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Abstract. An increasing number of heavy machinery and vehicles have come into service, giving rise to a sig-
nificant concern over protecting these high-security systems from misuse. Conventionally, authentication per-
formedmerely at the initial login may not be sufficient for detecting intruders throughout the operating session. To
address this critical security flaw, a line-scan continuous hand authentication system with the appearance of an
operating rod is proposed. Given that the operating rod is occupied throughout the operating period, it can be a
possible solution for unobtrusively recording the personal characteristics for continuous monitoring. The ergo-
nomics in the physiological and psychological aspects are fully considered. Under the shape constraints, a highly
integrated line-scan sensor, a controller unit, and a gear motor with encoder are utilized. This system is suitable
for both the desktop and embedded platforms with a universal serial bus interface. The volume of the proposed
system is smaller than 15% of current multispectral area-based camera systems. Based on experiments on a
database with 4000 images from 200 volunteers, a competitive equal error rate of 0.1179% is achieved, which is
far more accurate than the state-of-the-art continuous authentication systems using other modalities.© 2017Society
of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE.56.3.033106]
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1 Introduction
The authentication system is used to confirm the identity
of a user based on one or more specific credentials.1

Traditionally, it is merely performed at the initial interaction
with the user and does not require reauthentication for con-
tinuous access.2 Although this mechanism has dominated for
decades,3 it is insufficient for securing sensitive resources
throughout the session, leaving the system vulnerable to mis-
use and hijacking.4 With this concern, continuous authenti-
cation to consecutively ensure that the identity of the user is
not switched, forged, displaced, or interrupted by verifying
the participation or presence of the granted user has been
investigated.5 Initial efforts regarding this concept simply ter-
minate the operating session after an inactive period. This
scheme still leaves a vulnerable window and easily annoys
the users.6,7 An option to realize continuous authentication is
to utilize biometrics. Compared with the passwords (what
you know) and tokens (what you have), biometrics are com-
monly acknowledged as the most secure and convenient
solution.8 Various physiological or behavior traits associated
with identity have been studied. A rapidly growing body of
literature on the usage of the physiological modalities, e.g.,
voice, face, iris, finger, fingernail bed, earlobes, or body
odor,9–11 as well as some implicitly detectable behavioral
modalities, such as signature, mouse, keystroke, and move-
ment dynamics, have emerged for continuously monitoring
in the last decade.7,12,13 Among them, facial authentication
systems,7,14–16 mouse-/keyboard-based behavior metrics
authentication systems,12,13,17–20 and biomedical signals
[electroencephalogram (EEG)21 and electrocardiograph
(ECG)22,23] are the most promising. Facial authentication

systems are useful for tablets, laptops, and mobile phones
since the user typically looks straight at a built-in, low-
cost webcam in these cases. However, their accuracy is easily
impacted by the expression, pose, and illumination varia-
tions.14 Additionally, in practice, face images are unavailable
when the operator or driver turns his head away. Despite
some mouse dynamics-based systems that do not offer sat-
isfactory accuracy,12 previously proposed keyboard-based
systems provide user authentication in an unobtrusive man-
ner and exhibit promising results.13 However, they still have
several defects that limit their pervasive use. Their perfor-
mance is not robust to those changes in software environ-
ments, input devices, tasks, or interaction modes.12,24 The
dataflow is often discontinuous, e.g., when the user is watch-
ing a movie on his computer and the systems need a long
session of active involvement, e.g., several minutes,13 to
reach an acceptable accuracy level. The use of biomedical
traits, e.g., EEG21 and ECG22,23 signals, has shown high dis-
criminatory power. Although they have shown promising
results, they are unable to produce a long-term, convenient
sampling. The emergence and development of noninvasively
wearable medical devices will be the hope in the future. In
addition to the authentication performance, the usability of a
specific application scene is also important. The merits and
limitations of the mobile-based continuous user authentica-
tion approaches are explicitly investigated in a recent sur-
vey.25 These techniques, however, are not suitable for in-car
authentication, especially during driving.

Continuous authentication of the driver or operator is a
topic that has been increasingly attracting attention for sev-
eral reasons and within different application fields, e.g., the
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heavy machinery, military, and transportation domains.26

This issue ensures that the driver has a valid driving license
and is granted permission to drive a certain category of
vehicles. Furthermore, it can also be used to verify that
truck drivers are not exceeding the working hour limits,
bind insurance rates with drivers and their personal skills
instead of the car, and even improve driving experience
(by setting personal seat and air-conditioning settings).27,28

Vehicle driving is one of the most complex scenes involv-
ing user interaction. The usability issue has arisen regarding
asking for characteristics that may lead to safety risks, e.g.,
distraction and interruption. One of the interaction mediums
between the operator and equipment or vehicle is the oper-
ating rod. Since the operating rod is occupied throughout the
driving period, it can be a possible solution for recording
personal characteristics unobtrusively and consecutively
via hand scanning. Hand recognition using the hand shape
and texture has many advantages compared with other
modalities in terms of accuracy, stability, passiveness, and
cost.29 Moreover, this system does not restrict the head
pose to take the frontal face or iris images. Thus, the
hand is an available source of characteristics for the operat-
ing scene. Some robust features, such as the principal lines,
wrinkles, textures of palm, hand geometry, and knuckle
print, can be easily extracted from the low-resolution multi-
spectral hand images, which are highly reliable for
matching.30–32 The current hand or palmprint recognition
systems have not been designed in a user-friendly way, espe-
cially for the size and the constrained poses. The palmprint
recognition is limited mainly because of the dimensions of
the devices.33,34 Moreover, in current biometrics designs, the
human factors, to some extent, have been neglected, despite
the well-addressed collectability and the recognition-related
performance.35,36

The key contributions of this paper can be summarized as
follows. (1) We propose an end-to-end design of a continu-
ous authentication system for providing a nonrepudiation
security solution for engineering machinery or vehicles
that uses the hand characters, especially the palmprint.
(2) The proposed line-scan solution is 85% smaller than
the current multispectral area-based camera systems, while
achieving competitive accuracy. (3) Ergonomics are well
considered to design a system under the operating rod-
like shape constraints. (4) The authentication accuracy of
the proposed system is superior to the state-of-the-art con-
tinuous systems with other modalities, which is supported
by experiments on our database of 4000 images from 200
people.

The rest of the paper is organized as follows. Section 2
describes the prototype design of our system. The ergonom-
ics are considered in Sec. 2.1. A contact image sensor (CIS)
module is used to acquire the panorama image of a hand,
reducing more than 85% volume of the conventional area
sensor-based systems; it is described in Sec. 2.2. A controller
unit is designed to solve the motion-synchronizing problem
that occurs with a line-scan sensor. With this unit, the CIS
module could capture hand images adaptively when rotating
with the motor; it is described in Sec. 2.3. The competitive
coding scheme and hamming distance are used for feature
extraction and matching, respectively, following the best
practice of area array sensor-based system’s convention
and is described in Sec. 2.4. The verification performance

of the proposed system is compared with current area-
based ones, which is supported by experiments on a database
of 4000 images from 200 people, in Sec. 3.

2 Prototype System Design
After carefully considering the requirements of the operating
and driving scene, we proposed an operating rod hand
authentication system based on the CIS, an integrated
CMOS line-scan sensor. The resolution and quality of
images are similar to those of the current area-based
system,30 which enables a fair comparison of recognition
performance. Figure 1 shows the three-dimensional (3-D)
design model of our proposed hand images acquisition sys-
tem, which is composed of a highly integrated customized
CIS, a controller unit, a motor with an encoder, a slip
ring, and a glass cover. The system framework is illustrated
in Fig. 2. The controller unit, which is implemented based on
a field-programmable gate array (FPGA), is used to capture
the panorama hand images adaptively to the motion of the
motor in real time. The synchronizing signals, captured
images, and electric power of the CIS are transferred by
the slip ring. Moreover, a universal serial bus (USB) interface
is utilized to communicate between this system and either a
desktop computer or an embedded platform. The two inter-
faces connected to the device are the 12-V power supply and

Fig. 1 Design model of the proposed acquisition system.

Fig. 2 Diagram of the system framework.
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the USB mini-B plug. The highly integrated structure makes
it easy to integrate the rod-like parts into conventional machi-
nery. Examples of the desirable and available application
parts are listed in Fig. 3.

2.1 Concept of Design

Ergonomics in biometrics also include physical and cogni-
tive factors. The collectability might fall into the area of
physical ergonomics, while the usability and acceptability
could be categorized as cognitive ergonomics. In an ideal
ergonomic biometric system, the user should barely notice
the authentication process.37 Otherwise, the system would
have difficulty collecting high-quality samples.37,38 As per
early research, the natural and everyday motions are the
most readily accepted way for users, which conforms
with both physical and cognitive ergonomic principles.39

We designed our ergonomic authentication system based
on a systematic view in which the ergonomics were consid-
ered in the stage of characteristics selection, sample-collect-
ing, imaging equipment design, feature extraction, and
classification.

First, the finger geometry, knuckle print, and palmprint
are some promising characteristics for the continuous and
nondisruptive operator or driver authentication. The perfor-
mance of face and iris recognition obviously degrades when
the users move their heads to look at the surroundings and
their instrument panels. At present, the methods based on
behavior are impractical in actual working conditions and
exhibit low accuracy. As for the hand, drivers are required
to grab the operating rod during most of the manipulation
period, which offers some robust characteristics for reliable
and accurate biometrics.

Second, the imaging unit of our system is integrated into a
traditional operating rod, which is the most acceptable modi-
fication in the driving and operating scene. As a standard
operating part of cars, planes, ships, and heavy engineering
machines, its structure and appearance have been optimized
for several decades to fit the hand and operating habits.
Meanwhile, grabbing the operating rod has become a typical
action for daily driving and operating. Thus, the standard
operating rod appearance would be an ideal physical ergo-
nomic design. Furthermore, considering that the authentica-
tion performance is one of the major targets for our system,
which requires high-quality images with sufficient features, a
CIS imaging module is used to capture the hand skin surface
to a panorama image under the constraints of the rod-like
appearance.

Finally, the method of feature extraction and classification
adopted should be robust to dislocations and fast to process.
The dislocations of the hand are inescapable in a physical
device design with weak guiding mechanisms, especially
in our continuous biometric system where the hand is
hard to keep in a fixed position for the entire session.

2.2 Imaging Module

The optical path of a conventional area image sensor needs
two cone-shaped spaces, as shown in Fig. 4(a). With a con-
stant field of view, the imaging area captured by this scheme
is proportional to the square of the object distance. In the
hand image acquisition system, this distance should be
large enough to cover the whole hand. A longer optical
path, however, occupies more space, which is a limitation
of current capturing devices. Moreover, the off-axis interfer-
ence light enters into the optical system easily, which could
result in aberrations.

On the contrary, as shown in Fig. 4(b), the line-scan sen-
sor captures a line image with a single row or a linear array of
photodiodes, instead of a matrix of them. The field of view in
the vertical direction is only one pixel, which is merely one
of the thousands of the horizontal directions in our system.
The optical path is a thin plane in 3-D space and could be
greatly shortened by the rod lens array (RLA). Thus, the line-
scan sensor requires a much smaller space for the optical
path than that of an area image sensor.

The line-scan sensor takes sharp pictures of objects pass-
ing the camera at high speed in a vertical direction. The
frames are continuously fed to a computing platform
where they are jointed with each other to form an image.
Instead of conventional line-scan sensors, the highly inte-
grated CMOS line-scan sensor module—CIS—which con-
sists of the light-emitting diode (LED) lights, microlenses,
and several CMOS line-scan sensors, is customized for
our system. These parts are integrated into one package,
and all the control signals are pinned out through one
common connector. This CIS module is equipped with an
RLA, which is an array of highly polished cylindrical rod
lenses with small diameter rods. The typical working dis-
tance of this kind of lens is about several millimeters. In
the customized module, it is 1 to 7 mm. There are four
types of LEDs deployed in our CIS module: 630 nm for
red, 520 nm for green, 465 nm for blue, and 940 nm for infra-
red spectra. Typical palmprint features lay in the visible spec-
trum, from 380 to 780 nm. They make a hybrid of white with
the color temperature of 6500 K. Recent research has discov-
ered that multispectral palmprint images are better than

Fig. 3 Similar rod-like parts of (a) flight yoke used in Boing 737, (b) side stick used in Airbus A320,
(c) voltage lever used in factories, (d) operating stick used in excavator, and (e) motorcycle grip type
throttle control.
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traditional palmprint recognition using the visible spectrum
only.40 In the proposed CIS module, near-infrared LEDs are
deployed with the same intensity as the white light. Then the
CMOS line-scan sensor records the overall light intensity of
these four types of reflection rays from the hand and outputs
a grayscale image. We showed the different imaging results
of the regions of interest (ROIs) under six kinds of lighting
conditions in Figs. 5(a)–5(f). The combination of visible and
infrared illumination is good for antispoofing.

The line-scan sensor is 150 mm in length to capture the
whole hand, which is the same as the horizontal length of the
sampling area, while the vertical length of the sampling area
is related to the diameter of the operating rod. According to
the previous survey, the average width of the palm, which is
also the hand width, is 84 mm for male and 74 mm for
female, and the average hand length is 189 mm for a
male and 172 mm for a female.41 Although some parts of
the palm near the wrist are easily lost for the grab pose,
this part is out of our ROIs and has little influence on our
authentication. The imaging area of our system is sufficient

for capturing the finger and palm ROIs for most masculine
and feminine hands.

According to former studies, the default resolution of this
customized CIS module is 100 dpi, the optimal physical res-
olution of palmprint features.30 This parameter determines
the horizontal resolution of the captured hand image and fur-
ther affects the authentication performance. This CIS sensor
scans at a speed of 45 μs per line in 100 dpi mode. Thus, it
could capture 500 lines within 23 ms, theoretically. The gear
motor only needs 1 s to drive the CIS for one round to get
500 lines of the full hand image in our system. The imaging
speed guaranteed that the processing time would not be
delayed by the sensor. Therefore, the entire processing time
depends on the movement of the motor. The material of the
shell, acrylic glass, is transparent to over 90% energy and to a
large spectrum, including both the visible light and near-
infrared light. We used the antifingerprints and antireflective
multilayer coatings to keep the outside surface free from dust
and oil. Meanwhile, the thickness of cylindrical glass shell is
1 mm, which keeps the hand skin 2 to 7 mm above the rod
lens. Finally, the calibration of the pixel is implemented to
reduce the interference of the noises. The gray value of the
captured standard white images is distributed from 240 to
255 randomly, while the captured black images range
from 0 to 10. We captured the white paper and the com-
pletely dark environment twenty times to get the average
gray value I_ white and I_black, respectively. Then, for the
gray value I0 of the point in the row image of the hand, the
calibrated gray value I is calculated as follows:

EQ-TARGET;temp:intralink-;e001;326;433I ¼ I0 − I black

I white
× 255: (1)

2.3 Controller Unit

To capture images with high quality and high speed, the sys-
tem should maintain a stable and accurate resolution in both
vertical and horizontal directions. Figure 6 is the block dia-
gram of the controller unit. A double-layered printed circuit
board was built as the controller unit to regulate all the device

Fig. 5 Best quality palmprint ROIs of the left hand from the same
volunteer, sampled with different illuminations: (a) only used the
red light, λp ¼ 630� 15 nm; (b) only used the green light,
λp ¼ 520� 15 nm; (c) only used the blue light, λp ¼ 465� 15 nm;
(d) only used the red, green, and blue light; (e) only used the infrared
light, λp ¼ 940� 20 nm; and (f) used all of the red, green, blue, and
infrared light. Fig. 6 Block diagram of the controller unit.

Fig. 4 Comparison of optical path space between (a) area array sen-
sor-based imaging system and (b) line array sensor-based imaging
system.
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parts of our system and communicate with the computation
platform through a universal interface. The FPGA board,
which controls a synchronizing driver of CIS, an A/D con-
troller, a data buffer, and a USB interface, is the core of the
system.

The front side (a) and back side (b) of the printed circuit
board are shown in Fig. 7. The Cypress USB CY7C68013A
is used as the USB interface engine. EEPRROM and EPCS1
are used to store the firmware program of the CY7C68013A
and the FPGA, respectively. The ULN2803 with 8-
Darlington transistor array is the ideal equipment to link
the low-voltage logic level digital circuit with the high-volt-
age, high-current circuit, and it is used to control the time of
exposure of the LED in the CIS module as a switch. The
latches recreate the digital signal to stabilize the voltage
and increase the current, which makes the CIS get more
stable signals.

The motion of the rotary shaft in the motor is digitized by
the photoelectric encoder as synchronizing pulses output.
Then, an affiliated gear set of the motor is used to drive
the rotary CIS module steadily. The controller unit receives
the synchronizing pulse from the photoelectric encoder of
the motor and sends out the drive signal to the CIS. When
the CIS module is ready for one line, the FPGA demands the
AD9822 A/D converter to start reading analog pixel signals.
Then the digitized 8-bit image signals are transferred out and
stored in the synchronous dynamic random-access memory
buffer. The input synchronizing signals, electricity, and
output image data of the rotary CIS module are transferred
by the slip ring. Finally, the data are sent to a computing
platform through the USB interface.

The image resolution in the motion direction is defined by
the perimeter of the rod and the imaging times per round.
Given the reduction gear ratio R of the gear motor, the
encoder sends out P pulse per round and the diameter of
the cover’s external surfaces D. If the CIS module rotates
for one round, the axis of the encoder rotates 1∕R rounds
and sends out P∕R pulses correspondingly. Then the syn-
chronizing driver of CIS filters the pulses with a ratio R0

and sends out one drive signal when it receives 1∕R0 syn-
chronizing pulses from the encoder. An inch is an imperial
unit of length, approximately equal to 25.4 mm. The reso-
lution S (in dpi) can be computed as follows:

EQ-TARGET;temp:intralink-;e002;326;752S ¼ 25.4 ×
P∕R
πD

R0: (2)

In our prototype devices, the photoelectric encoder sends
40 pulses per round (P ¼ 40). The R is 1/12.5, and the D is
40 mm, while the R0 is 1. In this configuration, the vertical
resolution (along the rolling direction) is 101 dpi, similar to
the horizontal resolution of the CIS module (100 dpi). In
real-world applications, the gear ratio and filter ratio need
to be adjusted to maintain the vertical resolution for the
rods with different diameters.

The imaging speed of the system is limited by the slowest
part of the data flow. Hence, each part should be optimized to
maximize the speed. First, the synchronizing unit should
generate accurate synchronizing pulses according to the
movement of the motor to minimize the lag. Second, the sen-
sor needs to be fast enough for real-time image capturing to
minimize the data waiting time in the buffer. Third, the speed
of the A/D converter is required to be faster than the output of
the pixels. A buffer could help cache the data while waiting
for transfer through the interface. With this setting, the data
flow speed only depends on the rotation of the motor.

Recently, biometric applications using the acquisition
systems deployed in handheld or mobile platforms are
very popular.42 A framework in which both the desktop com-
putation platform and the embedded platform are compatible
with the same image-capturing device is proposed. The
CY7C68013A works in Slave FIFO mode for the highest
transferring speed and with minimum latency. Continuous
transmission speed is over 18 MB∕s in a dummy data
test. Both the desktop computer and embedded advanced
reduced instruction set computing machine platform drivers
are implemented.

2.4 Feature Extraction and Classification

The recognition is separated into two phases. The first phase
is a one-time identification to identify a person from a set of
enrolled people, which is a 1∶N (number of the registered
users) classification task. Subsequently, in the second
phase, the 1:1 authentication runs continuously to determine
whether the user is changed. The difference between these
two phases is the scale of the database of matching, which
means identification requires the extracted features of all the

Fig. 7 Pictures of (a) the front side and (b) the back side of the PCB.
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enrolled palms, while the authentication only needs the palm
that matched in the first phase.

The sampling area of the hand surface includes the fingers
and palm. However, the skin of those hand areas is subjected
to varying amounts of extruding. Thus, the features that
could be extracted from the high-resolution images, such
as the ridges, singular points, and minutia points, are not reli-
able for the corresponding deformation. Fortunately, almost
all palmprint recognition research focuses on low-resolution
images (≤150 dpi) for commercial and civil applications in
recent years, and the effect was tested.

A series of hand images captured along with the rotation
of the motor by the operating rod system and processed to
extract the ROIs are shown in Fig. 8. The imaging quality of
the vertical direction was well uniformed throughout the ses-
sion, while the rotating speeds of the motor do not need to be
uniform with the help of the synchronization unit. It is hard
to define an initial point of one hand in this peg-free system.
Thus, at least two rounds of rotation are required for recog-
nition to offer at least one integral hand image. Then, this
image was filtered by the two-dimensional Gaussian low-
pass filter and binary transformed by Otsu algorithm43 to
track the boundary of the hands. The largest connectivity
area is an integral hand image. Finally, the ROIs location
is computed based on the work of Guo et al.,44 which is
also utilized in the previous systems.40,45,46 The extracted
ROIs of a hand for four times sampling with our system
are shown in Fig. 9(b) and compared with the former data-
base captured by the area-base system46 in Fig. 9(a). Our
results show clear texture and deeper principal lines for
the bending of the hand. The nonuniform gray distribution
could be introduced by refracting and reflecting of the glass
cover and the limited imaging distance of the micro-RLA.
This could be rectified using the histogram equalization
without degrading the recognition quality.

For online feature extraction, competitive coding is imple-
mented. The images convolve with the Gabor filters to
extract the orientation information of the palm lines.47

The Gabor function has the following form:

EQ-TARGET;temp:intralink-;e003;63;323ψðx;y;x0;y0;ω;θ;κÞ¼
−ωffiffiffiffiffi
2π

p
κ
e−

ω2

8κ2
ð4x 02þy 02Þ

�
cosðωx 0Þ−e−

κ2

2

�
;

(3)

EQ-TARGET;temp:intralink-;e004;326;566κ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p �
2δ þ 1

2δ − 1

�
; (4)

where the x 0 ¼ ðx − x0Þ cos θ þ ðy − y0Þ sin θ, y 0 ¼ −ðx −
x0Þ sin θ þ ðy − y0Þ cos θ; ðx0; y0Þ is the center of the
Gabor function, ω is the radial frequency in radians per
unit length, and θ is the orientation of the functions in radi-
ans. When the standard deviation σ and the half-amplitude
bandwidth of the frequency response δ are fixed, ω can be
calculated from ω ¼ κ∕σ. Thus, the parameter settings of the
σ and the δ have an effect on the performance. These neuro-
physiology-based Gabor functions are approximate to the
general Gabor functions, while the choices of parameters
are limited by neurophysiological findings. Moreover, the
direct current of the function is removed. These Gabor func-
tions will be used to extract orientation information from
palm lines. Three bits were used to represent an element
and one bit for the mask. Thus, the four bit-planes could con-
stitute a competitive code.47 The total size of the proposed
feature, including the mask and the competitive code, is
384 bytes.

Then, the Hamming distance is utilized for feature match-
ing, which is efficient in conventional area camera systems.46

Based on the generally accepted method for feature extrac-
tion and matching, it is more persuasive to compare the per-
formance of our system to other palm recognition devices.

3 System Testing

3.1 Dataset

In our hand image database, 4000 images were equally col-
lected from 400 hands of 200 people in one session.
Considering that squeezing the skin will introduce additional
intraclass differences, five of ten images rather than one for
each hand were randomly selected for the enrollment, and
the others were used for testing. The volunteers were trained
for 2 to 5 times before the sampling to grab the operating rod
slightly and keep more than three periods of rotation for a
hand image sequence with at least one complete hand
image. In the capture stage, grasping was implemented 10
times for each hand for 10 image sequences. Then, one of
the complete hand images in each sequence was selected
to our database manually. The thumb was advised to be
placed against the basal plane of the rod to avoid the con-
nection with the other four fingers for those long-handed

Fig. 8 ROIs extraction: (a) palmprint sample, (b) binary image
processing, (c) contour extraction, and (d) located ROIs.

Fig. 9 Extracted ROIs of palmprint: (a) captured by the conventional
area-based system46 and (b) captured by the proposed system.
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people. The samples captured from our system are
1000 × 600 in size with a resolution of 100 dpi grayscale
images.

3.2 Experiment Result

The performance is the major concern of a recognition sys-
tem in which the equal error rate (EER) and the receiver
operating characteristic (ROC) curves are provided for evalu-
ation. The EER is the cross point of the false rejection rate
(FRR) curve and the false acceptance rate (FAR) curve,
widely adopted to briefly evaluate the accuracy of a biomet-
ric. The ROC can also depict the overall performance with
the FAR against the genuine attempts accepted rate (GAR,
equal to 1 − FRR), which is independent of the distant
threshold.

The EER largely depends on the parameter setting of the σ
and the δ in the feature extraction. Based on the rough val-
idation of our system, the σ from 4.0 to 6.0 and the δ from 2.0
to 4.0 can be more effective. Then we tested 400 settings of σ
and δ more precisely with the step size of 0.1 to find the best
setting. The relationship of the EER and the σ and δ is illus-
trated in Fig. 10. The EER ranges from 0.1179% to 1.9418%
and reaches the minimum value when the σ is 4.2 and the δ is
2.9. Five parameter settings with relatively small EER and
corresponding distance threshold are listed in Table 1.

Then, the 4.2, 2.9, and 0.3852 for the σ; δ, and the dis-
tance threshold, respectively, are selected for our system
with the 0.1179% of the EER. The corresponding distribu-
tions of imposter and genuine are shown in Fig. 11(a). The
ROC is shown in Fig. 11(b); even when the FAR is as low as
10−2, the GAR is still above 98.5%.

The output of the continuous authentication system in a
period T is a decision sequence of reject or accept at each
time point. The false acceptance worst (FAW)-case interval
and false rejection worst (FRW)-case interval are two
recently suggested parameters that present the longest

time interval over which an imposter/a legitimate user
might be falsely accepted as a legitimate user/falsely rejected
and marked as an imposter.48 We obtained these two metrics
of our system with a half hour continuous operating test for
20 times by different operators. The output of each test is a
sequence of 1800 decisions, which is calculated in every sec-
ond. Then we used the largest FAW (2 s) and FRW (5 s)
among 20 tests as a conservative choice, which means
that the system may falsely reject two successive requests
of a legitimate user or falsely accept an imposter as a legiti-
mate user in four consecutive trails in the worst case. It is
noteworthy that two successive false decisions may depend
on a continuous pose or squeezing, which makes us fail to
calculate the probability from the FAR or FER statistically.

However, simply logging out a user based on one reject
decision will introduce inconvenience and even danger dur-
ing operating or driving. A trust level (TL)-based real-time
adaptive authorization scheme can be used to alleviate this
issue.49 The TL quantizes how much we trust a user based
on previous decisions, making it a value between 0 and 100,
where the higher numbers indicate a higher level of trust. Our
starting value of TL is 100 after the user was authorized in
the initial time. We then continuously update the TL by a

Fig. 10 Distribution of EER for different σ and δ.

Table 1 EER and distance threshold of parameter settings.

Parameter setting EER (%) Distance threshold

σ ¼ 4.2 δ ¼ 2.9 0.1179 0.3852

σ ¼ 4.1 δ ¼ 3.1 0.1213 0.3794

σ ¼ 4.2 δ ¼ 3.0 0.1281 0.3819

σ ¼ 4.4 δ ¼ 2.6 0.1281 0.3993

σ ¼ 4.2 δ ¼ 2.7 0.1292 0.3974
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constant step after each decision, e.g., add a CAccept to the TL
if the decision is to accept, else minus a CReject. The value of
CAccept and CReject should be chosen to make TL become 100
when we confidently verify that the user is legitimate and
becomes 0 as soon as we detect the presence of an impostor.
According to the values of FAWand FRW mentioned above,
if we receive more than two accept decisions, TL should
become 100, while we can be confident to detect an imposter
(TL ¼ 0) with six reject decisions. Hence, we can set the
CAccept ¼ 100

FAWþ1
¼ 100

3
≈ 34 and CReject ¼ 100

FRWþ1
¼ 100

6
≈ 17

for our system. Different thresholds of the TL should be
set for different operation devices and levels.

3.3 Discussion

As the first continuous authentication system using the palm-
print, our proposed system outperforms traditional continu-
ous authentication systems regarding accuracy and efficiency
for driving and operating scenes. As mentioned in Sec. 1,
several physiological or behavior trait-based continuous
authentication systems have been proposed. Table 2 com-
pared our system to the other state-of-the-art continuous
authentication systems based on keyboard, mouse, face,
and biomedical signal streams. Benefiting from the fast deci-
sion process, both the FAR and FRWare less than 5 s, which
is much shorter than the latest biomedical signal-based sys-
tem (FAR ¼ 4 min and FRW ¼ 3 min). Unlike most con-
tinuous authentication systems mentioned above compatible
for personal computers and laptops, the proposed system can

also support an embedded system to follow the trend of
mobile devices general purpose computing unit.

The minimum EER our system achieved is 0.1179% in
the recognition test, which is slightly larger than that of con-
ventional multispectral area-based palmprint recognition
system, but still competitive compared with the recognition
of fingerprint and face. The performance of this device also
enables it to be a good one-time recognition system for more
applications, e.g., door handle and any desk/embedding
computing systems. A detailed comparison between the pro-
posed device and the conventional area-based scan palmprint
recognition system is shown in Table 3. What must be
mentioned is that the values of EER are validated on four
different databases captured by four kinds of equipment,
respectively. Our database size is close to those
systems;40,45,46 the EERs are given in Table 3 as a reference
for system assessment.

The ergonomics-optimized form of the rod encourages a
natural hand posture for operation. The skin of the hand is
not flattened in a grab posture, making it a challenge for tra-
ditional systems. In our proposed system, however, a better
performance than our expectation was achieved. One of the
main reasons could be the fixed curvature of the rod and
the hand. Another explanation is that the gesture or even
the action of a person could be persistent after thousands
or even millions of repetitions in a long period, which is
also the foundation of many behavior biometrics.

There are still three limitations of this system. First, the
dataset covers only the adult Chinese in our institution; dif-
ferent skin colors of different races might require different

Fig. 11 Performance curve when the σ ¼ 4.2, δ ¼ 2.9. (a) Imposter and genuine distributions and (b) the
ROC curve.

Table 2 Comparison between different continuous authentication systems.

Systems Passiveness Stability Available in car EER (%) Decision time

Keyboard based24 +++ + − 0.5 to 17.6 ≈4 min

Mouse based12 +++ + − 2.5 to 26.8 ≈1 min

Face based50 ++ ++ ++ 2.4 to 20 ≤1 s

Biomedical based38 ++ ++ ++ 1.9 1 min

Proposed +++ +++ +++ 0.1179 1 s
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illumination parameters, which have not been tested. In addi-
tion, more than two sessions of sampling across years are
expected for a mature biometric system. Second, four fingers
(index, middle, ring, and little) are well imagined in our sys-
tem but have not been utilized for matching. The four fingers
are often too close in our dataset, making it hard to separate
them accurately with low computation cost and then extract
the finger geometry (mean width, length, and N-dimension
finger shape vectors) and the knuckle print location trait. The
abundant features in the fingers deserve a further exploration.

4 Conclusions
In this paper, we present a CIS-based continuous hand
authentication system to expand the application of palmprint
biometrics. A customized and highly integrated CIS, a self-
adaptive motion synchronizing controller unit, and a cross-
platform USB interface are featured in our system. We
designed a biometric system with a small size and consider-
ing previous ergonomics constraints without compromising
authentication performance, which is more efficient and
effective for the particular application of people using the
rod operator than the current continuous biometrics.
Furthermore, inspired by the proposed system, more practi-
cal and applicable hand biometric systems could be invented.
In addition to the palmprint characteristics we used, other
discriminative information in the image, e.g., hand shape,
finger print, and knuckle print, are worth studying.

Future research will optimize the structure of the current
design and integrate the controller unit into the rod. By
choosing a more compact gear motor and battery,51,52 an
even smaller system could be made. Moreover, with further
study on behavior biometrics, an irregular cover might be
designed to offer a more comfortable grab feel.
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