basis function should have first
order vanishing moment, such as Harris, Daubechies and Biorthg-
onal. If the wavelet basis function is odd symmetry, the corre-
sponding wavelet filter coefficient has linear phase. This
characteristic makes the extreme value points unbiased in any
scale. But Daubechies does not have symmetry properties. Harris
and Bior1.1 have bad localization properties. Considering the exact
reconstruction, Bior1.3 is the wavelet basis function in this
algorithm.

Simulated spectrum signal with a single peak and its wavelet
transformation signal are shown in Fig. 1(a). Simulated spectrum
signal with overlap peaks and the wavelet transformation signal
are shown in Fig. 1(b).

The wavelet extreme points corresponding to the feature points
in the spectrum signal are shown in Fig. 1(a) and (b).

Step 3: identifying the feature points in the spectrum signal

Table 1 shows the peak, valley, starting point and ending point
are minimum values in the wavelet curve graph. If the first deriva-
tive of the point goes through zero, ‘‘_” is set, otherwise ‘‘�” is set.
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The first derivative of the peak and valley in the spectrum signal go
through zero point. By comparing with these characteristics, we
can identify the different feature points.

Step 4: linear segment interpolation

In this step, linear segment interpolation between the start-
ing point xk and ending point xk+n are computed. A smoothed
signal is estimated from the original spectrum signal as
baseline.

Starting with an array of intensities y = [yk, yk+1, . . ., yk+n] at set
interval x = [ xk, xk+1, . . ., xk+n], the interpolation polynomial is calcu-
lated as follows:

Lk xð Þ ¼ yklk xð Þ � ykþnlkþn xð Þ ð2Þ

where yk and yk+n are linear interpolation factor, Lk(x) is the primary
function.

lk xð Þ ¼ x�xkþn
xk�xkþn

lkþn xð Þ ¼ x�xk
xkþn�xk

ð3Þ

The interpolation result array is Yk = [Lk(xk), Lk(xk+1), . . ., Lk(xk+n)].

Step 5: baseline correction

Every segment interpolation is calculated. The baseline can be
updated as follows:

baseline ¼ Y1;Y2; . . . ;Yk;Ykþ1; . . . ;YN½ � ð4Þ
The residual signal between the original spectrum signal and

the estimated baseline is the correct spectrum signal.
3. Experimental result and analysis

Both simulated and experimental data are used to evaluate the
performance of the AWFPSI algorithm. All data are compared with
three other baseline correction algorithms: PF, SWMA and AIRPLS.
Fig. 2. Five kinds
3.1. Simulated signals for comparison

Mathematically, the simulated spectrum signal s(t) can be
expressed as follows:

s tð Þ ¼ x tð Þ þ b tð Þ þ n tð Þ ð5Þ

where s(t) is the simulated spectrum signal, x(t) is the pure spec-
trum signal, b(t) is the baseline, n(t) is the noise.

Three single peaks and three overlap peaks comprise the simu-
lated spectrum signal s(t): each peak varied in intensity. The
parameters are shown in Table 2. FWHM is full width at half
maximum.

The baseline includes five different forms: linear, Gaussian,
exponential, sigmoidal and polynomial function, shown in Fig. 2.

Fig. 3 shows the simulated signals with pure spectrum signal,
noise and baseline.

The difference between the ideal baseline and estimated base-
line is calculated. Root mean square error (RMSE) is used to verify
the availability.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL

n¼1
BLideal nð Þ � BLest nð Þ½ �2

.
L

r
ð6Þ

where L is the spectral length, BLideal is the ideal baseline, BLest is the
estimated baseline.

For each baseline, RMSE is calculated in both low and high SNR
(signal to noise ratio) for all algorithms. A range of SNR factors are
multiplied by the Gaussian white noise created to evaluated the
ability of the algorithm to perform baseline correction in different
SNR levels. The factors from the set {0.1, 0.2, 0.4, 0.6, 0.8, 1.0} and
{2, 4, 6, 8, 10} are used for low and high SNR levels respectively.
Fig. 4 shows the RMSE of the different algorithms for the various
baseline and SNR used.

The scatter plots for RMSE using various SNR of each algorithm
are shown in Fig. 4(a)–(e). The RMSE declines as the SNR increases.
AWFPSI tends to work better for Gaussian, exponential and sig-
moidal baseline correction. Fig. 4(f) shows AWFPSI has lower aver-
age error and higher stability.

For different kinds of baseline, the mean RMSE of all four algo-
rithms is calculated, shown in Table 3.
of baselines.



Fig. 3. Simulated data. (a) Pure spectrum signal; (b) pure spectrum signal with linear baseline and low noise; (c) pure spectrum signal with Gaussian baseline and low noise;
(d) pure spectrum signal with polynomial baseline and low noise; (e) pure spectrum signal with exponential baseline and low noise; (f) pure spectrum signal with sigmoidal
baseline and low noise.

Fig. 4. Error curve of PF, AIRPLS, SWMA and AWFPSI using different SNR signals. (a) Signals with linear baseline; (b) signals with Gaussian baseline; (c) signals with
polynomial baseline; (d) signals with exponential baseline; (e) signals with sigmoidal baseline; (f) box plot of comparison.
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Table 3 shows AWFPSI gives better accuracy than other two
automated baseline correction algorithms, PF and SWAM.
Although AWFPSI is shown to have poorer accuracy than AIRPLS
in linear and polynomial baseline correction, the performance of
AWFPSI and AIRPLS is comparable. AWFPSI has higher average
accuracy than AIRPLS and it does not need to optimize parameters.
3.2. Experimental signals for comparison

Experimental signals from visible spectrum signal and Raman
spectrum signal are used to show the applicability of the AWFPSI
algorithm in actual databases. Information about the experimental
condition is shown in Table 4.



Fig. 5. Baseline correction. (a) 7% glycerin and water; (b) 28% glycerin and water; (c) alcohol; (d) carbon tetrachloride; (e) polytetrafluoroethylene; (f) methanol.
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The compound of glycerin andwater in different concentrations is
measured based onmicrofiber coupler using a 532 nm LED as optical
source by grating spectrometer. The different chemical substances,
such as alcohol and carbon tetrachloride, are measured using a laser
of 785 nmwavelength for excitation by Raman spectrometer. Polyte-
trafluoroethyleneandmethanol aremeasuredusinga laserof488 nm
wavelength for excitation by confocalmicroscopeRaman spectrome-
ter. The results of baseline correction are shown in Fig. 5.

For visible spectrum signal and Raman spectrum signal, com-
parison of the four algorithms is done by calculating the reduction



Table 3
Comparison of RMSE for all the algorithms.

Baseline style PF AIRPLS SWMA AWFPSI

Linear 1.2629 0.3141 0.4751 0.3759
Gaussian 1.0733 0.3290 0.4881 0.2883
Polynomial 1.2986 0.6501 0.7076 0.6631
Exponential 1.2755 0.3953 0.4729 0.3489
Sigmoidal 1.2562 1.2178 1.2330 0.4520

Table 4
Experimental condition used to evaluate AWFPSI algorithm.

Spectral type Description

Visible spectrum Grating spectrometer
Optical source: 532 nm LED
Resolution: 1 nm
Integration time: 2 ms–2 s

Raman spectrum Raman spectrometer
Optical source: 785 nm laser
Resolution: 3 nm
Integration time:100 ms–10 s

Confocal microscope Raman spectrometer
Optical source: 488 nm laser
Resolution: 1 nm
Integration time:10 s

Table 5
Comparison of reduction of the convex hull area of the four algorithms using grating
spectrometer.

Algorithm Percentage reduction in area of convex hull (%)

PF 0.32%
AIRPLS 89.08%
SWMA 19.41%
AWFPSI 78.86%

Table 6
Comparison of reduction of the convex hull area of the four algorithms using Raman
spectrometer.

Algorithm Percentage reduction in area of convex hull (%)

PF 54.69%
AIRPLS 64.76%
SWMA 58.51%
AWFPSI 66.21%
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in area of convex hull of the principal components analysis (PCA)
plots. This is because the compactness and separation in principal
components pattern space would improve clustering and classifi-
cation results.

Table 5 shows AWFPSI is ranked second in the comparison and
it is 10.22% behind the AIRPLS. However, the performance of
AWFPSI is much better than the other two algorithms. In this
paper, visible spectrum database is small and more studies should
be done to confirm whether AWFPSI is suitable for visible spec-
trum baseline correction or not.

Table 6 shows the performance of the four algorithms in Raman
spectrum baseline correction is comparable. AWFPSI is ranked first
in the comparison.

4. Conclusion

As mentioned previously, baseline correction is a very impor-
tant part of spectral preprocessing. A fully automated segment
interpolation based on wavelet transformation (AWFPSI) algorithm
is proposed in this study. Both simulated and experimental data
are used to evaluate and compare the performance of the AWFPSI
algorithm. AWFPSI is compared with two fully automated algo-
rithms, namely PF, SWMA and a semi-automated algorithm,
namely AIRPLS. The simulated signals use five different baseline.
The RMSE between the ideal baseline and estimated baseline is cal-
culated. The results show that AWFPSI ranks first in terms of the
Gaussian, sigmoidal and exponential baseline correction. AWFPSI
ranks second in terms of the linear and polynomial baseline correc-
tion, and is only behind AIRPLS. AWFPSI is a fully automated base-
line correction algorithm whereas AIRPLS requires to optimize its
parameters which is not desirable to process large datasets. The
reduction in area of convex hull of the PCA plots is calculated.
The much better performance of AWFPSI compared to the other
three algorithms indicates that AWFPSI is more suitable for base-
line correction of Raman spectrum. Thus, AWFPSI is a potentially
useful baseline correction algorithm and has advantage of ease of
use.
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