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An improved shift-rotation method for the absolute testing of spherical surfaces is developed to obtain pixel-level
spatial resolution and a low noise propagation ratio. The absolute testing process includes multiple rotational
tests and two lateral shifting tests with large shifts. A wavefront reconstruction algorithm based on subaperture
division and least squares fitting is proposed to reconstruct the surface figure of the test optics. Numerical sim-
ulation results show that the method reveals high-frequency figures missed in the traditional Zernike-based shift-
rotation method. The algorithm error is lower than 0.4%, and the noise propagation ratio can be reduced by 70%
using large shifts. The absolute testing of spherical optics is carried out to verify this method. One spherical
surface was tested with the presented absolute testing method and the method using a point diffraction inter-
ferometer. The difference of the measurement results based on the two methods showed that the testing uncer-
tainty reached 0.19 nm root mean square (RMS), which indicated that the presented method has potential
subnanometer testing uncertainty. © 2017 Optical Society of America

OCIS codes: (120.3180) Interferometry; (120.3940) Metrology; (120.6650) Surface measurements, figure.
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1. INTRODUCTION

The surface figures of spherical surfaces are usually tested using
commercial Fizeau interferometers, and the testing accuracy
depends on the system error of the interferometers. The main
system error is the reference surface of the transmission sphere,
which is usually no better than λ∕40 PV (around 2 nm root
mean square (RMS), λ � 633 nm). Many absolute testing
methods have been developed to achieve subnanometer testing
accuracy. The lateral shearing method [1–3] and shift-rotation
method [4–7] are widely used absolute testing methods for
spherical surfaces. Both methods require testing data at multi-
ple positions to separate the surface figure of the test optics
from the system error of the interferometer.

The lateral shearing method requires testing results at one
original position and multiple lateral shifting positions. The en-
tire surface figure of the test optics can be reconstructed from
finite difference equations comprising all the testing results.
The typical wavefront reconstruction algorithm is a pixel-based
least squares fitting, which can reveal the surface figure with
pixel-level spatial resolution. However, the noise propagation
ratio is high because the shifting distance of this method is usu-
ally limited to one pixel to avoid a singular solution [3]. In ad-
dition, the tilt change of the test optics during lateral shifting

will cause errors in the Zernike quadratic terms, such as power
and astigmatism [8,9]. Therefore, obtaining an accurate astig-
matism aberration of the surface figure is difficult. Power aber-
ration is the concept of defocus, which is an alignment term,
and depends on the distance between the reference surface and
the testing optics [10]; therefore, power aberration is of little
concern in the testing of spherical surfaces.

The shift-rotation method needs testing results atN rotational
positions and one lateral shifting position. The N rotational po-
sition samples of the shift-rotation method are equidistant. Most
of the rotationally asymmetric surface figures of the test optics will
be obtained accurately from the rotational results [7,11].
Rotationally symmetric terms and kN θ terms of the surface
figure are reconstructed from a series of finite difference equations
comprising the lateral shifting results [11]. The wavefront
reconstruction algorithm for the difference equations is based
on the Zernike polynomial fitting, which can only characterize
low-frequency figures [5,8]. As a result, high-frequency rotational
terms and kN θ terms (k is a positive integer, N is the total num-
ber of rotational measurements, θ � 2π∕N ) are missed in the
traditional Zernike-based shift-rotation method [5].

However, high-frequency figure information is needed in
some circumstances. One example is the figure error testing
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of the null lens for aspheric mirrors used in Extreme Ultraviolet
Lithography, in which the figure errors higher than 1 cycles/
mm are required [12]. For this case, high-frequency figure
information cannot be obtained via the traditional Zernike-
based shift-rotation method. Thus, a new absolute testing
technique needs to be developed to acquire high-frequency
figure information.

In this paper, an extended shift-rotation method for absolute
interferometric testing with pixel-level spatial resolution is pre-
sented. The extended shift-rotation method combines the ad-
vantages of the traditional shift-rotation and the lateral shearing
methods, so that the surface figure of spherical surfaces can be
obtained absolutely with pixel-level spatial resolution and a low
noise propagation ratio. When the tilt of the test optics is
controlled by other ways [9], this method can also be used
for absolute testing of plane surfaces.

In the second section, the testing procedure and principle of
the extended shift-rotation method is introduced. Then, the
wavefront reconstruction algorithm applicable for large shifts
is proposed to improve the noise propagation ratio and avoid
a singular solution. In the third section, numerical simulation
and absolute testing experiments are carried out to verify the
characteristics of the presented method and the wavefront
reconstruction algorithm. In the fourth section, the absolute
testing of spherical optics is carried out to verify this method.
One spherical surface was tested with the presented absolute
testing method and the method using a point diffraction inter-
ferometer (PDI). The difference between the two methods
showed that the testing uncertainty of the absolute testing is
0.19 nm RMS. The results indicated that the presented method
has potential subnanometer testing uncertainty with high
spatial frequency.

2. ABSOLUTE TESTING PROCEDURE AND
WAVEFRONT RECONSTRUCTION ALGORITHM

The presented method extends the traditional shift-rotation
and the lateral shearing methods. The testing procedure in-
cludes N equispaced rotational tests and two orthogonal lateral
shifting tests. Let W �x; y� be the surface figure of the test
optics, V �x; y� be the system error of the interferometer,
and T �x; y� be the test result. Here, �x; y� is the coordinate
defined on the charge-coupled device (CCD) sensor of the
interferometer. The above three terms satisfy

T �x; y� � W �x; y� � V �x; y�: (1)

First, N equispaced rotational tests are carried out. The test
result at each rotational angle is expressed as

T ϕ�x; y� � W ϕ�x; y� � V �x; y�;
�ϕ � 0; 2π∕N; 4π∕N;…; 2π�N − 1�∕N �: (2)

The surface figure can be separated into two components,
namely, rotationally asymmetric terms W asym�x; y� and rota-
tionally symmetric terms W sym�x; y�. By averaging the test
results at all rotational angles, we can obtain the following:

T̄ �x; y� � 1

N

XN
i�1

T ϕi
�x; y�

� W sym�x; y� �W kN θ�x; y� � V �x; y�; (3)

where W kN θ�x; y� are kN θ terms, which are 2π∕kN rotation-
ally symmetric radians. The kN θ terms belong to rotationally
asymmetric terms and can be expressed by Zernike poly-
nomials [10],

W kN θ�x; y� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�n� 1�

p �
cos kN θ

sin kN θ

�
RkN
n �ρ�;

×

0
B@

k � 1; 2; 3;…

n � kN ; kN � 2; kN � 4;…

ρ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2

p
1
CA: (4)

Subtracting Eq. (3) from Eq. (2) cancels the system error
and leads to the following equation for the test optics:

T ϕ�x; y� − T̄ �x; y� � W asym
ϕ �x; y� −W kN θ�x; y�; (5)

where W asym
ϕ �x; y� are the rotationally asymmetric terms at ϕ

rotational angle. Therefore, most rotationally asymmetric
terms, except for the kN θ terms, are determined.

The rotationally symmetric terms and kN θ terms in the tra-
ditional shift-rotation method are reconstructed from the lat-
eral shifting test [11]. However, a single shifting test indicates
the insufficiency of difference equations to solve all the wave-
front information. Therefore, the Zernike-based algorithm can
only be employed to characterize the low-frequency surface fig-
ure [5]. In comparison, the lateral shearing method can deter-
mine the wavefront information of all CCD pixels through two
or more shifting tests and the least squares fitting algorithm.
However, the lateral shearing method cannot determine the
astigmatism aberration accurately [9]. Therefore, the presented
method in this section uses multiple rotational tests to deter-
mine astigmatism and most other rotationally asymmetric
terms. It also adopts two orthogonal lateral shifting tests to
reconstruct the rotationally symmetric and kN θ terms with
pixel-level resolution.

At ϕ rotational angle, let T x
ϕ�x; y� and T y

ϕ�x; y� be the test
results when the test optics are shifted in the X and Y
directions, respectively. T x

ϕ�x; y� and T y
ϕ�x; y� are given as

T x
ϕ�x; y� � W ϕ�x − sx ; y� � V �x; y�; (6)

and

T y
ϕ�x; y� � W ϕ�x; y − sy� � V �x; y�; (7)

where W ϕ�x − sx ; y� is the surface figure with an sx shift in the
X direction and W ϕ�x; y − sy� is the surface figure with an sy
shift in the Y direction.

The system error will be cancelled by comparing Eqs. (2),
(6), and (7). The following finite difference equations can be
derived as
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T ϕ�x;y�−T x
ϕ�x;y��W ϕ�x;y�−W ϕ�x − sx ; y�

� �T ϕ�x;y�− T̄ �x;y��
− �T ϕ�x − sx ; y�− T̄ �x − sx ; y��
� �W sym

ϕ �x;y��W kN θ
ϕ �x;y��

− �W sym
ϕ �x − sx ; y��W kNθ

ϕ �x − sx ; y�� (8)

and

T ϕ�x;y�−T y
ϕ�x;y��W ϕ�x;y�−W ϕ�x;y − sy�

� �T ϕ�x;y�− T̄ �x;y��
− �T ϕ�x;y − sy�− T̄ �x;y − sy��
� �W sym

ϕ �x;y��W kN θ
ϕ �x;y��

− �W sym
ϕ �x;y − sy��W kNθ

ϕ �x;y − sy��: (9)

The rotationally symmetric terms W sym
ϕ �x; y� and kN θ

terms W kN θ
ϕ �x; y� can be reconstructed by solving the

difference between Eqs. (8) and (9).
The typical wavefront reconstruction algorithm with a pixel-

level resolution is based on the least squares fitting, which is
usually used in the lateral shearing method. However, such
algorithm bears a large noise propagation ratio because it
usually requires a small shift of one pixel to avoid a singular
solution [3]. To reduce the noise propagation ratio and main-
tain pixel-level resolution, an algorithm applicable for large
shifts is proposed as follows. The wavefront that results from
the CCD sensor of the interferometer can be described by an
M ×M square matrix. The shift distances are P pixels in the
X direction and Q pixels in the Y direction. The wavefront
Ω involved in the difference equations will be separated
into P × Q sub-apertures Ωp;q�p � 1; 2;…P; q � 1; 2;…Q�.
Sub-aperture Ωp;q is made up of columns x � p; p� P; p�
2P;… and rows y � q; q � Q; q � 2Q;… of the original
wavefront. In this case, the shift distance is one pixel for every
subaperture. Therefore, all unknown subwavefronts can be re-
constructed using the standard least squares fitting algorithm.
Finally, the original wavefront is obtained by combining all the
known subwavefronts. Figure 1 shows how the wavefront is
separated into six subapertures when the shift distances are
three pixels in the X direction and two pixels in the Y direction.

3. NUMERICAL SIMULATION AND ABSOLUTE
TESTING EXPERIMENTS

Numerical simulation was performed to determine the charac-
teristics of the extended shift-rotation method. Two actual
wavefronts (1057 × 1057 pixels) in Fig. 2 were used as the sys-
tem error and the surface figure. Figure 2(a) is an actual λ∕40
PV transmission sphere reference surface with figure error of
2.97 nm RMS (system error); Fig. 2(b) is the surface figure
error of a spherical surface in our laboratory with figure error
of 2.45 nm RMS (surface figure of the test optics).

The two wavefronts could construct the testing results at N
rotational positions and two lateral shifting positions by rotat-
ing and shifting the surface figure. The N rotational positions
should be equispaced. Then, the wavefront reconstruction
algorithm described above was applied to reconstruct the
surface figure.

The main error sources of the shift-rotation method are
reproducibility (statistic error) and the shift error during lateral
shifting (systematic error) [13]. Therefore, increasing rotational
positions to reconstruct the surface figure information as much
as possible with rotational tests is preferable. Considering both
the testing accuracy and efficiency, 12 rotational tests were
selected for the numerical simulation. Figure 3 shows the wave-
front reconstruction procedure and result in detail. The high-
frequency rotational symmetric and 12kθ terms of the surface
figure were revealed. Therefore, the entire surface figure was de-
termined with a pixel-level spatial resolution. The reconstructed
surface figure (Fig. 3(k) is nearly identical to the surface figure
provided in Fig. 2(b). The difference between the two figures is
only 0.0013 nm RMS when the shift distance is 16 pixels.

Figure 4 shows the relation between the wavefront
reconstruction error and the shift distance. When the recon-
structed surface figure is subtracted from the given surface
figure pixel to pixel, the RMS of the difference wavefront is
defined as the wavefront reconstruction error. As shown by
the blue dashed line, the wavefront reconstruction error with-
out testing noise (algorithm error) is well within 0.01 nm RMS
(relative error 0.4%) when the shift distance is less than 55 pix-
els. Assuming the shift error is one pixel, the red solid line
shows that the wavefront reconstruction error (noise propaga-
tion ratio) could be reduced by 70% by increasing the shift
distance from 8 to 55 pixels.

Figure 5 shows the relation between the execution time of
the wavefront reconstruction procedure and the shift distance.
The number of the subapertures that can be divided is related
to the shift distance. As the shift distance increases, the
subaperture number increases, and the pixel number of each

Fig. 1. Separating procedure of subapertures.
Fig. 2. Two wavefronts for numerical simulation: (a) is the system
error and (b) is the surface figure of the test optics.
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subaperture is reduced, which makes the execution time
shorter.

The system error and the figure error of the testing optics
used in the execution time simulation in Fig. 5 are the two
wavefronts (1057 × 1057 pixels) shown in Fig. 2. When the
shift distance is 6, 8, 16, 32, 64, and 128 pixels in the X
and Y directions, the entire wavefront can be divided into
36 (6 × 6), 64 (8 × 8), 256 (16 × 16), 1024 (32 × 32), 4096
(64 × 64), and 116384 (128 × 128) subapertures, respectively.
The corresponding execution times are 290.9 min, 101.9 min,
12.9 min, 2.1 min, 0.8 min, and 0.6 min, as shown in Fig. 5
below. The computer we used is a Lenovo workstation, and the

specifications are as follows: (1) processor: Intel(R) Xeon(R)
CPU E5-2630 v3 at 2.40 GHz (32 CPUs), ∼2.4 GHz; 2)
installed memory (RAM): 32 GB; 3) system type: 64-bit
Windows 7 Professional Operating System.

However, as the shift distance increases, the shift error of the
translation mechanism also increases. Considering the compu-
tational error, the computational efficiency, and the shift error
of the actual shift mechanism, we generally chose a shift of
16–40 pixels in the experiments.

4. EXPERIMENTAL RESULTS AND
CROSS-CHECK

Absolute testing experiments of spherical optics were carried
out using the presented method. A Fizeau interferometer
(Zygo, MST) was used to test a spherical surface based on
the methods described above. The experimental setup is shown
in Fig. 6. The angular position error of the rotational mecha-
nism is �10 0 0. The shift position error of the shift mechanism
is�15 μm. A vibration eliminator is used to suppress vibration
of the granite stage, and the vibration is better than vibration
criterion E (VC-E). The temperature of our laboratory is con-
trolled. The temperature is kept at 22°C, and the fluctuating
range of the temperature is less than �0.02°C. The spherical
surface is of concave shape with a clear aperture (CA) of 90 mm
and a radius of curvature of 340 mm. The pixel number of the

Fig. 4. Relation between wavefront reconstruction error and shift
distance. The blue dashed line is the wavefront reconstruction error
without testing noise. The red solid line is the wavefront
reconstruction error with one pixel shift error.

Fig. 5. Relation between the execution time of the wavefront
reconstruction procedure and the shift distance.

Fig. 3. Wavefront reconstruction procedure and result: (a) and
(e) are the test results at the original position; (b), (c), (d) are the test
results at other rotational positions, T ϕ�x; y�, (ϕ � 2π∕N; 4π∕
N ;…; 2π∕�N − 1�∕N ); (f ) is averaged result of all rotational posi-
tions, T̄ �x; y�; (g) and (h) are the test results in the X and Y directions,
T x

ϕ�x; y�, T y
ϕ�x; y�, respectively; (i) is the reconstructed wavefront by

all the rotational test results; (j) is the reconstructed wavefront by the
shifted test results; (k) is the entire reconstructed wavefront.

Fig. 6. Photo of the absolute testing setup.
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CCD used in the interferometer is 1200 pixel × 1200 pixel.
The test resolution is 0.97 mm/pix. The absolute testing pro-
cedure included 12 rotational tests and 2 shifting tests with
shift distances of 32 pixels.

In the above-mentioned experimental conditions, the re-
peatability of testing the concave surface can reach 0.03 nm
RMS. The reproducibility of the absolute testing can reach
0.04 nm RMS, as shown in the following Fig. 7. The repeat-
ability is the wavefront difference of two successive test results
without readjusting the test optics. The reproducibility is the
wavefront difference of two test results of the test optics, but the
test optics are removed from their test mount and readjusted for
the second measurement.

The cross-check result is shown in Fig. 8. Figure 8(a) is the
absolute testing result with the presented absolute testing
method. The concave spherical surface was also measured
with the method using a PDI and the testing result is shown
in Fig. 8(b). The PDI setup was developed by us. The test res-
olution is 1.58 mm/pix when the PDI was used to test the above-
mentioned concave spherical surface. Detailed information
about the PDI setup can be found in Ref. [14]. The absolute
test result based on the Fizeau interferometer is subtracted from
the test result with PDI pixel to pixel; the wavefront difference of
both measurements was 0.27 nm RMS, which is shown in Fig. 8
(c). If we assume statistical independence of the interferometer
errors, we obtain an error of 0.19 nm RMS for both interferom-
eters accordingly. The experimental results prove that the ex-
tended shift-rotation method has potential subnanometer
testing uncertainty with high spatial resolution.

5. CONCLUSION

In this paper, an extended shift-rotation method with large
shifts is presented to obtain the surface figure of spherical

surfaces absolutely with pixel-level spatial resolution and low
noise propagation ratio. The presented method combines
the advantages of the traditional shift-rotation and the lateral
shearing methods. The testing procedure includes N equi-
spaced rotational tests and two orthogonal lateral shifting tests.
This method can also be used for the absolute testing of plane
surfaces if the tilt of the test optics is controlled by other ways.
Large shifts and the subaperture wavefront reconstruction algo-
rithm are proposed to improve the noise propagation ratio and
avoid a singular solution. The surface figure of all the spatial
frequency domains can be revealed by this method.
Algorithm error can be controlled well within 0.4%, and noise
propagation ratio could be improved greatly by increasing the
shift distances. In addition, the execution time of the wavefront
reconstruction procedure is reduced because the wavefront was
divided into multiple subapertures. The difference of the mea-
surement results from the presented absolute testing method
and the method using a PDI showed that the absolute testing
uncertainty reached 0.19 nm RMS. The cross-check result in-
dicated that the presented method has potential subnanometer
testing uncertainty.
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