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The research on optical imaging characteristics of infrared dim point targets in the presence of nonstationary
cloud clutter and random noise is necessary for target detection. We analyze the energy concentration of point
targets that are less than 3 × 3 pixels in size and deduce a simulation model of the point target imaging process.
Then we adopt omnidirectional multiscale structural elements to detect all the possible targets distributing in
every direction. The adaptive threshold and the energy concentration criterion are employed to eliminate false
alarms. Finally, the trajectory of point targets is obtained after the low-order recursive correlation. The results
show that the detection probability of the proposed method reaches 99.8% with 0.2% false alarm probability. It
demonstrates that the proposed method has a good performance to suppress complex background and random
noise. Also, it has the advantage of low complexity and easy implementation in a real-time system. ©2017Optical

Society of America

OCIS codes: (110.3080) Infrared imaging; (100.2550) Focal-plane-array image processors; (040.2480) FLIR, forward-looking

infrared; (110.4280) Noise in imaging systems.
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1. INTRODUCTION

The technology of infrared dim point target detection has ex-
tensive applications in numerous fields, including infrared (IR)
search and track (IRST) systems, terminal guidance, external
intrusion warning, and medical monitoring [1,2]. Detecting
the point target as early as possible can provide more response
time for users, so it is of great significance to improve the ro-
bustness and efficiency of detection algorithms. However, the
point target’s imaging size and minutiae are very small due to
the long distance from the targets to the infrared focal plane
arrays (IRFPAs). Moreover, the imaging process is always af-
fected by bad weather, atmospheric radiation, nonstationary
clouds, and heavy noises, which are likely to lead to the radi-
ation intensities of some scenes in the infrared image over the
point target [3–5]. Otherwise, the isolated noise is more easily
confused with the point target, which can increase false alarms.
However, the upside is that the point target will diffuse into an
Airy spot because of the diffraction-limited optical system,
and the actual size of the point target is larger than the ideal
imaging size of geometrical optics. This phenomenon causes

the different energy concentrations in subpixel locations
between the point targets and random noise.

Over the past few decades, many researchers have paid much
attention to dim point target detection, which focused mainly
around background clutter suppression and target enhance-
ment. The spatial methods such as max-mean filtering [6],
max-median filtering [7], and the two-dimensional projection
algorithm [8] are widely used to reduce background clutter.
Although these methods are simple and fast, they result in
different degrees of background edges and high-frequency
noise, which lead to many false alarms. Chen et al. [9]
presented a local contrast method based on the human vision
system (HVS) that achieved a low false alarm rate. Genin et al.
[10] employed block-matching 3D filtering (BM3D) and the
Gaussian mixture model (GMM) to suppress the complex
background. It achieves a perfect effect, yet it is time-
consuming. Also, some researchers have adopted frequency do-
main methods such as the wavelet transform [11,12] and
Butterworth high-pass filtering [3]. In a word, many algorithms
can provide an excellent performance in background suppres-
sion but may reduce target details or fail to meet real-time
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requirements. Some algorithms highlight the noise when
enhancing target details.

In recent years, morphological filtering algorithms have
been generally applied to target detection and recognition, es-
pecially the top-hat transform, which is based on the geometry
and set theory [13,14]. The top-hat transform could extract
bright and dim image regions corresponding to the structural
element. The role of the structural element in morphological
operations is similar to the filtering window [15,16]. The effect
of background suppression greatly depends on the size and
shape of the selected structural element. The conventional
top-hat method to detect a point target only uses a single struc-
tural element, which cannott cover various targets with chang-
ing sizes in real cases and is more likely to be submerged in
heavy clutter. Bai et al. [14,15] presented a multiscale
center-surround top-hat transform through constructing two
structural elements and successfully extracted regions of interest
that were richer in image details than those made using a single
structural element.

In this paper, we propose a low-order recursive method
based on omnidirectional multiscale morphological filtering
and the characteristic criterion of the energy concentration
to detect dim point targets with low signal-to-noise ratio
(SNR). We analyze in detail the optical imaging characteristics
of dim point targets, including the morphological information,
energy concentration characteristics, background clutter, and
noise. The eight-direction morphological transform and the
adaptive threshold are employed to suppress the clutter and ob-
tain the region of interest (ROI) of target. The optical diffrac-
tion leads to the diffusion of the point target, and its energy
concentration is lower than random noise. The remaining ran-
dom noise is eliminated according to the proposed energy con-
centration criterion. Finally, the low-order recursive method is
adopted to detect the moving target from a long distance. The
performance of our algorithm is demonstrated by three typical
infrared sequences, as well as a comparison with other algo-
rithms. The results prove that our algorithm is effective for

point target detection between the performance and computa-
tional time.

This paper is organized as follows. Section 2 analyzes the
morphological information and the energy concentration of
point targets, and a simulation model of point target imaging
process is obtained. In Section 3, we describe the proposed low-
order recursive method based on omnidirectional multiscale
morphological filtering and the energy concentration criterion.
Section 4 presents the experiments on real infrared images and
the results of the proposed method. Finally, Section 5 offers the
conclusion of the paper.

2. IMAGING CHARACTERISTICS

A. Characteristics of Point Target, Background, and
Noise
The research on the imaging characteristics of a point target has
an important effect on the performance of the detection algo-
rithm. The imaging size of a point target in motion changes
from 1 to 3 × 3 pixels, and the morphological information
changes with the imaging distance, attitude angle, and imaging
position on IRFPA. Figure 1 presents eight typical point targets
(the size of the window is 5 × 5 pixels) captured by a long-wave
infrared detector. It can be seen clearly that the energy at the
central pixel has diffused to neighboring pixels, resulting in the
actual situation that the size of the point target is rarely one
pixel. In general, the brightest pixel in the target area is con-
sidered as the point target’s central pixel. Moreover, the point
target is more flexible and may appear in the various complex
scenes at different scales. Therefore, the gray distribution of the
point target is not necessarily isotropic.

Most of the background in infrared images contains low-
frequency components such as clouds, mountains, sea, and
buildings, etc. The internal change is relatively smooth, such
as the continuous clouds that appear in Fig. 2(a). The low-
frequency background has a great correlation in spatial distri-
bution. But the background may also contain high-frequency
components, mainly in edges and textures, as in Fig. 2(b).

Fig. 1. Typical morphological information of a point target captured by a long-wave infrared detector. The gray value has been normalized to
[0,1], and the point target’s central pixel has been marked with a cross.
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A small amount of isolated noise can be clearly seen in
Fig. 2(b), and it is marked with a red arrow. Generally, noise
can be divided into two categories: one is the external noise
generated by the external environment, and the other is the
internal noise generated by the infrared thermal imaging sys-
tem. In most cases, the isolated noise is position invariant or
has random fluctuation that is likely to be mistaken for the
point target. The fixed noise can be eliminated by the inter-
frame relation. But it is difficult to separate the random noise
from the point target using traditional methods. Better yet, the
energy concentration of the point target’s central pixel is differ-
ent from the random noise when imaging on IRFPA. We can
establish the energy concentration criterion to eliminate the
random noise. For simplicity, the energy concentration of
the point target’s central pixel is called the energy concentration
of the point target in the following.

B. Energy Concentration of Point Targets
Here we do not consider point targets whose imaging size is
more than 3 × 3 pixels. It is assumed that the energy distribu-
tion of the point target is E1 ∼ E9, as demonstrated in Fig. 3(a),
and the maximum energy is Emax. The energy concentration
(EC) of the point target is defined as

EC � EmaxP
9
i�1 Ei

: (1)

The imaging position of a point target may be in the central
pixel, or span two or even four pixels. The EC of the point

target will inevitably fluctuate with the changing of imaging
position. Diffraction occurs in the long-distance imaging proc-
ess, so the point target may be regarded roughly as an Airy spot.
When the target is imaging in the central pixel, as shown in
Fig. 3(b), the Airy spot is located in E5. The obtained EC
is the imaging system’s energy concentration, and it is also
the maximum EC of the point targets. When the point target
is imaging at the intersection angle of the four pixels, such as in
Fig. 3(c), the EC of the point target is the lowest. Then we
derive the theoretical value of the point target’s EC from the
perspective of the imaging system.

In the actual imaging process, the point target is filtered by
the optical system, and the high-frequency part of the target
edges is suppressed. Many imaging simulation methods do
not take the point spread function (PSF) into account. In fact,
the imaging process of point targets can be described as follows.
First, the target’s energy is converged to the focal plane arrays
through the optical system. The PSF of the optical system can
describe the shape and energy distribution of point targets in
this step. Next, the detector will integrate and sample the target,
which is situated in the focal plane array, and we finally obtain
the digital image containing the point target. Various noises
will unavoidably appear in the imaging process. The actual im-
aging process of the point target can be described by the fol-
lowing formula:

g�x; y� � S�PSF � f �x; y�� � n; (2)

where f �x; y� is the energy of the ideal point target imaging in
the position �x; y�. PSF is the point spread function of optical
systems, and S represents the detector integration and sampling
process. n is the noise, which can be approximated as white
Gaussian noise whose mean value is zero, and g�x; y� is the en-
ergy of the actual point target after degradation. The block dia-
gram in Fig. 4 illustrates the specific imaging process.

With the imaging distance of the target farther away, it is
gradually reducing to a point on IRFPA whose PSF is limited
by the optical system. The ideal PSF of the optical system can
be represented as a first-order Bessel function,

Fig. 2. Cloud edges and isolated noise, which interfere in point target detection: (a) complex background, (b) magnification of the red box located
at (a), and (c) corresponding three-dimensional grayscale map.

Fig. 3. Simulation results of the imaging position of the point tar-
get: (a) an Airy spot located in the center, (b) maximum energy con-
centration, and (c) minimum energy concentration of point target.
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PSF �
�
2J1�πr∕λF�

πr∕λF

�
2

; (3)

where J1 is the first-order Bessel function, and r is the radius of
the target which is calculated from r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2

p
. F is the

parameter of the optical system, and F � f
D . f andD represent

focal length and aperture of the optical system, respectively. λ is
the wavelength of incident light. F and λ are assumed to be
2 μm and 9 μm, respectively, in the following simulation.

The first-order Bessel function is appropriate for the ideal
diffraction-limited system. But in the real optical system,
there may be a Gauss function because of the aberration
and distortion. A Gauss function can reflect the dispersion
characteristics of horizontal and vertical directions. The
dispersion characteristics of the optical system could be consid-
ered isotropic in the deduction process of energy concentration.

The imaging process is the course of converting a continu-
ous mode to a discrete signal, which can be regarded as the
process of aperture convolution and discrete sampling in the
integration time. The convolution function of a detector
element can be considered as a smooth window, which is
determined by the shape of array. The detector elements are
usually rectangular, so the convolution function of a single
detector element is represented by a rectangular function as

Sconv � rect

�
x
a
;
y
b

�
; (4)

where a, b are the dimensions of single detector element.
Limited by the manufacturing process, the detector element
cannot be fully engaged, and the fill factor of the detector is
less than 100%. Assuming that the fill factor of the detector
is μ, the convolution function of single detector element is
expressed as

Sconv � rect

�
x
μa

;
y
μb

�
: (5)

The next step is the sampling process of the detector. We
will get the digital image after the discrete sampling, and this
process adopts the dressing function, which is expressed as

Ssamp �
1

ab
comb

�
x
a
;
y
b

�
� 1

ab

X∞
m�−∞

X∞
n�−∞

δ

�
x
a
− m;

y
b
− n

�
:

(6)

Equations (5) and (6) are combined to obtain the aperture
convolution and discrete sampling model of the infrared
detector, shown as

S � Sconv � Ssamp �
1

ab
rect

�
x
μa

;
y
μb

�

�
X∞
m�−∞

X∞
n�−∞

δ

�
x
a
− m;

y
b
− n

�
:(7)

We plug Eqs. (3) and (7) into Eq. (2), and then the output
of the whole system is obtained:

g�x; y� � S�PSF � f �x; y�� � n

� 1

ab

�
2J1�πr∕λF�

πr∕λF

�
2

� f �x; y� � rect

�
x
μa

;
y
μb

�

�
X∞
m�−∞

X∞
n�−∞

δ

�
x
a
− m;

y
b
− n

�
� n: (8)

Next, we use the model proposed above to calculate the
EC of the point target. It is assumed that the fill factor of
the long-wave infrared detector is 0.9, and the element size
is 30 μm. All operations are performed in a small pixel interval;
thus the influence of noise n will not be considered in the sim-
ulation. The relationships between the EC and the across-pixel
characteristics of the point target are obtained after the energy
normalization shown in Fig. 5.

In the simulation result, the independent variables i and j
represent the across-pixel number that deviates from the center
of the detector element in the horizontal and vertical directions
�i; j ∈ �−0.5; 0.5��, and then the coordinate �i; j� is regarded as
the imaging position of the point target’s central pixel on
IRFPA. It is obviously that the coordinate (0, 0) represents
the point target that is located in the central pixel. The depen-
dent variable in the z axis represents the energy of the point
target imaging in the position �i; j�, which has been normalized
to [0,1] so that it is also the EC of the point target in this
position.

From the simulation result illustrated in Fig. 5(b), we can
see that the maximum EC of the point target that the infrared
detector can detect is 0.842 when the point target is imaging in
the central pixel. The farther away from the central pixel, the
smaller the EC will be. The minimum EC is 0.115, and the
point target is imaging at the intersection of four pixels in
this case.

However, the random noise almost occupies only one pixel,
and there is no diffusion effect, just like a pulse point. The en-
ergy of noise is highly concentrated and its EC is about 1.
Therefore, we can set up a certain threshold criterion of EC
to separate the point target and the random noise. The high
threshold of EC can be set as 0.9, and the low threshold as
0.1. The random noise can be eliminated easily after the EC
criterion is adopted.

When calculating the SNR and EC of the point target in the
specific infrared image, it is carried out in the local neighbor-
hood around the point target, as demonstrated in Fig. 6. The
calculation of SNR is as follows:

SNR � jμt − μbj
σb

; (9)

where μt is gray mean of the target area, and μb is the gray
mean of the local background area, so the molecular term can
be seen as the absolute energy of the point target. σb is the

Fig. 4. Basic block diagram of the specific imaging process.
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standard deviation of the local background area, which is cal-
culated from

σ2b �
1

M × N

XM
i�1

XN
j�1

�μb�i; j� − μb�2; (10)

where M , N are the sizes of the local background areas.
According to the definition of SNR, we calculate the EC of

the point target in the specific image as

EC � μt max − μbP
t
jμt − μbj

; (11)

where μt max is the maximum gray value of point target area μt ,
and the denominator term is the sum of the gray values of all
pixels in the target area (3 × 3 pixels) minus the local back-
ground area, which can be seen as the absolute total energy
of the point target.

3. POINT TARGET DETECTION

A. Omnidirectional Multiscale Morphological
Filtering
To carry out the effective detection of an infrared point target,
the most important thing is to suppress background clutter.
Morphological filtering is used to extract the corresponding
form of the image with a certain structural element to realize
the target recognition. The most basic operations in morpho-
logical filtering are dilation and erosion.

We let I�x; y� represent the original grayscale image, and
b�s; t� is the structural element. ⊕ represents the dilation op-
eration, and Θ represents the erosion operation. The dilation
and erosion of I�x; y� and b�s; t� are, respectively, defined as

I⊕b � max
s;t

�I�x − s; y − t� � b�s; t��; (12)

IΘb � min
s;t

�I�x � s; y � t� − b�s; t��: (13)

The open operation in morphological filtering can get rid of
the region that is less than the structural element, and the
closed operation can connect two regions that are very close.
The open operation and closed operation of I�x; y� by
b�s; t�, denoted by I ∘ b and I • b, are defined based on dilation
and erosion, shown as follows:

I ∘ b � �I�x; y�Θb�s; t��⊕b�s; t�; (14)

I • b � �
I�x; y�⊕b�s; t��Θb�s; t�: (15)

We use the structural element larger than the target to make
an open operation, so as to obtain the background image. Then
we subtract the background image from the original image,
which is the top-hat transform. The top-hat transform can ex-
tract bright details from the image. The bottom-hat transform
is the difference between the closed operation and the original
image, which can extract dark details of the image. Top-hat
(TH) and bottom-hat (BH) are defined as

TH � I�x; y� − �I ∘ b��x; y�; (16)

BH � �I • b��x; y� − I�x; y�: (17)

On the basis of the original image, we add the top-hat
transform results and then subtract the bottom-hat transform
results. The final result is that the background can be sup-
pressed and the bright ROI, which may contain point targets,

Fig. 6. The right is the enlarged local area of the point target and its
surrounding background, which is in the red box, left, while T is the
point target, and B is the background area around the target.

Fig. 5. Simulation results of imaging system: (a) result of point tar-
get passing through the PSF of the optical system, and (b) result of
energy concentration of point target after the convolution integral
and discrete sampling by the detector.
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can be enhanced [17,18]. The extracted ROI result is ex-
pressed as

ROI � I � TH − BH: (18)

The size and shape of point targets in motion are changing
all the time, and a point target is more likely to occur in the
complex background at various scales. The traditional top-hat
transform method only adopts a single structural element to
estimate the background of the infrared image, ignoring the
differences of point targets distributing in every direction,
which does not produce the best results. In this paper, we adopt
the multiscale top-hat and bottom-hat transforms, which are
defined as follows:

THn � I�x; y� − �I ∘ bn��x; y�; (19)

BHn � �I • bn��x; y� − I�x; y�; (20)

where bn represents different structural elements, and n is a
positive integer.

Since the point target is very tiny in nonstationary clutter
background and noise, the dimensions of the selected structural
elements should not be too large. We design eight omnidirec-
tional multiscale structural elements that have dimensions of
5 × 5 to extract the point targets distributing in every direction
as far as possible. The eight-direction structural elements bn
(n � 1; 2;…; 8) contain 0° direction, 45° direction, 90° direc-
tion, …, and 315° direction, as shown in Fig. 7. The morpho-
logical structural elements with specific directions can effectively
eliminate the nondirectional and continuous background clutter.

The operator “1” in each structural element represents that
the dilation or erosion operation is performed in its position,
and the distribution direction of “1” is similar to the morpho-
logical direction of the point target. Each structural element can
not only extract the point targets that are distributed in the
specified direction, but can also highlight the candidate points
at smaller scales than the structural element in the image, thus
avoiding omission. Taking the structural element b1 as an

example, the major bright ROIs that it is able to extract are
illustrated in Fig. 8.

The proposed eight-direction structural elements cover
almost all the point targets distributing in every direction at
all scales. For each kind of structural element, the operations
of the top-hat and bottom-hat transforms can be used to detect
the bright and dark regions in the direction corresponding to
the structural elements.

The omnidirectional bright image regions extracted by b1 to
b8 can be expressed as follows:

TH1 � I�x; y� − �I ∘ b1��x; y�;
TH2 � I�x; y� − �I ∘ b2��x; y�;

…

TH8 � I�x; y� − �I ∘ b8��x; y�: (21)

Equally, the omnidirectional dark regions extracted by b1 to
b8 can be expressed as follows:

BH1 � �I • b1��x; y� − I�x; y�;
BH2 � �I • b2��x; y� − I�x; y�;

…

BH8 � �I • b8��x; y� − I�x; y�: (22)

Fig. 7. Eight-direction structural elements, including b1 of 0° direction, b2 of 45° direction, b3 of 90° direction, b4 of 135° direction, b5 of 180°
direction, b6 of 225° direction, b7 of 270° direction, and b8 of 315° direction. “1” and “0” are the basic binary morphological operators.

Fig. 8. Major bright ROIs that the structural element b1 can extract.
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The ROIn of the suspected target extracted by structural
element bn is expressed as

ROIn � I � THn − BHn: (23)

Each ROIn is most likely to contain suspected point targets
distributing in the detection direction, so we add the eight ex-
tracted ROIn into a big ROI, which is calculated in Eq. (24):

ROI � jROI1 � ROI2 �…� ROI8j: (24)

The constant false alarm rate (CFAR) is used to deal with
the above ROI, and then we get the candidate targets. The
threshold is calculated in the local small neighborhood that
contains the suspected target,

Th � μb � kσb; (25)

where Th is the obtained adaptive threshold, and k is a fixed
constant that can be regarded as the threshold of the SNR. On
theory of binary image, dealing with ROI by threshold Th. To
display the results of the proposed algorithm, k is assigned toffiffiffi
2

p
according to the SNR of point targets to be detected.

Figure 9(a) presents the original image that contains one point
target, which is grabbed by the infrared detector of fixed base,
and Fig. 9(b) presents the result after the adaptive threshold. At
the same time, we have eliminated the fixed noise through the
interframe relation. Results show that the complex clouds dis-
appeared, but there are still many residual candidate points,
which are mostly the random noises. We relocate the candidate
points to the original image, and then the energy concentration
criterion is adopted to eliminate false alarms. The final result is
shown in Fig. 9(c) with only a few candidate points. It can
determine that the candidate on the lower right is the real
target by means of multiframe accumulation. The following
analysis is low-order recursive detection in the condition of a
moving base.

B. Low-Order Recursive Method
When the candidate points are to be matched, the only infor-
mation available is the gray value and motion information. The
output frame frequency of the long-wave infrared detector can
reach 100 fps, while the point target can bear a constant veloc-
ity in a very short time. The moving base detector rotates uni-
formly in a horizontal direction, so the number of pixels

moving in the interframe relation of the target can be main-
tained at a stable value. The horizontal and vertical coordinates
of the target in the kth frame are x�k� and y�k�. ϕx , ϕy are the
sensor perturbation errors in the x and y directions, while the
perturbation error is usually not more than 1 pixel
�ϕx ;ϕy ∈ �−1; 1��. We can obtain the following formula:	

x�k � 1� − �x�k� � ϕx � ≈ constant
y�k � 1� − �y�k� � ϕy � ≈ constant

: (26)

The absolute energy of the point target in a short time is also
stable, so the energy feature of the target can be another im-
portant feature of the data association in the interframe rela-
tion. We take the sum of the difference between 3 × 3
pixels of the target area and the mean of the local background
area as the absolute energy value of the target, as shown in
Eq. (27). Note that we also need to relocate the candidate
points to the original image because the binarization has been
made before. In order to avoid the interference of background
clutter, the candidate targets are associated if the energy sim-
ilarity in the interframe relation is more than 70%,

Energy �
X1
x�−1

X1
y�−1

jμt�x; y� − μbj: (27)

We use the low-order recursive method in the five adjacent
frames for target recognition, like a pipeline. Data association
is performed when the motion and energy of five candidate
targets are all matched, as presented in Fig. 10. The low-order

Fig. 9. Results of the algorithm: (a) original image; (b) CFAR result; (c) result of energy concentration threshold.

Fig. 10. Diagram of low-order recursive method. First we input the
image sequence (100 fps), and then the recursive processing is per-
formed in five adjacent frames to obtain a trajectory output of each
of the five frames.
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recursive method is simple and reliable in a moving base
detector.

4. EXPERIMENTS

A. Data Acquisition Equipment
In order to obtain the true and reliable image resources, the
Stirling refrigerator long-wave IRFPA detector is set up in
the laboratory to capture aircraft at long distances, as illustrated
in Fig. 11. The specific parameters of the detector and optical
system are presented in Table 1. The detector adopts the work-
ing method of horizontal sweep. The ADS-B global navigation
system is employed to monitor civil aviation flight information
within 300 km, including the speed, latitude, longitude, and
altitude of the aircraft.

B. Processed Results of Proposed Algorithm
In Fig. 12(a) there are three frames extracted from three typical
infrared sequences of point targets, including the sky back-
ground, the clouds background, and the buildings. Image
processing was finished in MATLAB R2014a, and PC configu-
ration is i7- 4790 CPU (3.60 GHz), 8 GB main memory.
Figure 12(b) displays the result of the multiscale morphological
transform and the adaptive threshold. The fixed noise was elim-
inated before. The candidate points are mainly high-frequency
random noises, which have disappeared after using the EC cri-
terion. There remain about six candidate points in each frame,
which are marked in red as shown in Fig. 12(c). The trajectories
of each point target are obtained by employing the low-order
recursive correlation as presented in Fig. 12(d). Figure 12(e)
illustrates the enlarged areas of detected point targets, which
distribute at different scales, respectively, including three pixels,
two pixels and four pixels. Taking sequence 3 as an example,
the ADS-B receiver provides aircraft indicator diagram, which is
shown in Fig. 13. After observation and analysis, it can be de-
termined the detected target is B3908 (Airline 1), and 50.3 km
away from the detector, calculating through the geodetic coor-
dinate system.

The curves of energy concentration and SNR of the point
targets in sequence 3 are summarized in Fig. 14. In the whole
moving phase of the point target, the SNR varies between

0.2–2.7, which is hardly visible to naked eyes. The maximum
energy concentration of the real point target is 0.75, while the
actual value is a little smaller than the theoretical value of 0.842.
The reason is that the complex atmospheric composition and
the system errors will weaken the energy of point targets in the
actual imaging process.

C. Comparison with Other Algorithms
In order to further validate the effectiveness of the proposed
algorithm, we compare with common algorithms including the
max-median filtering, difference of Gaussian (DoG), BM3D,
and GMM. The target detection probability �Pd �, the false
alarm probability �Pfa�, and the running time of the algorithm
are selected as the evaluation indexes of the results, which are
defined as follows:

Pd � �Nc∕N t� × 100%; Pfa � �Nf ∕�Nf � N t�� × 100%;

(28)

where Nc is the number of detected true points, Nf is the
number of false alarms, and N t is the total number of point
targets.

There are totally 1507 point targets in the test sequence,
including the simple sky background, the complex clouds back-
ground, and the buildings. Our method successfully detected
1504 point targets with three false alarms. Therefore, the de-
tection probability of the proposed method reaches 99.8%, and
the false alarm probability is 0.2%. The max-median filter de-
tected 1174 point targets with 285 false alarms. The BM3D
and GMM methods detected more point targets than the
max-median filter and DoG methods; they detected are
1433 and 1418 point targets, respectively. But the number
of false alarms of the four comparison algorithms is above 100.

For a more intuitive comparison, we introduce an evaluation
index named figure of merit (FoM). This is defined from [19],

FoM � Pd

�
1 −

3Pfa

1� 3Pfa

�
: (29)

FoM is a normalized parameter, such that 0 < FoM < 1. A
FoM close to 1 indicates near-perfect performance.

The statistical results of different algorithms are shown in
Table 2.

As can be seen from the performance table, max-median fil-
tering and DoG are simple, but the false alarm probability is
higher, which leads to a lower FoM. BM3D and GMM are very
effective at background suppression, but are time-consuming.
The proposed algorithm has high detection probability and low

Table 1. Specific Parameters

Parameter Value

Working wavelength (μm) 7.7–11.3
Resolution 320 × 256
Element size (μm) 30
Output digits 14
Full frame frequency (fps) 100
Focal length (mm) 38
Effective field 14.40 × 11.54

Fig. 11. Data acquisition equipment.
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Fig. 12. Three typical frames of the point target, including the sky background, the clouds background, and the buildings. (a) Original image;
(b) CFAR result; (c) result of energy concentration threshold; (d) result of the low-order recursive correlation; (e) enlarged area of the detected point
target, which has been marked in red.

Fig. 13. Indicator diagram provided by ADS-B receiver. The location of the acquisition device is in Changchun, China, which is marked with a
red cross. The infrared detector faces the south, and there is an east–west course ahead where it can detect the airliners leaving from Changchun
Longjia International Airport.
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false alarm rate. At the same time, the proposed algorithm
meets the real-time requirements.

5. CONCLUSION

Starting with the analysis of morphological characteristics and
energy concentration of dim point targets which are less than
3 × 3 pixels in size, we have proposed a point target detection
method based on the omnidirectional multiscale morphological
method and EC criterion. First we use the eight-direction 5 × 5
structural elements to detect all the possible targets at different

scales. Next, an adaptive threshold is employed to obtain the
ROI of the target and improve SNR. Then, we use the EC
criterion to eliminate random noise. Finally, the trajectory of
the point target is obtained after the low-order recursive corre-
lation. The experimental results show that the proposed algo-
rithm is effective and has a good inhibition effect on the
complex background, and the running time of the algorithm
meets the real-time requirements for engineering.

Funding. National Natural Science Foundation of China
(NSFC) (61675202).
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Table 2. Comparison of Algorithms

Method Pd∕% P fa∕% FoM Running Time/s

Max-median filter 77.9 15.9 0.53 0.45
DoG 82.2 10.2 0.63 0.61
BM3D 95.1 6.9 0.79 3.10
GMMO 94.1 7.2 0.77 2.98
Our method 99.8 0.2 0.94 0.32
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