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a b s t r a c t 

Based on the analysis of existing guiding mechanisms, a novel 2-DOF compound compli- 

ant parallel guiding mechanism (2-DCCPGM) is proposed in this paper, which has com- 

pact structure, long motion range and negligible parasitic displacements. The relationship 

between the guiding displacements and the driving forces have been obtained from the 

pseudo-rigid-body (PRB) model of 2-DCCPGM. And the dynamic analysis is taken as well. 

Some design criteria are put forward, based on the analytical results. To analysis the guid- 

ing capability and the dynamic performance of 2-DCCPGM, finite element analysis (FEA) 

has been carried out. And the results of the static FEA simulations confirmed that the 

2-DCCPGM barely generates parasitic displacements. A prototype has been manufactured, 

and experiments have been conducted to validate the performance of the 2-DCCPGM. And 

from the experimental results, the 2-DCCPGM has been proved to have satisfactory guiding 

performance. Moreover, the experiment results have also revealed that the machining de- 

viation of the flexure hinges of 2-DCCPGM could cause parasitic displacements and reduce 

the guiding linearity of the 2-DCCPGM. 

© 2017 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

1. Introduction 

In many precision devices or instruments, the demand for high-precision positioning is growing faster and faster, such as

scanning probe microscope, lithography and cell manipulator, etc. [1-5] . Therefore, the development of high-precision posi-

tioning stages becomes more and more important in these applications. In general, most of high-precision positioning stages

consist two parts: actuators and guiding mechanisms, some of them also have position feedback sensors. Actuators are used

to provide the driving force, and guiding mechanisms make sure the stages move in the right path. So, the performance

of guiding mechanisms has great impact on positioning accuracy of the stages [6-10] . In recent years, compliant mecha-

nisms become typical guiding mechanisms for high-precision positioning stage, due to the merits in terms of no backlash,

no creep, no lubrication requirement, repeatable motion and vacuum compatibility [11-19] . 

Compliant parallel-guiding mechanism (CPGM) is a classic type of compliant mechanisms [7,20] , as shown in Fig. 1 a. It

is composed of two identical compliant beams and a motion stage, and the compliant beams could be leaf springs or rigid
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Fig. 1. Schematic of existing 1-DOF compliant mechanisms: (a) CPGM; (b) CDPFM; (c) CPF; (d) MCPF. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

beams with flexure hinges at both ends. This type of compliant mechanism has 1-DOF translational motion capability. CPGM

takes advantage of the principle that each set of opposite sides of parallelogram mechanism always remains parallel. And it

makes the motion stage of CPGM barely have angular displacement during the whole procedure of deformation. But there

is an obvious drawback that the parasitic translation would cause undesired displacement in the vertical direction, and the

guiding linearity and positioning accuracy of stages would be reduced, especially in the case of large deformation. To solve

this problem, researchers introduced compliant double parallel four-bar mechanism (CDPFM) [21] . CDPFM is actually com-

posed of two symmetrically and parallelly arranged CPGMs, as shown in Fig. 1 b. This form of structure effectively avoided

the parasitic translation which occurred in CPGM, thus the guiding linearity is significantly improved. Nevertheless, such an

over-constrained structure would limit the motion range of CDPFM. To avoid the parasitic translation occurred in CPGM, a

simple compound linear spring with monolithic flexure hinges was adopted [22] . Awtar [23] introduced compound parallel-

ogram flexure (CPF) and designed a totally decoupled XY parallel stage by using this mechanism. The CPF is composed of

two reversely and serially arranged CPGMs, as shown in Fig. 1 c. From Fig. 1 c, it can be seen that the parasitic translation

of the motion stage is counteracted by the parasitic translation of the secondary stage. So, the guiding linearity of CPF is

desirable, and the motion range is doubled as compared to CPGM. Inspired by CPF, the concept of multi-stage compound

parallelogram flexure (MCPF) is proposed to achieve a larger translational motion [24] . The MCPF is composed of a number

of CPFs which are nested layer by layer, as shown in Fig. 1 d. From Fig. 1 d, the first CPF can be considered as the motion

stage of the second CPF, the second CPF can be considered as the motion stage of the third stage, and go on like this. The

motion range of MCPF is N times as long as that of the adopted CPF, where N is the number of adopted CPFs. MCPF has all

advantages of CPF, and its motion range could be increased by adopting more CPFs. However, the above-mentioned guiding

mechanisms only have 1-DOF translational motion capability, people have to combine these mechanisms together in serial,

parallel or hybrid to achieve 2-DOF or 3-DOF translational motion capability [25-27] . But in some applications, these mecha-

nisms are not practical. Therefore, researchers introduced multi-axis flexure hinges into these compliant mechanisms. Bacher

applied 2-axis flexure hinges into CPGM to possess 2-DOF guiding capability [28] , as shown in Fig. 2 a. Xu [29] designed a

2-DOF spatial stage by adopting 2-axis flexure hinges into CPF, as shown in Fig. 2 b. However, these two mechanisms cannot
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Fig. 2. Schematic of existing 2-DOF compliant mechanisms: (a) 2-DOF CPGM; (b) 2-DOF spatial stage; (c) FBCM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

achieve 2-DOF translations without parasitic rotations and translations on their own, and the reason will be discussed in the

next section. Li and Hao [30] introduced a four-beam compliant module (FBCM) into an XYZ compliant parallel mechanism,

as shown in Fig. 2 c. But this mechanism has the parasitic translation problem just like CPGM. Therefore, it is necessary to

develop a new mechanism, which has 2-DOF guiding capability, negligible parasitic motions and compact structure. 

This paper proposes a novel 2-DOF compound compliant parallel guiding mechanism, which has compact structure, long

motion range and negligible parasitic displacements. The remaining parts of this paper are organized as follows. Section 2 in-

troduces the design procedure and analytical modeling of 2-DCCPGM. In Section 3 , a 3-D model is built. FEA simulations are

taken in Section 4 . In Section 5 , a prototype is fabricated, and series of experimental studies are carried out to validate the

performance of 2-DCCPGM. Concluding remarks are summarized in Section 6 . 

2. Mechanism design 

2.1. Design of 2-DCCPGM 

As mentioned above, the 2-DOF spatial stage has the defect of parasitic rotation and translation, and the reason will be

discussed in this section. A 2-DOF spatial stage with universal flexure hinges is depicted in Fig. 3 a, and its PRB model is

shown in Fig. 3 b. There is no doubt that the 2-DOF spatial stage scarcely has parasitic displacements as guiding in X-axis,

so we should only discuss the parasitic displacements which occur as the stage is guiding in Y-axis. In order to distinguish

the motion stage from the secondary stage clearly, a certain distance is kept between these two stages along the Y-axis in

the PRB model of 2-DOF spatial stage, as shown in Fig. 3 b. Fig. 3 c shows the deformation of the 2-DOF spatial stage when

a horizontal force 2 F is applied on the motion stage. Fig. 3 d shows the force status of the motion stage and the secondary

stage, respectively. From Fig. 3 d, it can be seen that the load of the secondary stage consists a force 2 F and a moment 2 M .

And M can be derived from: 

M = F (L + 2 l) . (1)

And then, the rotation angles of the flexure hinges of the secondary stage can be derived from following equations: 

ϕ 1 = 

M − F (l + L ) 

K ϕ 
= 

F l 

K ϕ 
, ϕ 2 = ϕ 1 + 

M − F l 

K ϕ 
= 

M 

K ϕ 
= 

F (2 l + L ) 

K ϕ 
(2)

where K ϕ is the rotational stiffness coefficient of the universal flexure hinges of the 2-DOF spatial stage along X-axis. The

rotation angles of flexure hinges of the motion stage can also be derived from following equations: 

ϕ 3 = ϕ 2 + 

F (l + L ) 

K ϕ 
= 

F (3 l + 2 L ) 

K ϕ 
, ϕ 4 = ϕ 3 + 

F l 

K ϕ 
= 

2 M 

K ϕ 
= 

2 F (2 l + L ) 

K ϕ 
. (3)

Then, the parasitic translation of the 2-DOF spatial stage, which is δ in Fig. 3 d, can be obtained: 

δ = l + L cos ϕ 1 − L cos ϕ 3 − l cos ϕ 4 . (4)

If a moment 2 M o is added on the motion stage along X-axis, then Eqs. (2) and (3) can be written as follows: 

ϕ 

′ 
1 = 

M o − F l 

K ϕ 
, ϕ 

′ 
2 = ϕ 

′ 
1 + 

M o − F (l + L ) 

K ϕ 
= 

2 M o − F (2 l + L ) 

K ϕ 
(5)
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Fig. 3. The schematic and PRB model of 2-DOF spatial stage: (a) schematic of 2-DOF spatial stage; (b) PRB model of 2-DOF spatial stage; (c) the deformation 

of the 2-DOF spatial stage when a horizontal force 2 F is applied on the motion stage; (d) the force status of the motion stage and the secondary stage; (e) 

a proper moment 2 M o is added on the motion stage along X-axis; (f) the moment 2 M o is substituted by a rotational constrain; (g) the deformation of the 

2-DOF spatial stage when a load F l is applied on the motion stage; (h) the motion stages and secondary stages of two identical 2-DOF spatial stages are 

connected, respectively. 

 

 

 

 

 

 

 

ϕ 

′ 
3 = ϕ 

′ 
2 + 

M o − F (l + L ) 

K ϕ 
= 

3 M o − F (3 l + 2 L ) 

K ϕ 
, ϕ 

′ 
4 = ϕ 

′ 
3 + 

M o − F l 

K ϕ 
= 

4 M o − F (4 l + 2 L ) 

K ϕ 
(6) 

where ϕ′ 
1 , ϕ

′ 
2 , ϕ

′ 
3 and ϕ′ 

4 are the rotation angles of flexure hinges of the 2-DOF spatial stage after 2 M o is added. 

From Eq. (6) , if we make ϕ′ 
4 equal to zero, M o can be obtained: 

ϕ 

′ 
4 = 

4 M o − F (4 l + 2 L ) 

K ϕ 
= 0 ⇒ M o = 

F (2 l + L ) 

2 

. (7) 

Substituting Eq. (7) into Eqs. (5) and (6) , the other rotation angles of flexure hinges of the 2-DOF spatial stage can be

derived: 

ϕ 

′ 
1 = 

M o − F l 

K ϕ 
= 

F L 

2 K ϕ 
, ϕ 

′ 
2 = 

2 M o − F (2 l + L ) 

K ϕ 
= 0 , ϕ 

′ 
3 = 

3 M o − F (3 l + 2 L ) 

K ϕ 
= 

−F L 

2 K ϕ 
. (8) 

From Eqs. (4) and (8) , the parasitic translation of the 2-DOF spatial stage can be derived: 

δ′ = l + L cos ϕ 

′ 
1 − L cos ϕ 

′ 
3 − l cos ϕ 

′ 
4 = l + L cos 

F L 

2 K ϕ 
− L cos 

F L 

2 K ϕ 
− l cos 0 = 0 . (9)

From Eq. (9) , it can be seen that the parasitic translation and rotation of the 2-DOF spatial stage can be eliminated by

adding a proper moment 2 M o along X-axis, as shown in Fig. 3 e. It means that the 2-DOF spatial stage needs an additional

moment 2 M o to achieve translational motion without parasitic displacements in Y-axis, and M o are proportional to F . Based

on above analysis, it is easy to notice that moment 2 M o could be substituted by a rotational constrain, as shown in Fig. 3 f.

And from Fig. 3 f, the guiding displacement of the 2-DOF spatial stage is 

D 1 = 2 d = 2 L sin ( ϕ 

′ 
1 ) = 2 L sin ( 

F L 

2 K ϕ 
) ≈ F L 2 

K ϕ 
. (10)
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Fig. 4. The PRB model of 2-DCCPGM: (a) isometric view of the PRB model of 2-DCCPGM; (b) side view of 2-DCCPGM along the Y-axis; (c) side view of 

2-DCCPGM along the X-axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, this situation only occurs on the condition that the guiding displacement is small and the load of the 2-DOF

spatial stage is too small to ignore. When the guiding displacement is relatively large and the load F l cannot be ignored,

a parasitic moment will be generated on the 2-DOF spatial stage, thus a translational error δ′ will occur in the Z-axis, as

shown in Fig. 3 g. 

From previous section, it is known that the 2-DOF spatial stage scarcely has parasitic rotation and parasitic translation in

X-axis. That is because the 2-DOF spatial stage has the structure of CPF in X-axis. So, if a mechanism has the structure of CPF

in both X-axis and Y-axis, it would be a perfect solution to all above mentioned problems. If we connect the motion stages

and secondary stages of two identical 2-DOF spatial stages respectively, as shown in Fig. 3 h, the newly created mechanism

can be regarded as a CPF in Y-axis. 

Based on above analysis, a novel 2-DOF compound compliant parallel-guiding mechanism is developed, as shown in

Fig. 4 a. All the 16 universal flexure hinges of 2-DCCPGM are the same. Fig. 4 b and c indicate that the 2-DCCPGM has the

structure of CPFs in both X-axis and Y-axis. And from Fig. 4 a, the 2-DCCPGM can also be regarded as two reversely arranged

FBCMs. So, the parasitic displacements of the motion stage and secondary stage will be equal in value and opposite in

direction, when a driving force acts on the motion stage. Then, it can be considered that the newly designed mechanism

does not generate parasitic displacements. From Eq. (10) , the guiding displacement of the 2-DCCPGM can be derived as

follows: 

D x = 2 L sin ( 
F x L 

8 K x 
) ≈ F x L 

2 

4 K x 
, D y = 2 L sin ( 

F y L 

8 K y 
) ≈ F y L 

2 

4 K y 
(11)

where F x and F y are the driving force applied on the motion stage in X-axis and Y-axis, respectively; K x and K y are the

rotational stiffness coefficients along X-axis and Y-axis of the universal flexure hinges of the 2-DCCPGM, respectively. 

Eq. (11) can be also written as: 

D x = 

F x 

K X 

, D y = 

F y 

K Y 

, K X = 

4 K x 

L 2 
, K Y = 

4 K y 

L 2 
(12)

where K X and K Y are the translational stiffness coefficients of 2-DCCPGM along X-axis and Y-axis, respectively. 

From Eq. (12) , it can be seen that the guiding displacements of 2-DCCPGM are proportional to the driving forces and

inversely proportional to translational stiffness coefficients of 2-DCCPGM. 

2.2. Dynamic modeling 

The dynamic performance of 2-DCCPGM in the X-axis is considered first. The X-axis kinetic energy for 2-DCCPGM can be

expressed as follows: 

T = 

1 

2 

Mv 2 x = 

1 

2 

m 1 v 2 x + 

1 

2 

m 2 v 2 x 2 = ( 
1 

2 

m 1 + 

1 

8 

m 2 ) v 2 x (13)

where M is the equivalent mass of 2-DCCPGM; m 1 and m 2 are the mass of the motion stage and the secondary stage,

respectively; v x and v x 2 are the velocities of the motion stage and the secondary stage in the X-axis, respectively. 

In addition, the elastic potential energy of 2-DCCPGM in the X-axis can be written as: 

V = 16 × 1 

2 

K x ( ϕ y ) 
2 = 

2 K x x 
2 

L 2 
(14)

where x is the output displacement of 2-DCCPGM in the X-axis; ϕy is the angular displacement of the flexure hinges of

2-DCCPGM along Y-axis. 
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Then, substituting Eqs. (13) and (14) into the Lagrange’s equation 

d 

dt 
( 
∂T 

∂ ˙ x 
) − ∂T 

∂x 
+ 

∂V 

∂x 
= F x (15) 

allows the generation of the free-motion dynamic equation 

( m 1 + 

1 

4 

m 2 ) ̈x + 

4 K x 

L 2 
x = 0 (16) 

which gives the natural frequency of 2-DCCPGM in the X-axis in unit of Hertz 

f x = 

1 

2 π

√ 

4 K x 

L 2 ( m 1 + 

1 
4 

m 2 ) 
= 

1 

2 π

√ 

4 K X 

m 1 + 

1 
4 

m 2 

. (17) 

Similarly, the natural frequency (in unit of Hertz) of 2-DCCPGM in the Y-axis could also be obtained: 

f y = 

1 

2 π

√ 

4 K y 

L 2 ( m 1 + 

1 
4 

m 2 ) 
= 

1 

2 π

√ 

4 K Y 

m 1 + 

1 
4 

m 2 

. (18) 

From Eqs. (17) and (18) , it can be seen that the natural frequencies of 2-DCCPGM are proportional to the square of

translational stiffness coefficients of 2-DCCPGM. 

Moreover, from Eq. (12) , we can also notice that the translational stiffness coefficients of 2-DCCPGM are only related to

the rotational stiffness coefficients of the flexure hinges ( K x and K y ) and the distance between the two flexure hinges of

compliant beam ( L ). 

In summary, K x , K y and L are the most important parameters of the 2-DCCPGM. These parameters should be designated

carefully. Besides these parameters, people can determine the other dimensions of 2-DCCPGM based on their own needs,

e.g., l, l x 1 , l x 2 , l y 1 , l y 2 , L x and L y in Fig. 4 b and c. 

3. 3-D modeling 

The aim of this paper is to propose a new compliant mechanism with compact structure, long motion range and negli-

gible parasitic displacements. So, some design constrains of the 3-D model of 2-DCCPGM should be taken into account. 

The first constrain arises from the motion range 

D max > 2 mm (19) 

where D max is the motion range of 2-DCCPGM both in the X-axis and Y-axis. 

The second constrain is imposed by the requirement of compact structure 

S x × S y × S z < 100 mm × 100 mm × 100 mm (20) 

where S x , S y and S z are the size limits of the 3-D model of 2-DCCPGM in the X-axis, Y-axis and Z-axis, respectively. In

addition, the designation of the size limits should also take into account the difficulty of machining. 

3.1. Selection of flexure hinges 

As discussed above, the performance of 2-DCCPGM is significantly related to the performance of the flexure hinges.

Therefore, the selection of flexure hinges becomes the priority of designing a 3-D model of 2-DCCPGM. 

Fig. 5 shows three different kinds of universal flexure hinges: parallel biaxial hinge, spherical hinge and serial biaxial

hinge. Parallel biaxial hinge has compact structure, but stress concentration will occur on its four arris when it is deformed.

Spherical hinge needs to be manufactured by turning, which is not suitable for fabricating the 2-DCCPGM monolithically.

Serial biaxial hinge is a two-axis flexure hinge composed of two perpendicularly non-collocated flexure hinges. It is easy to

fabricate and won’t cause stress concentration, so it is adopted as the universal flexure hinges of 2-DCCPGM. 

Due to the large motion requirement, the motion stage will be driven by a piezo motor. Given a piezo motor with the

maximum driving force ( F M 

= 50 N), the universal flexure hinges of 2-DCCPGM should be compliant enough so that the

piezo motor is able to drive it. In addition, there are many different types of flexure hinges could be used in serial biaxial

hinge, e.g., circular, elliptical, corner-filleted, and so on [31-34] . Among those flexure hinges, corner-filleted flexure hinge is

the most compliant and induces the lowest stress, so it is adopted as the flexure hinges of serial biaxial hinge. 

Moreover, in order to make the universal flexure hinge have the same stiffness both in the X-axis and Y-axis, the two

corner-filleted flexure hinges of it have the same dimensions. 

3.2. Structural design 

Based on the elastic beam theory, the rotational stiffness coefficients along X-axis and Y-axis of the universal flexure

hinges could be obtained 

K x = K y = 

E I c 

l c 
= 

E b c t c 
3 

12 l c 
(21) 
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Fig. 5. Several types of universal flexure hinges could be used in 2-DCCPGM: (a) parallel biaxial flexure hinge; (b) spherical flexure hinge; (c) serial biaxial 

flexure hinge. 

Table 1 

Material properties of AW7075. 

Young’s modulus (GPa) Poisson’s ratio Density (kg/mm 

3 ) Yield stress (MPa) 

71 0 .3 2 .7 × 10 −6 503 

 

 

 

 

 

 

 

where E is the Young’s modulus of the material; I c is the area moment of inertia of the corner-filleted flexure hinges; l c ,b c
and t c are the length, the width and the thickness of the corner-filleted flexure hinges, respectively. 

Due to the limitations of machining capacity, the thickness of the corner-filleted flexure hinges should be 

t c ≥ 0 . 5 mm . (22)

In order to make the corner-filleted flexure hinge only have 1-DOF rotation capacity, b c should be about ten times of t c :

b c ≥ 5 mm . (23)

From Eq. (21) , the elastic modulus of the material has significant influence on the rotational stiffness of flexure hinges.

It means that the selection of material could affect the dimensions of the structure. In this paper, aluminum alloy AW7075

is chosen as material of the 2-DCCPGM, and the material properties are shown in Table 1 . 

From Eqs. (11) , (19) and (20) , the first design constrain can be expressed as 

D max = 

3 F M 

L 2 l c 

E b c t 3 
> 2 mm . (24)
c 
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Fig. 6. 3-D model of 2-DCCPGM and its dimensions: (a) isometric view of 2-DCCPGM; (b) side upward view of 2-DCCPGM; (c) dimensions of 2-DCCPGM; 

(d) dimensions of the universal flexure hinges. 

Table 2 

The results of static FEA simulations. 

Force status 

Maximum 

stress (MPa) 

Displacement of the motion 

stage in the X-axis (mm) 

Displacement of the motion 

stage in the Y-axis (mm) 

Displacement of the motion 

stage in the Z-axis (mm) 

20 N in X-axis 336 .334 2 .7035 −2 .9584 × 10 −6 3 .8450 × 10 −6 

20 N in Y-axis 342 .458 −3 .2911 × 10 −5 2 .7003 2 .5359 × 10 −6 

20 N both in X-axis and Y-axis 401 .112 2 .7035 2 .7003 6 .3809 × 10 −6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For safety and durability, the maximum stress of the flexure hinges should be smaller than the yield stress as much as

possible 

σy > σmax = 

3 F M 

L 

b c t 2 c 

(25) 

where σ y is the yield stress of the material, σ max is the maximum stress of the flexure hinges. 

And then, from Table 1 and Eqs. (20) , (22) , (23) , (24) and (25) , the unknown geometric parameters of the structure can

be determined. 

Based on above analysis, a 3-D model is built, as shown in Fig. 6 a and b. Symmetrical structure is adopted in the 3-D

model. The square motion stage is connected to the secondary stage by four compliant beams which are evenly distributed

in the four corners of the motion stage, and the square secondary stage is connected to the mounting stage by another four

compliant beams which are evenly distributed in the four corners of the secondary stage. All these eight compliant beams

are totally the same, and they are all composed of rigid beams with universal flexure hinges at both ends. The dimensions

of the 3-D model are shown in Fig. 6 c. 

Fig. 6 d shows dimensions of universal flexure hinges which are adopted in the 3-D model. 

4. FEA simulations 

4.1. Static analysis 

To verify the performance of the 2-DCCPGM, FEA simulations are carried out using an ANSYS software package. Element

solid185 is chosen to build the model. And all the elements are tetrahedral-shaped elements. The element size is 1.2 mm.

Since the deformation of the 2-DCCPGM mainly occurs at flexure hinges, the element size of the flexure hinges is defined

as 0.2 mm. And in some critical parts, the element size is refined to 0.1 mm. The number of elements is over 1.4 million.

First, the static performance of the 2-DCCPGM is evaluated using static structural FEA. The simulations are carried out by

applying input forces on the motion stage in the X-axis and Y-axis. And 3-DOF translational constrains are added to the four

mounting holes to restrict the mounting stage. 

The deformation and the stress distribution of the 2-DCCPGM are illustrated in Fig. 7 a and b, respectively, when 20 N

driving force is applied on the motion stage in the X-axis. The deformation and the stress distribution of the 2-DCCPGM are

illustrated in Fig. 7 c and d, respectively, when 20 N driving force is applied on the motion stage in the Y-axis. And Fig. 7 e and

f show the deformation and the stress distribution of the 2-DCCPGM, respectively, when 20 N driving forces were applied

on the motion stage both in X-axis and Y-axis. The results of static FEA simulations are shown in Table 2 . 
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Fig. 7. The static FEA results of the 2-DCCPGM: (a) the deformation of the 2-DCCPGM when apply 20 N in X-axis; (b) the stress distribution of the 2- 

DCCPGM when apply 20 N in X-axis; (c) the deformation of the 2-DCCPGM when apply 20 N in Y-axis; (d) the stress distribution of the 2-DCCPGM when 

apply 20 N in Y-axis; (e) the deformation of the 2-DCCPGM when apply 20 N both in X-axis and Y-axis; (f) the stress distribution of the 2-DCCPGM when 

apply 20 N both in X-axis and Y-axis. 

 

 

 

 

 

 

From Table 2 , it can be seen that the 2-DCCPGM has very good guiding performance and the parasitic displacements are

small enough to be neglected. Moreover, the maximum stresses are still less than the yield stress as the guiding displace-

ments of the 2-DCCPGM reach 2.7 mm in both X-axis and Y-axis. 

According to the dimension of corner-filleted flexure hinge in Fig. 6 d and material properties in Table 1 , we can get that

K x = K y = 1.479 N m/rad from Eq. (21) . And we can also get that L = 33 mm from Fig. 6 c. 

When 20 N driving forces were applied on the motion stage in both X-axis and Y-axis, from Eq. (11) 

D x = 

F x L 
2 

4 K x 
= 3 . 68 mm , D y = 

F y L 
2 

4 K y 
= 3 . 68 mm . (26)

It can be seen that the result based on the PRB model is larger than the FEA result. This is because the PRB model is

based on many assumptions, which can cause the loss of accuracy. But the PRB model is still useful as an auxiliary tool in

structural designing of the 2-DCCPGM. 
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Fig. 8. The first-four mode shapes of the 2-DCCPGM. 

Table 3 

The first-four resonant frequencies of the 2-DCCPGM. 

First mode (Hz) Second mode (Hz) Third mode (Hz) Fourth mode (Hz) 

51 .953 52 .009 106 .135 130 .521 

 

 

 

 

 

 

 

 

 

 

4.2. Dynamic analysis 

Then, the FEA modal simulations are carried out to evaluate the dynamic performance of the 2-DCCPGM. The first-four

mode shapes are shown in Fig. 8 , and the first-four resonant frequencies are shown in Table 3 . 

By observing the modal results, one can notice that the first-two resonant frequencies are very close and mode shapes

of them are the same. It is due to the fact that the 3-D model of the 2-DCCPGM, which is built in previous section, has a

symmetrical structure. 

In order to compare with the FEA result, the dynamic analysis based on PRB model is taken. According to the finite

element model of the 2-DCCPGM, the mass of the motion stage and the secondary stage can be obtained 

m 1 = 0 . 038 kg , m 2 = 0 . 062 kg . (27) 

From Eqs (17) , (18) and (21) , the analytical natural frequencies of the 2-DCCPGM are 

f 1 = f 2 = 50 . 716 Hz . (28) 

It is found that the analytical results are in good agreement with simulation results. 

5. Prototype fabrication and experiment 

A prototype of the 2-DCCPGM has been fabricated, as shown in Fig. 9 a. This prototype is monolithically manufactured

from an aluminum alloy AW7075 block. The external shape is fabricated on a computer numerical controlled (CNC) milling

machine, and a CNC assisted wire electrical discharge machine (WEDM) is utilized to manufacture all the flexure hinges. 

The setup of the experimental system is shown in Fig. 9 b and c. Two piezo motors (model: PZA12, produced by Newport)

are employed as motion generators. These piezo motors could ensure highly reliable motion with 30 nm sensitivity over

12.5 mm travel, and have no loss of position when power is removed. The motion stage is driven directly by piezo motors.

The piezo motor controllers (model PZC200, from Newport) are utilized to drive those piezo motors. Capacitive sensors
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Fig. 9. Manufactured prototype and the setup of experimental system. 

Fig. 10. Results comparisons of experiment and FEA: (a) Z-axis displacement while driving in the X-axis; (b) Z-axis displacement while driving in the 

Y-axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(model: D-E20.200, from Physik Instrumente) are adopted to measure the displacement of the motion stage. After calibration

by manufacturer, this capacitive sensor could have 4 different measuring ranges, 20 0 μm, 50 0 μm, 10 0 0 μm, 20 0 0 μm, by

signal amplification. The Z-axis capacitive sensor adopts the range of 200 μm to measure the parasitic displacement, and

the X-axis and Y-axis capacitive sensors adopt the range of 20 0 0 μm to measure the guiding displacements. The signal

conditioner (model: E-E12.009, from Physik Instrumente) is used to process the position signal from all three capacitive

sensors. 

The experimental results of the 2-DCCPGM are shown in Fig. 10 , when the 2-DCCPGM is driven along the X-axis and

Y-axis, respectively. From Fig. 10 (a), the displacement along Z-axis is about ±0.2 μm over a 2 mm range of travel in X-axis,

and then the guiding linearity of the 2-DCCPGM along X-axis is about 0.02%. Furthermore, one can observe that the curve of

the Z-axis displacement fluctuates around the initial position and has no obvious pattern. Then, we can speculate that what

the curve indicated is the surface shape of the motion stage of the 2-DCCPGM rather than the parasitic displacement of

the guiding motion. That is because the surface of motion stage is manufactures by a milling machine, as motioned above,

the machining marks have been left on the surface. Moreover, the flatness of the surface may also have influence on the

measuring result over a 2 mm range of travel. 

From Fig. 10 (b), the Z-axis displacement is about 5 μm over a 2 mm range of travel in Y-axis, and then the guiding

linearity of the 2-DCCPGM along Y-axis is about 0.25%. It is easy to notice that the guiding linearity of the 2-DCCPGM along

Y-axis is much larger than the guiding linearity along X-axis. However, it is mainly because of the machining deviation of

the universal flexure hinges. 
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Fig. 11. Parasitic displacement caused by stiffness differences of the flexure hinges: (a) The PRB model of the 2-DCCPGM with stiffness differences on the 

flexure hinges; (b) parasitic displacement caused by stiffness differences of the flexure hinges. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The side view of a PRB model of 2-DCCPGM with machining deviation is shown in Fig. 11 (a). The stiffness of flexure

hinges between the mount stage and the secondary stage K 1 y is different from the stiffness of flexure hinges between the

motion stage and the secondary stage K 2 y , and K 1 y > K 2 y . Fig. 11 (b) shows the deformation of the 2-DCCPGM when the

motion stage is driven by a force F y along Y-axis. 

From Eq. (8) , the rotation angles of the flexure hinges of the 2-DCCPGM, which are shown in Fig. 11 (b), can be derived 

ϕ 1 y = 

F y L 

8 K 1 y 

, ϕ 2 y = 

F y L 

8 K 2 y 

. (29) 

From Fig. 11 (b), the parasitic displacements of the secondary stage and the motion stage are 

�1 = L (1 − cos ϕ 1 y ) , �2 = L (1 − cos ϕ 2 y ) − �1 = L ( cos ϕ 1 y − cos ϕ 2 y ) . (30)

From trigonometric function formula, �2 can be expressed as 

�2 = L ( cos ϕ 1 y − cos ϕ 2 y ) = L (−2 sin ( 
ϕ 1 y + ϕ 2 y 

2 

) sin ( 
ϕ 1 y − ϕ 2 y 

2 

)) ≈ L 
( ϕ 1 y + ϕ 2 y )( ϕ 2 y − ϕ 1 y ) 

2 

= L 
ϕ 

2 
2 y − ϕ 

2 
1 y 

2 

. (31)

Substituting Eq. (29) into Eq. (31) , the parasitic displacement of and the motion stage could be obtained by following

equation 

�2 = L 
ϕ 

2 
2 y − ϕ 

2 
1 y 

2 

= L 
F 2 y L 

2 K 

2 
1 y − F 2 y L 

2 K 

2 
2 y 

2( 8 

2 K 

2 
1 y 

K 

2 
2 y 

) 
= 

F 2 y L 
3 (K 

2 
1 y − K 

2 
2 y ) 

128 K 

2 
1 y 

K 

2 
2 y 

. (32) 

By observing Eq. (32) , it can be seen that the parasitic displacement is proportional to the square of the driving force.

Moreover, from Eq. (12) , the guiding displacement is proportional to the driving force. So, the parasitic displacement is pro-

portional to the square of the guiding displacement. From Fig. 11 (b), one can observe that the curve of Z-axis displacement

is a downward convex curve and keeps ascending with the increase of guiding displacement. And the shape of the curve is

consistent with Eq. (32) . 

Based on the measuring results and above analysis, we can say that the 2-DCCPGM has satisfactory guiding performance.

6. Conclusions 

Based on the analysis of the 2-DOF spatial stage, a novel 2-DOF compound compliant parallel guiding mechanism is

proposed in this paper. This mechanism can be considered as two identical 2-DOF spatial stages whose motion stages and

secondary stages are connected respectively, which makes 2-DCCPGM have the structure of CPF in both X-axis and Y-axis.

And the 2-DCCPGM can also be regarded as two reversely arranged FBCMs, thus the parasitic displacements of these FBCMs

will be equal in value and opposite in direction, when a driving force acts on the motion stage. It means that the parasitic

displacement of the motion stage equals to zero. So, we have drawn a conclusion that the 2-DCCPGM does not generate

parasitic displacements. The relationship between the guiding displacements and the driving forces has been obtained, based

on the PRB model of the 2-DCCPGM. And the dynamic analysis is taken as well, and the formulas of resonant frequencies

are obtained. Based on these analyses, the rotational stiffness coefficients of the flexure hinges and the distance between

the two flexure hinges of compliant beam are demonstrated to be the most important parameters of 2-DCCPGM. And the

design guideline of the 2-DCCPGM is also expounded. Moreover, the FEA simulations are carried out to analysis the guiding

capability and dynamic performance of the 2-DCCPGM. The results of the FEA static simulations have confirmed that the

2-DCCPGM barely generates parasitic displacements. And the results of FEA modal simulations are in good agreement with
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the analytical results. After experimental studies, the 2-DCCPGM has been proved to have satisfactory guiding performance.

Moreover, the experiment results have also revealed that the machining deviation of the flexure hinges of 2-DCCPGM could

cause parasitic displacements and reduce the guiding linearity of the 2-DCCPGM. 

In this paper, parasitic displacements and guiding linearity of the 2-DCCPGM are preliminarily analyzed. And the impact

caused by machining deviation and torsional behavior of the 2-DCCPGM can be researched in related future works. 
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