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Abstract

Raman peaks carry valuable information about constituent chemical bonds. Therefore, peak recognition is a very essential

part of spectral analysis. The fully automated peak recognition is convenient in practical application. A fully automated

Raman peaks recognition algorithm based on continuous wavelet transformation and local signal-to-noise ratio (LSNR) is

proposed. This algorithm extracts feature points through continuous wavelet transformation and recognizes peaks

through LSNR. This algorithm also can be used to eliminate spike, noise, and baseline. Both simulated and experimental

data are used to evaluate the performance of the CWT-LSNR algorithm compared with the other two algorithms. The

results show that CWT-LSNR gives better accuracy and has the advantage of easy use.
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Introduction

Raman spectroscopy provides detailed information and is

used in chemical, biochemical, environmental, and food

sciences. The spectral peaks carry valuable information

about constituent chemical bonds.1–4 It is necessary to rec-

ognize the peaks for further analysis. In recent years, dif-

ferent peak recognition algorithms have been used in the

field of chromatogram and some of them are described in

detail.5–10 The continuous wavelet transformation algo-

rithm (CWT)11–14 is widely used and is a method based

on finding the camber line in the wavelet coefficient

matrix, and moreover, length threshold and signal-to-

noise ratio (SNR) threshold of the camber line should be

prepared. One general disadvantage of this method is the

requirement to optimize parameters, which can be very

time consuming. Vivó-Truyols uses high-order derivatives

to assess the number of underlying compounds under a

given peak cluster (DW).15 High-order derivatives belong

to high-pass filter, so that this algorithm may enhance the

noise and Raman signal may submerge in the noise.

Therefore, a multitude of algorithms are unavailable to

the Raman spectrum.

A new fully automated algorithm for Raman peak recog-

nition is proposed in this study. This algorithm is based on

continuous wavelet transformation and local signal to noise

ratio (LSNR). Through the wavelet transformation, the fea-

ture points in the original spectrum signal, such as peak,

valley, starting point, ending point, and inflection point, are

classified. In using the LSNR, peaks can be recognized.

Method

The proposed algorithm can recognize the spectral peaks

automatically by means of CWT and LSNR, namely CWT-

LSNR. The algorithm is divided into four steps:

Step 1: Baseline removal. Preprocessing is required to

eliminate effects of unwanted signals such as fluorescence,

cosmic rays, laser power fluctuations, and detector noise. A

fully automated algorithm based on wavelet feature points
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and segment interpolation (AWFPSI) is used to remove the

baseline.

Step 2: Spike removal and noise attenuation. Spike removal

is a very important part of preprocessing.16,17 It is neces-

sary to remove the spikes of the raw signals to increase the

accuracy of the peak recognition. Generally, the spike is

sharper compared with the genuine Raman band and its

full width at half-maximum (FWHM) does not exceed

2 cm–1.

A method based on local extreme values is proposed in

Step 2. Three-point zero-order Savitzky–Golay (SG)18 filter

is used to reduce the noise and retains all important spec-

tral bands. The SG filter is a moving window based on local

polynomial fitting procedure. The size of the moving

window is three and the polynomial order is zero in this

method. Because the SG filter is a non-linear, weighted,

smoothing function, it is guaranteed that high-frequency

Figure 1. Simulated spectrum signal. (a) Single peak; (b) overlap peak.

Table 1. The correspondence between wavelet extreme points and the spectral feature points.

Peak style Single peak Overlap peak Spectrum signal Wavelet signal

Spectral first

derivative

Starting point A1 A2 Minimum Minimum �

Left inflection point B1 B2,F2 Rising edge Maximum �

Peak C1 C2,G2 Maximum Minimum v

Right inflection point D1 D2,H2 Trailing edge Maximum �

Valley None E2 Minimum Minimum v

Ending point E1 I2 Minimum Minimum �

Figure 2. Simulated spectrum signal with spikes, noise, and

baseline,

Table 2. Simulated pure spectrum signal.

Peak position

(cm–1) 645 1090 1535 2130 2200 2270

Peak height 3 6 9 6 6 6

FWHM 25 30 35 40 45 50
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noise is well suppressed. After filtering, the singularities are

detected through residual error. The median of such a local

window of intensity values at each singularity is calculated

to cover the singularity value. Other intensity values keep

constant. Preliminary spike removal spectra S1(n) is

obtained as follows

S1 nð Þ ¼
S nð Þ, res5 3� s

S
0

nð Þ, res � 3� s

�
ð1Þ

res ¼ S nð Þ � S
0

nð Þ

s ¼ 0:7431� iqr resð Þ
ð2Þ

Figure 5. Error bar of peak position for three algorithms. (a) Single peak; (b) overlap peak.

Figure 4. Rate of peak recognition accuracy for three algorithms. (a) Single peak; (b) overlap peak.

Figure 3. Peak recognition.
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where S(n) is original spectrum signal, S’(n) is smoothed

signals by SG filtering, res is the residual error, and iqr is a

Matlab function to calculate the quartile. The residual error

threshold s is calculated with reference to the

literature.19,20

The local maximum values are extracted from S1(n).

The assumed coordinate of a certain maximum value is

(xmax, ymax). Then, two symmetry points in the nearest

neighborhood, whose values are ymax/2, are extracted.

The FWHM of this maximum value can be calculated

through the deviation of the two symmetry point abscissa.

If the FWHM is less than or equal to 2 cm–1, this point can

be considered as a spike. The spike needs to be removed

and the intensity value of the spike should be replaced by

the median of its four nearest neighborhoods.

Step 3: Computing continuous wavelet transformation.

The CWT of signal s(t) at scale a (a2R) and transla-

tional value b (b2R) can be expressed by the following

integral:

sw a, bð Þ ¼
1

aj j

Z þ1
�1

s tð Þc
t� b

a

� �
dt ð3Þ

where c(t) is a continuous function in both the time

domain and frequency domain called mother wavelet.

When the signals are decomposed with CWT, we can get

some local extreme values of wavelet coefficients. These

extreme values correspond to the feature points in the

spectrum signal, including peak, valley, starting point,

ending point, and inflection point. There are many wavelet

families available in the literature such as Harris,

Daubechies, Biorthgonal, Ceiflets, and Symlets, and differ-

ent wavelet families have different mother wavelets. A

series of functions that can be obtained by the scale and

translation of the mother wavelets are wavelet basic

functions.

Using the wavelet basic function, frequency-like informa-

tion from the spectrum signals can be extracted. In order

to extract the extreme values, the wavelet basis function

should have first order vanishing moment, such as Harris,

Daubechies, and Biorthgonal. If the wavelet basis function is

odd symmetry, the corresponding wavelet filter coefficient

has linear phase. This characteristic makes the extreme

value points unbiased in any scale, but Daubechies does

not have symmetry properties. Harris and Bior1.1 have

bad localization properties. Considering the exact recon-

struction, Bior1.3 is the wavelet basis function in this

algorithm.

Simulated spectrum signal with a single peak and its

wavelet transformation signal are shown in Figure 1a.

Simulated spectrum signal with overlap peaks and the wave-

let transformation signal are shown in Figure 1b.

The wavelet extreme points corresponding to the fea-

ture points in the spectrum signal are shown in Figure 1.

Table 1 shows the peak, valley, starting point, and ending

points as minimum values in the wavelet curve. The first

derivatives of peak and valley in the spectrum signal go

through zero point. By comparing these characteristics,

we can identify the different feature points.

Step 4: Computing the local signal-to-noise ratio. The

second order difference (step is k) of the feature point p

in the spectrum signal is defined as follows

� �Skð Þ ¼ Sp�k � 2Sp þ Spþk ð4Þ

where S is the spectrum signal and its length is n. Sp is the

spectrum signal at point p.

The LSNR (step is k) is defined as follows,

LSNR ¼
Sp�k � 2Sp þ Spþk

�� ��
Noisep

ð5Þ

Noisep is the energy of noise at point p. It can be

written as:

Noisep ¼ Sp � Ssmooth
p ð6Þ

Sp
smooth is the smoothed signal using SG filter.

Table 4. Experimental conditions used to evaluate the CWT-

LSNR algorithm.

Spectral type Description

Raman spectrum Raman spectrometer

Optical source: 785 nm laser

Resolution: 3 nm

Integration time: 100 ms–10 s

Confocal microscope Raman

spectrometer

Optical source: 488 nm laser

Resolution: 1 nm

Integration time: 10 s

Table 3. Comparison of peak evaluated error of three

algorithms.

Method
Single peak Overlap peak

Equalizing value

Error

average

Error

standard

deviation

Error

average

Error

standard

deviation

CWT-LSNR 0.6508 0.6133 0.7937 1.8843

CWT 0.6349 0.5505 0.8571 2.4961

DW 0.7937 1.7909 1.6032 2.9051
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If the scale of step k matches the width of the peak, Eq. 5

can be defined as:

LSNRp ¼
2 Sp

�� ��
Noisep

ð7Þ

The peak SNR (PSNR) at point p can be defined as:

PSNRp ¼
Sp

�� ��
Noisep

ð8Þ

Comparing Eq. 7 with Eq. 8, the PSNR is twice as big as

LSNR.

By combining the characteristics of wavelet feature

points and the relationship between LSNR and PSNR, the

spectral peak can be recognized accurately.

Experimental Results and Analysis

Both simulated and experimental data are used to evaluate

the performance of the CWT-LSNR algorithm.

Simulated Signals for Comparison

Mathematically, the simulated spectrum signal s(t) can be

expressed as follows:

s tð Þ ¼ x tð Þ þ k tð Þ þ n tð Þ þ b tð Þ ð9Þ

where s(t) is the simulated spectrum signal, x(t) is the pure

spectrum signal, k(t) is the simulated spike, n(t) is the noise,

and b(t) is the baseline.

Three single peaks and three overlap peaks comprise the

simulated spectrum signal s(t): each peak varied in intensity.

The parameters are shown in Table 2.

Spikes are added in 400, 800, 1200, 2000, and 2400 cm–1,

their peak height is 9, 15, 10, 12, and 15, respectively.

Figure 2 shows the simulated spectrum signal with spikes,

noise, and baseline.

Figure 3 shows the result of peak recognition using the

proposed CWT-LSNR algorithm. Through preprocessing,

the spikes, noise, and baseline are removed and the peaks

can be recognized accurately.

Figure 6. Peak recognition of (a) alcohol; (b) carbon tetrachloride; (c) polytetrafluoroethylene; (d) methanol.
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A range of SNR factors are multiplied by the Gaussian

white noise created to evaluate the ability of the algorithms

to perform peak recognition in different noise levels. The

factors from the set {0.5, 1, 2, 3, 4, . . . ,18, 19, 20} are used

for low and high noise levels, respectively.

Figure 4 is a diagram of peak recognition accuracy in

different noise environment. The accuracy rises as the

SNR increases. Continuous wavelet transformation and

LSNR algorithm ranks second in terms of the single peak

recognition. When the SNR reaches 6 dB, the accuracy of

CWT-LSNR will arrive at 100%. The accuracy of CWT-

LSNR is higher than CWT and DW algorithms in the over-

lap peak recognition. When the SNR reaches 13 dB, the

accuracy of CWT-LSNR will arrive at 100%.

Figure 5a shows the average and the standard deviation

of the single peak evaluated error for the various SNR.

Figure 5b shows the average and the standard deviation

of the overlap peak evaluated error for the various SNR.

The circles, blocks, and triangles in Figure 5 represent the

average of the error between the ideal peak position and

estimated peak position. The horizontal lines in Figure 5

represent the standard deviation of the error between

the ideal peak position and estimated peak position. The

error bar in Figure 5 shows the average and the standard

deviation decrease as the SNR increases.

Table 3 shows the mean value of the error average and

error standard deviation of CWT-LSNR, CWT, and DW in

Figure 5. In the single peak, the mean error of CWT-LSNR

is lower than DW. The mean error of CWT-LSNR is com-

parable to CWT and has advantage of ease of use. In the

overlap peak, the mean error of CWT-LSNR is the lowest.

Experimental Signals for Comparison

Experimental signals from Raman spectrum are used to

show the applicability of the CWT-LSNR algorithm in

actual databases. Information about the experimental con-

dition is shown in Table 4.

The different chemical substances, such as alcohol and

carbon tetrachloride, are measured using the laser of

785 nm wavelength for excitation by Raman spectrometer.

Polytetrafluoroethylene and methanol are measured using

the laser of 488 nm wavelength for excitation by confocal

microscope Raman spectrometer. The results of peak rec-

ognition are shown in Figure 6.

The recognition ability of the CWT-LSNR algorithm is

demonstrated by the Raman spectrum with four different

chemical substances and two different integration time.

Figure 6 shows CWT-LSNR could remove the spike, baseline

and abate noise. Continuous wavelet transformation and

LSNR not only recognizes the peaks accurately, but also

provides the peak position and height, as shown in Table 5.

Conclusion

As mentioned previously, peak recognition is a very import-

ant part of spectral analysis. A fully automated Raman peaks

recognition algorithm based on CWT-LSNR is proposed in

this study. Both simulated and experimental data are used

to evaluate and compare the performance of the CWT-

LSNR algorithm. The results show that DW has low accur-

acy in low noise ranges, but CWT-LSNR proves highly

accurate. Peaks with SNR down to approximately one

and below can be recognized by CWT-LSNR. This algo-

rithm is also available if the spikes, baseline and noise are

in existence. Moreover, the CWT-LSNR is a fully automated

peak recognition algorithm whereas CWT requires opti-

mizing parameters. When processing large data sets, a

fully automated algorithm such as CWT-LSNR would be

desirable as it is not necessary to set any parameters.

Thus, the CWT-LSNR algorithm is more suitable for peak

recognition for Raman spectrum and has advantage of ease

of use.
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