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Abstract: A simple one-pot route to large-scale synthesis of ZnO nanoparticles (NPs) has 
been demonstrated, and the ZnO NPs can be produced more than 34 grams in one synthesis 
process. The ZnO NPs show bright yellowish fluorescence under ultraviolet illumination with 
a quantum yield (QY) of 42%, which make them suitable for application as phosphors in 
light-emitting devices (LEDs). Yellowish LEDs have been fabricated by employing the ZnO 
NP powder as phosphors, and the luminous efficiency of the LEDs can reach 64.2 lm/W. 
Additionally, the fluorescence intensity of the phosphors shows little degradation when the 
ambient temperature reaches 100 °C, and the correlated color temperature of the LEDs 
remains constant when the driving current reaches 100 mA, indicating the good temperature 
and injection-current stability of the ZnO NP phosphors. 
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1. Introduction 
Light-emitting devices (LEDs) have been considered next generation lighting source due to 
their merits of energy-conserving [1–3], long lifetime [4–6], high efficiency [7–9], etc. The 
current white LED technology is usually realized by coating yellow [10–12] or red and green 
[13–15] phosphors onto blue LED chips or coating tricolor phosphors onto ultraviolet (UV) 
LED chips [16–18]. Rare earth based phosphors play a dominant role in the mainstream 
phosphors market. However, the reserve abundance of rare earth elements on the earth is 
usually very limited, and the mining and purifying of rare earths usually cause severe 
pollution to both water and land. Thus, it is of great significance and importance to develop 
phosphors avoiding the use of rare earth elements. 

In recent years, fluorescent semiconductor nanoparticles (NPs) have attracted much 
attention due to their unique optical properties like high efficiency, narrow emission band, 
tunable emission wavelength, and so on [19–22]. Among these NPs, CdSe and CdTe [23–27] 
are the most extensively investigated materials, but the toxicity and environmental pollution 
issues of these NPs limit their applications seriously [28, 29]. As one of the group II-VI 
semiconductors, ZnO NPs have been used for labeling [30–32], electron transport layer [33–
36], detector [37–40], bioimaging [41, 42], drug delivery [43–45], etc., due to their high 
luminescent efficiency, eco-friendly, low-cost, and mild synthesis process [46]. However, 
none report on employing luminescent ZnO NPs as phosphors of LEDs can be found to date. 
The major reason lies in that the large-scale synthesis of luminescent ZnO NPs is still a 
challenge. ZnO NPs are usually synthesized by sol-gel method via hydrolysis of zinc salts in 
alcohol solution. However, some reports indicate that the ZnO NPs derived by traditional sol-
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gel method are unstable and tend to aggregate seriously [47, 48], which will lead to drastic 
decrease in fluorescence efficiency of the NPs. In addition, large-scale production of ZnO 
NPs, which is necessary for phosphors of LEDs, has not been reported yet. Therefore, it is 
urgently needed to develop a simple route to large-scale synthesis of luminescent ZnO NPs to 
meet the requirement of phosphors for application in LEDs. 

In this paper, a route to large-scale synthesis of ZnO NPs has been demonstrated, and over 
34 grams of ZnO NP powders can be realized in one synthesis process. The emission 
wavelength of the NPs is located at around 535 nm, and the quantum yields (QYs) of the NPs 
can reach 42%. The ZnO NP powders have been coated onto UV chip acting as phosphors, 
and the luminous efficiency of the ZnO NP powder coated LED can reach 64.2 lm/W, also 
the LED shows good temperature and injection-current stability, promising the capability of 
the ZnO NPs in application as phosphors in LEDs. 

2. Experimental 
2.1 Materials: 

Zinc acetate dihydrate (Zn(Ac)2·2H2O, purity > 99%), potassium hydroxide (KOH, purity > 
95%), 3-aminopropyltriethoxysilane (APTES, purity>98%) and ethanol (putiry > 99.9%) 
were used as reagents for the synthesis of ZnO NPs. All the reagents purchased from Aladdin. 
Note that all the chemical reagents are of analytical grade and used as-received without 
further purification. 

2.2 Large-scale synthesis of ZnO NP powders: 

The large-scale preparation procedure of the ZnO NP powders is as follows. First of all, 55 g 
(0.25 mol) Zn(Ac)2·2H2O was dissolved in 1.5 L ethanol solution and the solution was 
refluxed at 78 °C for 30 minutes under continuous stirring. Then 200 mL 1.75 M KOH 
ethanol solution was added into the Zn(Ac)2·2H2O ethanol under continuous stirring at 30 °C. 
The Zn(Ac)2·2H2O ethanol solution would become colorless and transparent after the 
injection of KOH ethanol solution, indicating that ZnO NPs have been formed. The NP 
processing is termination by the mixture of deionized water and APTES. Finally, 20 mL 
deionized water and 4 mL APTES mixture was added into the ZnO NPs ethanol solution until 
the solution became turbid. After that, the solution was centrifuged (6000 rpm, 2 minutes) and 
the obtained precipitations were washed using ethanol for several times to remove the 
unreacted precursors. The washed precipitation was then placed into an oven (80 °C) for 12 
hours to form ZnO NP powders. 

2.3 Coating ZnO NP powders onto UV chip: 

For fabrication of the LED, polydimethylsiloxane (PDMS) were premixed with the ZnO NP 
phosphors with a mass ratio of 2:1. The mixture was dropped onto the UV chip. After that, 
the UV chip with ZnO NP phosphors was placed into an oven at 80°C for 1 hour to cure the 
PDMS. 

2.4 Characterizations: 

A JEM-2010 transmission electron microscope (TEM) and a Bruker D8 Discover (Germany) 
x-ray diffractometer (XRD) were used to characterize the structural properties of the ZnO 
NPs. The size of the NPs was characterized by Malvern Zetasizer Nano ZSP (United 
Kingdom). The bonding state of the ZnO NPs was measured using Thermo ESCALAB-250 
x-ray photoelectron spectroscopy (XPS). The optical properties of the ZnO NPs were 
assessed in a Hitachi F-7000 spectrophotometer. The absorption spectra of the samples were 
acquired in a Shimadzu UV-3101PC spectrometer. The transient photoluminescence spectra 
of the ZnO NPs were recorded in a FLS-920 fluorescence spectrometer. The QY of the ZnO 
NP powder were recorded with a calibrated integrating sphere on FLS920 spectrometer. 
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3. Results and discussion 

 

Fig. 1. Schematic illustration of the synthesis process of the ZnO NP powders. 

The preparation process of the ZnO NP powders was elaborated in the experiment section, 
and the process is illustrated in Fig. 1. According to this method, over 34 g ZnO NP 
phosphors can be synthesized in one synthesis process, as shown in Fig. 2(a). The TEM 
image of the ZnO NPs shown in Fig. 2(b) reveals clearly that the NPs have a spherical shape 
with diameter of around 5 nm. Figures 2(c) and 2(d) are high-resolution transmission electron 
microscope (HRTEM) and selected area electron diffraction (SAED) pattern images of the 
NPs. The SAED pattern of the NPs shows several concentric rings, and lattice fringes with 
spacing of around 0.26 nm can be observed from the HRTEM image, which indicates the 
well-crystalline nature of the ZnO NPs. The size distribution of the ZnO NPs has been 
measured by dynamic light scattering analysis (DLS) method, as shown in Fig. 2(e). The 
mean size of the ZnO NPs is around 7.3 nm, which is roughly consistent with the TEM 
observations shown in Fig. 2(c) (about 5 nm). The XRD pattern of the ZnO NP powders is 
shown in Fig. 2(f). Some broad peaks appear in the pattern, which can be attributed to the 
diffraction of wurtzite ZnO. The small size of the ZnO NPs may be responsible for the 
relatively broad diffraction peaks. The bonding state analysis of the ZnO NPs characterized 
by XPS was indicated in Fig. 2(g), and the peaks of Zn 2P, O 1s, N 1s, C 1s and Si 1s can be 
observed from the pattern, in which the Zn 2P and O 1s peaks can be attributed to ZnO, while 
the peaks of N 1s, C 1s and Si 1s stem from surface modifier of (3-aminopropyl) 
triethoxysilane. 
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Fig. 2. (a) Image of the as-prepared ZnO NP powders. (b) TEM image of the ZnO NPs. (c) 
HRTEM image of the ZnO NPs. (d) Selected area electron diffraction pattern of the ZnO NPs. 
(e) DLS of the ZnO NPs. (f) XRD pattern of the ZnO NPs. (g) XPS spectrum of the ZnO NPs. 

QY is a key factor that determines the figure-of-merit of phosphors, so the optical 
properties of the ZnO NPs were assessed. The fluorescence spectra of the ZnO NPs under 
different excitation wavelengths are shown in Fig. 3(a). All the fluorescence spectra of the 
NPs are dominated by a broad peak centered at around 535 nm, which can be attributed to the 
deep-level emission in ZnO [52, 53]. The photoluminescence excitation (PLE) spectrum at 
535 nm has been measured, as shown in the Fig. 3(a). The PLE spectrum shows a sharp peak 
at around 370 nm. The QY of the ZnO NPs measured according to the literature [51] by FLS-
920 is 42% and the corresponding images of the ZnO NP phosphors under UV lighting and 
indoor lighting conditions are shown in Fig. 3(b). The absorption edge of the ZnO NPs shown 
in Fig. 3(c) is located at around 370 nm, which stems from the near band-edge absorption of 
ZnO. To investigate the carrier recombination process of the ZnO NPs, transient 
photoluminescence spectrum of the ZnO NPs has been measured, as indicated in Fig. 3(d). 
The experimental data can be well fitted using the following two-order exponential decay 
formula: 

 1 2exp / exp /y y t tΑ Α0 1= + τ τ2     (-     ) +  (-     )  (1) 

where y is the emission intensity, y0, A1, A2 are constant, t is time, and τ1 and τ2 are lifetime of 
the emission. The best fitting yields the lifetimes of τ1 = 44.9 ns and τ2 = 866.6 ns. Here τ1 
may come from the deep-level recombination inside the ZnO NPs; while τ2 may come from 
the surface defects [48, 49]. The inset of Fig. 3(d) is the schematic diagram of carrier 
recombination process. 
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Fig. 3. (a) PLE spectrum at 535 nm and fluorescence spectra of the ZnO NPs under different 
excitation wavelengths. (b) Images of the ZnO NP powders under UV lighting and indoor 
lighting conditions. (c) Absorption spectrum of the ZnO NP powders. (d) Transient 
photoluminescence spectrum of the ZnO NPs, and the inset shows the schematic illustration of 
the carrier recombination process in the ZnO NPs. 

To test whether the ZnO QDs can be employed as phosphors of LEDs, the ZnO NP 
powders were coated onto a UV LED chip. The emission spectrum of the UV chip is shown 
in Fig. 4(a), and for comparison, the PLE spectrum of the ZnO NP powders has also been 
listed in the Fig. 4(a). One can see that the emission spectrum of the UV chip accords well 
with the PLE spectrum of the ZnO NP powders, indicating that the ZnO NP powders can be 
excited efficiently by the UV chip. The electroluminescence (EL) spectra of the LED 
operated at different driving current ranging from 7.5 mA to 98.6 mA are also shown in Fig. 
4(a). From the EL spectra, a broad emission peak centered at around 535 nm can be observed, 
and the emission intensity increases with the injection currents in our investigated range. The 
color coordinates change slightly from (0.35, 0.58) to (0.32, 0.48) when the injection current 
of the LED increases from 7.5 mA to 98.6 mA, as shown in Fig. 4(b). When the injection 
current is small, most the photons emitted from the UV chip can be absorbed by the ZnO NP 
phosphors to convert to visible emission, while with the increase of the current, some of the 
emitted photons cannot be absorbed by the ZnO NP phosphors, the proportion of the UV 
emission increases in the whole emission spectrum of the LEDs, leading to the shift of the 
color coordinate. The images of the LEDs under different injection currents are shown in Fig. 
4(c), and bright yellowish luminescence can be observed from the device, which promises its 
application in lighting source. 
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Fig. 4. (a) The emission spectrum of the UV chip, the PLE spectrum of the ZnO NP powders 
has also been illustrated for comparison, and the electroluminescence spectra of the UV chip 
coated with the ZnO NP phosphors operated at different injection current. (b) Color coordinate 
of the LED operated at different injection currents. (c) Images of the LED operated at different 
injection currents. 

Table 1. The luminous efficiency of the LEDs under different driving current 

Voltage(V) Current (mA) Optical powder 
density 

(mW/cm2) 

Visibility 
function 

factor 

Luminous 
efficiency 

(lm/W) 
9.0 7.5 4.4  40.5 
9.1 14.2 11.3 54.1 
9.2 25.8 23.5 61.6 
9.3 42.5 40.8 0.91 64.2 
9.4 66.7 56.2  55.7 
9.5 98.6 72.2 47.9 

 
The optical powder density of the LED (1×1 cm) under current from 7.5 mA to 98.6 mA 

is recorded by radiometers RM-12, and the corresponding luminous efficiency is calculated, 
as shown in Fig. 5(a). According to definition of light conversion efficiency, 1 W of optical 
power can convert to 683 lm at the wavelength of 555 nm. The luminous flux should be 
multiplied by visual function factor 0.91 at the wavelength of 535 nm in our study, and the 
detailed information can be seen in Table 1. The luminous efficiency of the LED can reach 
64.2 lm/W when the injection current is 42.5 mA, which is much higher than that of common 
incandescent light bulbs (about 10 lm/W). The correlated color temperature (CCT) of the 
LED keeps at about 5200 K when it is operated at different injection current (Fig. 5 (b)), 
which is suitable for lighting. The stability of the emission color and CCT indicates that the 
LED can be employed as the lighting source. To test the stability of the LED further, the ZnO 
NPs were annealed at different temperatures for 30 min and the spectra of the LED have been 
recorded, as shown in Figs. 5(c) and 5(d). The luminescence intensity of the LED can 
maintain constant even the ZnO NPs are annealed at temperature as high as 100 °C, indicating 
the good temperature stability of the ZnO NP phosphors synthesized in our route. 
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Fig. 5. (a) The luminous efficiency and optical power density of the ZnO NP phosphors coated 
LED. (b) CCT of the LED. (c) The luminescence spectra of the LED by coating ZnO NP 
powders treated with different temperatures. (d) The luminescence intensity of the LED 
coating ZnO NP powders treated with different temperatures. 

4. Conclusions 
In summary, a simple route to large-scale synthesis of ZnO NPs has been demonstrated, and 
the QY of the ZnO NP powders can reach 42%. The ZnO NP powders have been coated onto 
a UV LED chip as phosphors, and a yellowish LED has been realized. The luminous 
efficiency of the LED can reach 64.2 lm/W when the injection current is 42.5 mA. In 
addition, the luminescence intensity and CCT of the LEDs keep constant under different 
injection current, which can meet the requirements of bedroom lighting. Furthermore, the 
luminous intensity of the LEDs decreases little even when the ambient temperature reaches 
100 oC, indicating the good temperature stability of the LEDs. The results reported in this 
paper demonstrate the application of ZnO NPs as the phosphors for LEDs for the first time, 
thus promise the future mass-application of ZnO NPs as low-cost and eco-friendly phosphors 
for LEDs. 
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