

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: http://www.elsevier.com/locate/jalcom

贉

Enhanced ${}^{3}H_{4}$ - ${}^{3}F_{4}$ nonradiative relaxation of Tm³⁺ through energy transfer to Yb³⁺ and efficient back transfer in lowly Tm³⁺ doped Lu_{1.6}Sc_{0.4}O₃:Tm³⁺, Yb³⁺

Wen Liu ^{a, b}, Zhendong Hao ^{a, *}, Liangliang Zhang ^a, Xia Zhang ^a, Yongshi Luo ^a, Guohui Pan ^a, Huajun Wu ^a, Jiahua Zhang ^{a, **}

^a State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888
 Eastern South Lake Road, Changchun, 130033, China
 ^b University of Chinese Academy of Sciences, Beijing, 100049, China

ARTICLE INFO

Article history: Received 23 August 2016 Received in revised form 7 November 2016 Accepted 9 November 2016 Available online 10 November 2016

Keywords: Energy transfer Thulium-ytterbium system Radiative lifetime

ABSTRACT

Under 808 nm excitation into the Tm^{3+} ; ${}^{3}H_{4}$ level, a considerable enhancement in intensity of Tm^{3+} ; ${}^{3}F_{4} \rightarrow {}^{3}H_{6}$ emission with respect to Tm^{3+} ; ${}^{3}H_{4} \rightarrow {}^{3}F_{4}$ emission is observed in Tm^{3+}/Yb^{3+} codoped Lu_{1.6}Sc_{0.4}O₃. The Tm^{3+} - Yb^{3+} - Tm^{3+} forward-backward energy transfer is proved to generate an additional route for the ${}^{3}H_{4} \rightarrow {}^{3}F_{4}$ nonradiative relaxation, that is, energy transfer from Tm^{3+} ; ${}^{3}H_{4}$ to Yb^{3+} ; ${}^{2}F_{5/2}$ and the subsequent back transfer from Yb^{3+} ; ${}^{2}F_{5/2}$ to Tm^{3+} ; ${}^{3}F_{4}$. The analysis of emission spectra reveals that back transfer from Yb^{3+} that excited by the forward energy transfer is more efficient than by absorption of 980 nm infrared light. The efficiency can reach as high as 96% with an extremely low Tm^{3+} concentration (0.05%). We propose that those Yb^{3+} ions with nearby Tm^{3+} ions in the forward energy transfer are preferentially excited instead of equally excited as by absorption of light. The efficiencies of the energy back transfer can act as a dominant route for the Tm^{3+} ; ${}^{3}H_{4} \rightarrow {}^{3}F_{4}$ nonradiative relaxation when Yb^{3+} concentrations are evaluated, indicating that the forward-backward energy transfer can act as a dominant route for the Tm^{3+} ; ${}^{3}H_{4} \rightarrow {}^{3}F_{4}$ nonradiative relaxation when Yb^{3+} concentration is higher than 5%. A method to determine the radiative rate of Tm^{3+} ; ${}^{3}H_{4}$ state based on the model of cross relaxation is also demonstrated.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

 $\rm Tm^{3+}-Yb^{3+}$ codoped system can exhibit strong $\rm Tm^{3+}$ blue upconversion luminescence under near infrared (NIR) excitation, as well as under red light excitation [1-3]. The blue emitting level $^{1}G_{4}$ of $\rm Tm^{3+}$ can be populated either from $\rm Tm^{3+}:^{3}H_{4}$ by energy transfer from $\rm Yb^{3+}$ under NIR excitation [4,5] or from $\rm Tm^{3+}:^{3}F_{4}$ by absorbing a red photon under red light excitation [6]. Hence, the relaxation rate from $^{3}H_{4}$ to $^{3}F_{4}$ state influences the blue emission intensities for both NIR and red excitations. Obviously, improving this relaxation is conductive to the blue upconversion luminescence under red light excitation. G. Özen et al. observed a remarkable enhancement in the blue emission upon red light excitation at

** Corresponding author.

683 nm in Tm³⁺/Yb³⁺ codoped fluorophosphate glasses compared with Tm^{3+} singly doped counterpart [2]. The mechanism for the enhancement was revealed to result from the enhanced ³H₄-³F₄ nonradiative relaxation through Tm³⁺-Yb³⁺-Tm³⁺ forwardbackward energy transfer (FBET) [7]. The same phenomenon that efficient backward energy transfer (BET) increase the Tm:³F₄ level population has also been reported recently [8]. While, the efficiency of BET may be valued inappropriately in previous studies. The efficiency of BET was simply regarded as energy transfer efficiency from donor (Yb³⁺) to acceptor (Tm³⁺, Nd³⁺, Er³⁺, etc.) after Yb³⁺ direct excitation [2,9–11]. In the Tm³⁺-Yb³⁺-Tm³⁺ FBET, however, Yb³⁺ ions functioned in BET are mainly excited by FET from Tm³⁺. It is, therefore, speculated that the Yb^{3+} with a nearby Tm^{3+} is preferentially excited in the FET rather than equally excited by direct absorption of light. In this situation, the efficient BET is expected for the close-ranged Yb³⁺-Tm³⁺ pairs selected by the FET. However, the efficient BET due to the selective excitation of Yb³⁺ by the FET has not been studied. It is reported lately that the BET could also contribute to the enhancement in the Tm^{3+} 1.8 µm emission

^{*} Corresponding author.

E-mail addresses: haozhendong0451@yahoo.cn (Z. Hao), zhangjh@ciomp.ac.cn (J. Zhang).

when co-doped with Yb³⁺ [12]. Consequently, evaluating the backward transfer efficiency in Tm³⁺-Yb³⁺-Tm³⁺ FBET is necessary for quantitatively understanding the enhanced ³H₄-³F₄ non-radiative relaxation involved in many luminescence processes of Tm³⁺ and Yb³⁺ codoped systems [13]. In our previous work, considerably enhanced nonradiative relaxation of Er^{3+} : $^{4}S_{3/2}$ - $^{4}F_{9/2}$ by Er^{3+} -Yb³⁺- Er^{3+} FBET was observed in Er^{3+} and Yb³⁺ codoped Y₂O₃ and NaYF₄ host [14,15]. The FBET includes a cross relaxation [16] from Er^{3+} : $^{4}S_{3/2}$ to Yb³⁺: $^{2}F_{5/2}$ followed by Er^{3+} depopulation down to the ⁴I_{13/2} and the energy back transfer from the excited Yb³⁺ that populates Er^{3+} from ⁴I_{13/2} to ⁴F_{9/2}. In this paper, the enhanced ³H₄-³F₄ nonradiative relaxation of Tm³⁺ through Tm³⁺-Yb³⁺-Tm³⁺ FBET is observed in Tm³⁺ and Yb³⁺

In this paper, the enhanced ${}^{3}H_{4} {}^{-3}F_{4}$ nonradiative relaxation of Tm^{3+} through $Tm^{3+} {}^{+}Yb^{3+} {}^{-}Tm^{3+}$ FBET is observed in Tm^{3+} and Yb^{3+} codoped Lu_{1.6}Sc_{0.4}O₃. We report, for the first time, the effect of preferential excitation of Yb^{3+} with a nearby Tm^{3+} in the FET that can result in an efficient BET to Tm^{3+} even if the Tm^{3+} concentration is as low as 0.05%. Furthermore, we find efficient BET makes the FBET to be a dominant route for populating Tm^{3+} : ${}^{3}F_{4}$ from Tm^{3+} : ${}^{3}H_{4}$ when Yb^{3+} concentration is higher than 5%.

2. Experimental

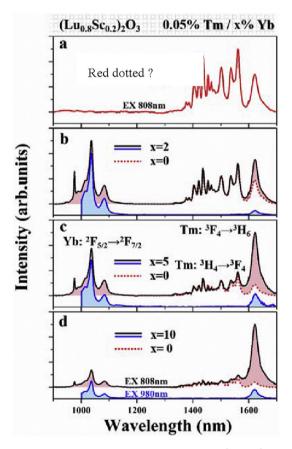
2.1. Sample preparation

The synthesis of $(Lu_{0.8}Sc_{0.2})_2O_3$: 0.0005 $Tm^{3+}/xYb^{3+}(0, 0.02, 0.02)$ (0.05, 0.1) powder samples $(Lu_{0.8-0.0005-x}Sc_{0.2}Tm_{0.0005}Yb_x)_2O_3$ by the urea homogeneous precipitation method was described as follows: the appropriate amounts of Lu₂O₃ (4N), Sc₂O₃ (4N), Tm₂O₃ (4N) and Yb₂O₃ (4N) powders were dissolved in nitric acid respectively to obtain 0.1M Lu(NO₃)₃, 0.1M Sc(NO₃)₃, 0.1M Yb(NO₃)₃ and 0.004M Tm(NO₃)₃ solutions. The constant stoichiometric molarity of the Sc^{3+} and Lu^{3+} stock solutions was maintained as 1:4 for all the starting solutions. Next, the aqueous solutions containing Lu³⁺, Sc^{3+} , Tm^{3+}/Yb^{3+} and urea with corresponding mole ratios were mixed to acquire homogeneous solutions and then heated to 90 °C with continuous stirring. After holding the temperature for 1.5 h, the solutions were cooled down naturally. The precipitates were separated from the supernatant materials via centrifugation at high speed of 8000r/min. Afterwards the powders were washed four times with deionized water and absolute ethanol and then dried in a vacuum desiccator at 60 °C for 24 h. The samples were obtained after being calcined at 1500 °C for 4 h in air.

For comparison, the sample of $(Lu_{0.8}Sc_{0.2})_2O_3$: 0.005 Tm³⁺ was also prepared via the above-mentioned procedure to calculate the radiative lifetime together with the $(Lu_{0.8}Sc_{0.2})_2O_3$: 0.0005 Tm³⁺ sample. In this work, experiments were conducted at low concentrations of Tm³⁺ to avoid the interaction among Tm³⁺ ions, so that the forward-backward energy transfer process could be simplified [17].

2.2. Spectroscopy measurements

The steady state emission spectra were measured using an FLS920 spectrometer (Edinburgh Instruments, U.K.). An 808 nm laser diode (LD) was used to excite $Tm^{3+}:^{3}H_{4}$ level and a 980 nm LD to excite $Yb^{3+}:^{2}F_{5/2}$ level. In energy level lifetime measurements, a 10 ns pulsed laser with tunable wavelengths from an optical parametric oscillator (OPO) pumped by a Nd:YAG laser (spectraphysics, GCR 130) was used as an excitation source. The excitation wavelength was tuned to 685 nm to excite $Tm^{3+}:^{3}F_{2}$, which rapidly relaxes down to the $Tm^{3+}:^{3}H_{4}$, for $^{3}H_{4}$ lifetime measurement. The signals were detected by a Tektronix digital oscilloscope (TDS 3052). The lifetimes were defined as the integration of the area under the corresponding decay curves with normalized initial intensity. All of the measurements above were performed at room


temperature.

3. Results and discussion

3.1. Observation of efficient BET in $Tm^{3+}-Yb^{3+}-Tm^{3+}$ FBET

Fig. 1 shows the emission spectra of $(Lu_{0.8}Sc_{0.2})_2O_3$: 0.05% Tm^{3+} , $x\%Yb^{3+}$ (x = 0, 2, 5, 10) upon Tm^{3+} : ${}^{3}H_4$ excitation at 808 nm (black line and red dotted line) and upon Yb^{3+} : ${}^{2}F_{5/2}$ excitation at 980 nm (blue line). The emission peaked at around 1030 nm is originated from Yb^{3+} : ${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$ transition. The group of emission lines in the range of 1300–1600 nm is responsible for Tm^{3+} : ${}^{3}H_4 \rightarrow {}^{3}F_4$ transition. The band peaked at 1620 nm is a part of Tm^{3+} : ${}^{3}F_4 \rightarrow {}^{3}H_6$ emissions which in fact have the strongest peak around 2 μ m. The wavelength longer than 1620 nm is undetected because of a cutoff wavelength at 1650 nm by the InGaAs detector used in the present work. For clear comparison the emission spectrum of each codoped sample (black line) and Tm^{3+} singly doped sample (red dotted line) are plotted together, where the ${}^{3}H_4 \rightarrow {}^{3}F_4$ emission intensity for the singly doped sample is scaled to that for the codoped sample upon 980 nm excitation is scaled to that upon 808 nm excitation.

In Fig. 1, the appearance of Yb³⁺ emission upon Tm³⁺: ${}^{3}H_{4}$ excitation is a direct evidence for the forward energy transfer from Tm³⁺: ${}^{3}H_{4}$ to Yb³⁺: ${}^{2}F_{5/2}$. Besides that the ${}^{3}F_{4} \rightarrow {}^{3}H_{6}$ emission

Fig. 1. NIR emission spectra of samples (Lu_{0.8}Sc_{0.2})₂O₃: 0.05%Tm³⁺/x %Yb³⁺ (x = 0, 2, 5, 10) upon Tm³⁺: ³H₄ excitation at 808 nm (red dotted for x = 0, and black solid for x > 0 with the maximum emission intensity normalized). The ³H₄ \rightarrow ³F₄ emission intensity for Tm³⁺ singly doped sample is scaled to that for the codoped sample. The emission spectra upon Yb³⁺ excitation at 980 nm are also plotted (blue solid) with the Yb³⁺ emission intensities are scaled to that upon 808 nm excitation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

intensity for each codoped samples is always stronger than that for the singly doped sample upon Tm³⁺: ${}^{3}H_{4}$ excitation and the increment (red shaded in the ${}^{3}F_{4} \rightarrow {}^{3}H_{6}$ emission) becomes larger with the increase of Yb³⁺ concentration.

Upon Tm³⁺: ³H₄ excitation for Tm³⁺ singly doped sample, the ³F₄ level is populated by the intrinsic ³H₄-³F₄ relaxation and the cross relaxation (CR) between Tm³⁺ ions described as (³H₄ \rightarrow ³F₄)-(³H₆ \rightarrow ³F₄) [18]. In case of low Tm³⁺ concentration of 0.05% in the present work, the CR can be neglected. The intrinsic ³H₄-³F₄ relaxation includes ³H₄ \rightarrow ³F₄, ³H₅ radiative transitions and the cascade MPR through ³H₅. If the MPR and radiative rates are independent on Yb³⁺ concentration, the increments in the ³F₄ \rightarrow ³H₆ emission intensity for the co-doped samples indicate the effect of the Tm³⁺ -Yb³⁺ -Tm³⁺ FBET, as sketched in Fig. 2.

Alternatively, the energy back transfer from Yb^{3+} to Tm^{3+} is also observed as Yb³⁺ is directly excited at 980 nm, showing Tm³⁺ emission (blue shaded) as well as Yb³⁺ emission. We notice that the Tm³⁺: ${}^{3}F_{4} \rightarrow {}^{3}H_{6}$ emission intensity increment (red shaded) upon Tm^{3+} : ${}^{3}H_{4}$ excitation (808 nm) is more stronger than the Tm^{3+} : ${}^{3}F_{4} \rightarrow {}^{3}H_{6}$ emission intensity (blue shaded) upon 980 nm excitation for each codoped sample when the Yb^{3+} emissions for the two excitation conditions are normalized in intensity. From Fig. 1, the ${}^{3}F_{4} \rightarrow {}^{3}H_{6}$ emission intensity ratios of the red shaded to the blue shaded area are 5.3, 4.2 and 6.3 for Yb³⁺ concentration of 2%, 5% and 10%, respectively. As a result, the BET from Yb^{3+} to Tm^{3+} upon 808 nm excitation is more efficient than upon 980 nm excitation. Because the doped Tm³⁺ and Yb³⁺ ions follow a random distribution model based on space homogeneous distribution in the host, random distances between Tm^{3+} and Yb^{3+} ions could be expected. Therefore, we attribute this result to the preferential excitation of Yb^{3+} with a nearby Tm^{3+} ion in the step of FET from Tm^{3+} upon 808 nm excitation. At low doping level of Tm^{3+} (0.05%) in this work, a nearby Tm^{3+} ion around a Yb^{3+} ion can act as a dominant acceptor in BET from the Yb^{3+} because the Tm^{3+} ions are thin. Naturally, we can observe a remarkable enhancement of BET upon 808 nm excitation than upon 980 nm excitation. In contrast, high Tm³⁺ concentration could make a less enhancement because the dense Tm³⁺ ions may act as the dominant acceptors rather than a nearby Tm^{3+} in the BET from Yb³⁺. In essence, energy transfer process is greatly affected by transfer from first and second-neighbor coordinations in oxides which could facilitate the transfer process [19]. While, it is on the condition that the amounts of ions at close

> Energy (10³cm⁻¹) 16 12 MPR Ή 8 1.46µm ³F 980nm 808nm 4 2µm Rad Ή Tm³⁺ Yb³⁺

Fig. 2. Thulium-ytterbium energy level diagram under 808 nm excitation. The dashed arrows correspond to the forward-backward energy transfer process.

and long range are in the same order of magnitude. If the density of long-range ions is high enough, the overall transfer effect by longrange ions makes the BET not obvious. Therefore, when discussing about the relationship between the BET and the concentration, it should be noted that the efficient BET is prominent at low concentration level.

3.2. Energy transfer efficiencies

In the presence of FBET in the codoped samples upon $\text{Tm}^{3+}:{}^{3}\text{H}_{4}$ excitation, the $\text{Tm}^{3+}:{}^{3}\text{F}_{4} \rightarrow {}^{3}\text{H}_{6}$ emission can be divided into two parts. One is contributed by FBET, responsible for the red shaded intensity in the ${}^{3}\text{F}_{4} \rightarrow {}^{3}\text{H}_{6}$ emission, here denoted by ΔI . The left part (red dotted) is contributed by the intrinsic ${}^{3}\text{H}_{4}$ - ${}^{3}\text{F}_{4}$ relaxation, here denoted by I_{0} . ΔI should be proportional to $\eta_{FET}\eta_{BET}$, where η_{FET} and η_{BET} are efficiencies of FET and BET, respectively. I_{0} should be proportional to $\theta(1-\eta_{FET})$, where θ is a ratio of the intrinsic ${}^{3}\text{H}_{4}$ - ${}^{3}\text{F}_{4}$ relaxation rate to the total intrinsic decay rate of ${}^{3}\text{H}_{4}$ for Tm $^{3+}$ singly doped sample at low concentration. Thus, we have

$$\frac{\Delta I}{I_0} = \frac{\eta_{FET} \eta_{BET}}{\theta (1 - \eta_{FET})} \tag{1}$$

To obtain the efficiency of FET, the decay curves of Tm³⁺: ${}^{3}H_{4} \rightarrow {}^{3}H_{6}$ emission for different Yb³⁺ concentrations are measured, as displayed in Fig. 3. η_{FET} can be calculated by Ref. [20].

$$\eta_{FET} = 1 - \tau_0^{-1} \int_0^\infty I(t) dt$$
(2)

where τ_0 is the intrinsic lifetime of Tm³⁺:³H₄, obtained from the sample with singly and low (0.05%) doped Tm³⁺ in this work. *I*(*t*) is the fluorescence decay function of Tm³⁺:³H₄ with *I*(0) = 1.

In Eq. (1), $\Delta I/I_0$ can be drawn from the emission spectra in Fig. 1, η_{FET} is figured out using Eq. (2) based on the decay curves shown in Fig. 3. θ is determined to be 0.39 based on CR analysis that will be presented in the next section. The values of η_{BET} are obtained as listed in Table 1. The efficiency of the FBET is calculated by $\eta_{FBET} = \eta_{FET}\eta_{BET}$ and the intrinsic ${}^{3}\text{H}_{4}$ - ${}^{3}\text{F}_{4}$ relaxation is calculated by $\eta_{INR} = \theta(1-\eta_{FET})$.

As exhibited in Table 1, a marked increase in η_{FET} , η_{BET} , η_{FBET} and a rapid decrease in η_{INR} have been observed with increasing the Yb³⁺ doping level. The backward efficiency can reach 96% for Yb³⁺ concentration of 5% although the concentration of Tm³⁺ as the

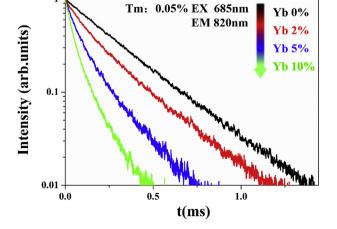


Fig. 3. Decay curves of $Tm^{3+}{:}~^{3}H_{4}$ level in $(Lu_{0.8}Sc_{0.2})_{2}O_{3}{:}~0.05mol\% Tm^{3+}/xmol\% Yb^{3+}$ $(x=0,\,2,\,5,\,10).$

Table 1

Efficiencies of energy transfers and the intrinsic ${}^{3}\text{H}_{4} {-}^{3}\text{F}_{4}$ relaxation in $(Lu_{0.8}Sc_{0.2})_2O_3$: 0.05mol%Tm/x%Yb.

x (%)	η_{FET}	η_{BET}	η_{FBET}	η_{INR}
0	0	_	0	0.39
2	0.32	0.70	0.22	0.26
5	0.65	0.96	0.62	0.14
10	0.84	0.68	0.57	0.06

acceptor in the BET is as low as 0.05%, reflecting the effect of the preferential excitation of Yb³⁺ with a nearby Tm³⁺ ion in the step of FET. The FBET offers an additional route for relaxation from Tm³⁺:³H₄ down to Tm³⁺:³F₄ through Yb³⁺ as an intermediate ion and this route is more effective than the intrinsic ³H₄-³F₄ relaxation as Yb³⁺ concentration higher than 0.05 with a fixed Tm³⁺ concentration as low as 0.0005.

Notably, as Table 1 presented, with the increase of Yb³⁺ concentration the η_{BET} increases firstly and then shows a decline when Yb³⁺ concentration over 5%. This result is explained as follows: under 808 nm excitation, Tm³⁺:³H₄ is populated firstly. Subsequently, the excited Tm³⁺ may transfer energy to the nearest Yb³⁺ or other Yb³⁺ outside the nearest shell. With the increase of Yb³⁺ concentration, the fraction of the excited Yb³⁺ ions that is located in the nearest site of Tm³⁺ increases. Hence, the energy back transfer becomes more efficient. As the Yb³⁺ concentration is further raised, for instance higher than 5%, energy transfer between Yb³⁺ ions begins to get very competitive that may reduce the efficiency of energy back transfer from Yb³⁺ to Tm³⁺ [21].

3.3. Determination of θ value

We determine the θ value basing on analysis of the effect of cross relaxation process on the emission spectrum for 0.5% Tm³⁺ singly doped sample. The CR process between two Tm³⁺ ions is presented in Fig. 4. As the ³H₄ level is populated, the CR can convert one Tm³⁺ ion in the ³H₄ state into two Tm³⁺ ions in the ³F₄ state. Fig. 5 shows the emission spectra of Tm³⁺ single doped (Lu_{0.8}Sc_{0.2})₂O₃: 0.5mol % Tm and (Lu_{0.8}Sc_{0.2})₂O₃: 0.5mol%Tm samples upon ³H₄ excitation. The spectra are scaled on the ³H₄ \rightarrow ³F₄ emission intensity. When the doping level is low enough (0.05mol%), the CR can be neglected and the ³F₄ \rightarrow ³H₆ emission is mainly populated by the intrinsic

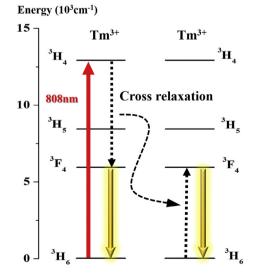


Fig. 4. Energy level diagram with the CR processes between \mbox{Tm}^{3+} ions following 808 nm excitation.

Fig. 5. The infrared emission spectra of $(Lu_{0.8}Sc_{0.2})_2O_3$: 0.05mol%Tm and $(Lu_{0.8}Sc_{0.2})_2O_3$: 0.5mol%Tm samples pumped under 808 nm excitation. The 1.46 μm intensities are normalized. The inset shows the fluorescence lifetimes of Tm^{3+} emission (800 nm) in two samples.

 ${}^{3}\text{H}_{4}$ - ${}^{3}\text{F}_{4}$ relaxation. At high Tm³⁺ concentration (0.5mol%), the CR is evident and it considerably enhances the ${}^{3}\text{F}_{4} \rightarrow {}^{3}\text{H}_{6}$ emission intensity (shaded area). The CR has speeded up the decay of the ${}^{3}\text{F}_{4} \rightarrow {}^{3}\text{H}_{6}$ transition, as demonstrated in the inset of Fig. 5. The efficiency (η_{CR}) of the CR is calculated to be 0.32 using Eq. (2). The ${}^{3}\text{H}_{4}$ population that survives the CR is $1-\eta_{CR}$, the fraction of which that contributes to the ${}^{3}\text{F}_{4}$ population is θ . Considering that the CR cuts each ${}^{3}\text{H}_{4}$ population into two ${}^{3}\text{F}_{4}$ population, we have

$$\frac{\Delta I_{\rm CR}}{I_0} = \frac{2\eta_{\rm CR}}{\theta(1-\eta_{\rm CR})} \tag{3}$$

where the I_0 is the intensity of ${}^3F_4 \rightarrow {}^3H_6$ emission in the absence of CR for Tm³⁺ concentration of 0.05%. ΔI_{CR} is the increment (shaded area) in ${}^3F_4 \rightarrow {}^3H_6$ emission intensity in the presence of CR for Tm³⁺ concentration of 0.5%. From Fig. 5, $\Delta I_{CR}/I_0$ is obtained to be 2.4. Substitutions of $\Delta I_{CR}/I_0$ of 2.4 and η_{CR} of 0.32 in Eq. (3) give $\theta = 0.39$. In addition, the definition of θ gives

$$\theta = 1 - (1 - \beta) \frac{\tau_0}{\tau_r} \tag{4}$$

Where β is the sum of branch ratios of ${}^{3}H_{4} \rightarrow {}^{3}H_{5}$ and ${}^{3}H_{4} \rightarrow {}^{3}F_{4}$ radiative transitions, τ_{r} is the radiative lifetime of ${}^{3}H_{4}$. Substituting θ of 0.39 into Equation (4) and selecting $\beta = 0.1$ based on some previous reports [22,23], we finally obtain the ${}^{3}H_{4}$ radiative lifetime τ_{r} to be 417 µs in Lu_{1.6}Sc_{0.4}O₃: Tm sample. Compared with the radiative lifetimes (690 µs) of Lu₂O₃ calculated by J-O theory [24], our method above is also reasonable and offers a new way to calculate radiative lifetime when the absorption spectra has difficulty in measuring.

4. Conclusions

In summary, Lu_{1.6}Sc_{0.4}O₃: 0.0005 Tm³⁺/xYb³⁺ (0, 0.02, 0.05, 0.1) samples have been prepared and enhanced luminescence of Tm³⁺:³F₄→³H₆ have been presented in this study. This phenomenon could be attributed to the efficient Tm³⁺-Yb³⁺-Tm³⁺ FBET. It is found that the BET to Tm³⁺ from Yb³⁺ excited by the FET is more efficient than by direct excitation of Yb³⁺:²F_{5/2} at 980 nm. The efficiency of BET can reach 96% for Yb³⁺ concentration of 5% with the concentration of Tm³⁺ regarded as acceptor as low as 0.05%. Based on that, we propose that those Yb³⁺ ions that have a nearby Tm³⁺ ion in the FET are preferentially excited instead of equally excited such as by absorption of light, thus leading to an efficient BET to

Tm³⁺ in spite of low doping level. The FBET may act as a dominant route for populating Tm³⁺:³F₄ from Tm³⁺:³H₄ rather than the intrinsic ³H₄-³F₄ relaxation when the Yb³⁺ concentration reaches 5%. The increased relaxation rate from ³H₄ to ³F₄ may contribute to enhance blue upconversion luminescence under red light excitation. In addition, a method to determine the radiative rate of Tm³⁺:³H₄ state based on the model of cross relaxation between Tm³⁺ ions is demonstrated and the Tm³⁺:³H₄ radiative lifetime of 417 µs is obtained.

Acknowledgments

This work was partially supported by the National Key R&D Program of China (Grant No. 2016YFB0701003, 2016YFB0400605), National Natural Science Foundation of China (Grant No. 61275055, 11274007, 51402284 and 11604330) and the Natural Science Foundation of Jilin Province (Grant No. 20140101169JC, 20150520022JH and 20160520171JH).

References

- [1] J.C. Boyer, F. Vetrone, L.A. Cuccia, Synthesis of colloidal upconverting NaYF₄ nanocrystals doped with Er³⁺, Yb³⁺ and Tm³⁺, Yb³⁺ via thermal decomposition of lanthanide trifluoroacetate precursors, J. Am. Chem. Soc. 128 (23) (2006) 7444–7445.
- [2] G. Özen, J.P. Denis, P. Goldner, Enhanced Tm³⁺ blue emission in Tm, Yb, codoped fluorophosphate glasses due to back energy transfer processes, Appl. Phys. Lett. 62 (9) (1993) 928–930.
- [3] G. Özen, J.P. Denis, M. Genotelle, Tm-Yb-Tm energy transfers and effect of temperature on the fluorescence intensities in oxyfluoride tellurite compounds, J. Phys. Condens. Mat. 7 (22) (1995) 4325.
- [4] F.W. Ostermayer Jr., J.P. Van der Ziel, H.M. Marcos, Frequency upconversion in YF₃: Yb³⁺, Tm³⁺, Phys. Rev. B 3 (8) (1971) 2698.
- [5] K. Liu, Z. Zhang, C. Shan, A flexible and superhydrophobic upconversionluminescence-membrane as an ultrasensitive fluorescence sensor for single droplet detection, Light Sci. Appl. 5 (2016) e16136.
- [6] W. Xu, J.P. Denis, G. Özen, Red to blue up-conversion emission of Tm³⁺ ions in Yb³⁺-doped glass ceramic, J. Appl. Phys. 75 (8) (1994) 4180–4188.
- [7] L. Huang, S. Shen, A. Jha, Near infrared spectroscopic investigation of Tm³⁺-Vb³⁺ co-doped tellurite glasses, J. Non-Cryst. Solids 345 (2004) 349–353.
- [8] R. Zhuang, D. Wen, Z. Zhuang, Red to UV and blue up-conversion in alumina sol containing only Tm^{3+} or both Tm^{3+} and Yb^{3+} ions via low energy

pumping, J. Alloys Compd. 658 (2016) 488–493.

- [9] A. Bednarkiewicz, M. Stefanski, R. Tomala, Near infrared absorbing near infrared emitting highly-sensitive luminescent nanothermometer based on Nd³⁺ to Yb³⁺ energy transfer, Phys. Chem. Chem. Phys. 17 (37) (2015) 24315–24321.
- [10] J. Liu, H. Deng, Z. Huang, Phonon-assisted energy back transfer-induced multicolor upconversion emission of Gd₂ O₃: Yb³⁺/Er³⁺ nanoparticles under near-infrared excitation, Phys. Chem. Chem. Phys. 17 (23) (2015) 15412–15418.
- [11] J. Zhang, S. Wang, N. Gao, Luminescence energy transfer detection of PSA in red region based on Mn²⁺-enhanced NaYF₄: Yb, Er upconversion nanorods, Biosens, Bioelectron, 72 (2015) 282–287.
- [12] S. Balaji, K. Biswas, A.D. Sontakke, Enhanced 1.8 µm emission in Yb³⁺/Tm³⁺ co-doped tellurite glass: effects of Yb³⁺ ↔ Tm³⁺ energy transfer and back transfer, J. Ouant. Spectrosc. Radiat. Transf. 147 (2014) 112–120.
- [13] A. Braud, S. Girard, J.L. Doualan, Energy-transfer processes in Yb: Tm-doped KY₃F₁₀, LiYF₄, and BaY₂F₈ single crystals for laser operation at 1.5 and 2.3 μm, Phys. Rev. B 61 (8) (2000) 5280.
- [14] J. Zhang, Z. Hao, J. Li, Observation of efficient population of the red-emitting state from the green state by non-multiphonon relaxation in the Er³⁺–Yb³⁺ system, Light Sci. Appl. 4 (1) (2015) e239.
- [15] G. Xiang, J. Zhang, Z. Hao, Importance of suppression of Yb³⁺ de-excitation to upconversion enhancement in β-NaYF₄: Yb³⁺/Er³⁺@ β-NaYF4 sandwiched structure nanocrystals, Inorg. Chem. 54 (8) (2015) 3921–3928.
- [16] F. Vetrone, J.C. Boyer, J.A. Capobianco, Significance of Yb³⁺ concentration on the upconversion mechanisms in codoped Y₂O₃: Er³⁺, Yb³⁺ nanocrystals, J. Appl. Phys. 96 (2004) 661–667.
- [17] V. Mahalingam, F. Vetrone, R. Naccache, Colloidal Tm³⁺/Yb³⁺-Doped LiYF4 nanocrystals: multiple luminescence spanning the UV to NIR regions via lowenergy excitation, Adv. Mater. 21 (40) (2009) 4025–4028.
- [18] J. Ganem, J. Crawford, P. Schmidt, Thulium cross-relaxation in a low phonon energy crystalline host, Phys. Rev. B 66 (24) (2002) 245101.
- [19] G. Lakshminarayana, J. Qiu, M.G. Brik, Spectral analysis of Er^{3+} , Er^{3+}/Yb^{3+} and $Er^{3+}/Tm^{3+}/Yb^{3+}$ doped TeO₂–ZnO–WO₃–TiO₂–Na₂O glasses, J. Phys. Condens. Mater. 20 (37) (2008) 375101.
- [20] K. Beil, C.J. Saraceno, C. Schriber, Yb-doped mixed sesquioxides for ultrashort pulse generation in the thin disk laser setup, Appl. Phys. B Lasers. 113 (1) (2013) 13–18.
- [21] G. Lakshminarayana, H. Yang, S. Ye, Co-operative downconversion luminescence in Tm³⁺/Yb³⁺: SiO₂-Al₂O₃-LiF-GdF₃ glasses, J. Phys. D. Appl. Phys. 41 (17) (2008) 175111.
- [22] P.Y. Poma, K.U. Kumar, M.V.D. Vermelho, Luminescence and thermal lensing characterization of singly Eu³⁺ and Tm³⁺ doped Y₂O₃ transparent ceramics, J. Lumin 161 (2015) 306–312.
- [23] C. Gheorghe, A. Lupei, V. Lupei, Intensity parameters of Tm³⁺ doped Sc₂O₃ transparent ceramic laser material, Opt. Mater. 33 (3) (2011) 501–505.
- [24] L. Fornasiero, Nd³⁺ and Tm³⁺-dotierte Sesquioxide, Universität Hamburg, 1999. Ph.D. thesis.