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We present an improved method to generate Airy beams utilizing a liquid crystal on silicon (LCoS) device. In this
method, the phase and amplitude information of a modified Fourier spectrum of an Airy beam together with a
Fresnel holographic lens is encoded onto the LCoS using the phase-only filter technique; thus, a desired Airy beam
is formed in the focal plane of the Fresnel holographic lens. In this paper, the principle of the proposed method
is described in detail, and both the excellent numerical simulations and experimental results for verifying this
method are demonstrated. It is shown that the new generation method is accurate and simple; in particular, the
setup is more compact compared to the conventional Fourier transform method, which comprises only the input
polarized laser and a LCoS device. This effective method will further promote investigations into the properties
and applications of Airy beams. © 2017 Optical Society of America

OCIS codes: (060.5060) Phasemodulation; (050.1940) Diffraction; (090.1760) Computer holography; (070.7345) Wave propagation;

(070.6120) Spatial light modulators.
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1. INTRODUCTION

In 1979, Berry and Balazs found the Airy packets in the context
of Quantum mechanics by solving the Schrödinger equation
[1]. And the first experimental generation of Airy beams in
a laboratory was proposed in 2007 by Siviloglou and
Christodoulides [2,3]. From that moment, this unique type
of beam has been an active area of research, including its gen-
eration methods, trajectory control, and practical applications.
It is well known that an Airy beam, one of the no-diffraction
beams, presents “self-healing” and “self-bending” features in
propagation. These unusual properties give Airy beams a wide
range of applications, such as vacuum electrons [4], optical
trapping [5], microparticle clearing [6,7], surface plasmon
polaritions [8], and free-space optical communication [9].

An accurate and efficient generation method for an Airy beam
will contribute to deep research on the properties and propaga-
tion characteristics of Airy beams, which results in expanding its
potential fields of practical applications. Several methods for gen-
erating an Airy beam with the help of different devices and ma-
terials have been reported, e.g., the approach using a continuous
cubic phase plate [10], the method of Airy surface plasmons
[11], generation by an engineered nanoscale phase grating
[12], and the Airy beam laser [13,14]. The disadvantage of those
approaches is that the profile and propagation trajectory of the

generated Airy beam are invariable, so researchers cannot adjust
the parameters of the Airy beam in experiments at any time.

To solve this problem, the phase information (a cubic phase)
of the Fourier spectrum of the Airy beam is encoded onto the
liquid crystal on silicon (LCoS) under phase-only modulation,
and a Gaussian beam with an appropriate waist is used to illu-
minate the device to generate Airy beams in the image plane
[2,3]. This is the conventional Fourier transform method
(FTM). Due to utilization of the LCoS device, FTM presents
the advantage of programmable adjustments. However, the op-
tical Fourier transform system has a rather large length of 2f ,
where the focal length f is as long as 1 m, usually. Moreover,
the waist diameter of the Gaussian beam must be carefully pre-
pared to match the phase loaded onto the LCoS.

As an improvement, the method to directly generate an Airy
beam by encoding a 3/2 phase pattern onto the LCoS is pro-
posed [15,16]. The advantage of this approach is not requiring
the extensive system length used in the Fourier transform proc-
ess. However, this method ignores the amplitude term x3∕2 for
simplicity. Another method by combining the cubic phase and
a Fresnel holographic lens together to generate an Airy beam is
experimentally presented [17]. It reduces the distance between
the LCoS device and the Fourier transform lens in FTM.
In what we refer to as the Fresnel holographic lens method
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(FHLM), the shape of the generated Airy beam increases, and
the deflection of it decreases, which indicates the generated
quasi-Airy beam deviates the theoretical one. Although a
Fresnel diffraction phase is used to compensate this problem,
there is no quantitative analysis on the formed Airy beam in this
reference. In addition, FHLM retains the preparation process of
the Gaussian waist diameter. Recently, the quantitative proper-
ties of the generated Airy beam using FHLM together with the
formula of the deflection of the main lobe are derived [18]. It is
shown that the additional square phase term superimposing
onto the Fourier transform result is the reason for the deterio-
ration of FHLM.

In general, it has failed to generate an Airy beam directly using
the LCoS device, because the phase and amplitude information
of a complex cannot be arbitrarily modulated together accurately.
As an indirect approach, FHLM successfully changes the optical
system into a compact one, not only reducing half of the system
length but also removing the physical lens. However, the addi-
tional square phase term in the result of FHLM is the main prob-
lem to overcome. If some approaches are adopted to counteract
this square phase term, a meaningful method to generate an Airy
beam can be demonstrated.

In this paper, we present an improved method for generating
an Airy beam with a compact optical system, which comprises
only the input light beam and a reflective LCoS device. The
improved method works well and avoids the careful preparation
of the Gaussian waist diameter. It is realized by utilizing the
phase-only filter technique to encode the amplitude and phase
information of a modified Fourier spectrum of an Airy beam
and a Fresnel holographic lens onto the LCoS. The detailed
principle description of the new method is demonstrated.
After that, the corresponding numerical simulations of this
method together with FTM and FHLM are illustrated.
Finally, the experimental demonstration of generating Airy
beams using the proposed method is presented.

2. PRINCIPLE DESCRIPTION

In this section, we briefly review the Airy beam and its Fourier
spectrum theory and two conventional generation methods
(FTM and FHLM). Then, the principle description of the im-
proved method for generating Airy beams is described in detail.

A. Airy Beam and Its Fourier Spectrum
The finite-energy 2D Airy packet, which is a solution to the
Helmholtz equation, can be expressed as
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where a is the decay factor, a small positive parameter associated
with the effective aperture of the system; sx � x∕x0 and sy �
y∕y0 are dimensionless transverse coordinates of the Airy
packet; �x0; y0� is the arbitrary transverse scale; and ξ �
z∕�kx20� is a normalized propagation distance. At the origin

(z � 0), Eq. (1) can be rewritten as ϕ�sx ; sy; ξ � 0� �
Ai�sx� exp�asx�Ai�sy� exp�asy�.

The Fourier transform of the finite-energy 2D Airy packets
at the origin can be described as

Φ�kx; ky� �
ZZ �∞
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ϕ�sx ; sy; 0� exp�2πi�sxkx � syky��dsxdsy
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�
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where b is a constant, and �kx; ky� are the spatial frequency co-
ordinates in the Fourier spectrum space. According to Eq. (2),
the spectrum of 2D Airy beam packets is Gaussian and involves
of a cubic phase.

B. Two Conventional Generation Methods for Airy
Beams
The Fourier transform method was first used by Siviloglou to
experimentally generate finite-energy 1D and 2D Airy beams
[2,3]. Figure 1(a) demonstrates the schematic of FTM. In this
conventional method, a 2f optical system is employed to real-
ize the optical Fourier transform. Two planes, defined as the
phase plane and image plane, respectively, fit the Fourier trans-
form relationship of each other. The cubic phase of the Fourier
spectrum is imposed onto an input Gaussian beam in the phase
plane, usually by a reflective LCoS providing the phase-only
modulation. In this way, an Airy beam is formed in the image
plane. It is noted that a physical lens with high quality is re-
quired in this method.

The Fourier transform between the image plane and the
phase plane in FTM can be expressed as

Fig. 1. Schematic of two conventional optical Fourier systems to
generate an Airy beam. (a) FTM, (b) FHLM.
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−i∕λf
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Φ�kx; ky� exp�−2πi�sxkx � syky��dkxdky

� −i∕λf ϕ�sx ; sy; 0�: (3)

The deflection of the main lobe of the generated Airy beam
in x direction can be described as

x � z2

4 k2x30
: (4)

The FHLM is proposed to reduce the large system length, in
which a Fresnel holographic lens is utilized instead of a physical
lens, and the distance between the Fresnel lens and the LCoS is
reduced. The principle of this method can be interpreted by
Fig. 1(b). The cubic phase of the Fourier spectrum and the
Fresnel holographic lens is combined and directly loaded onto
the input Gaussian beam in the phase plane. Ultimately, a
quasi-Airy beam is obtained at the back focal plane of the
Fresnel holographic lens (the image plane).

In FHLM, the relationship between the image plane and the
phase plane based on the Huygens–Fresnel principle can be
expressed as [17]
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where the Fourier transform is realized by the Fresnel holo-
graphic lens, described as φF � π × �x2 � y2�∕λf [19].
Here, f stands for focal length of the Fresnel holographic lens.
From Eq. (5), we find that an additional square phase term
exp�iπ�s2x � s2y �∕λf � is introduced into the Fourier transform
result. It is a spherical aberration and will magnify the generated
Airy beam relative to the ideal results.

The deflection of the main lobe of the quasi-Airy beam in x
direction can be described as [18]

x � cz2

f � z
; (6)

where c is a constant. Equation (6) shows that the propagation
trajectory of the Airy beam generated using FHLM is no longer
a parabola propagation trajectory.

C. Improved Method for Generating Airy Beams
Based on the FHLM, we modulate both the phase and ampli-
tude information of a modified Fourier spectrum onto the in-
put plane wave at the phase plane, in order to eliminate the
additional square phase term of the Fourier transform result
in the image plane. In this case, the properties of the generated
Airy beam are entirely the same as the theoretical Airy beam.
The schematic of the improved method to generate the Airy
beam is demonstrated in Fig. 2 In this approach, the
Fresnel lens is also employed to make the experimental setup
compact, and to keep the mathematical transform relationship
between the phase plane and the image plane invariable, ex-
pressed as Eq. (5).

The modified Fourier spectrum of the Airy beam used in the
improved method loading onto the input plane wave at the
phase plane is defined as
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and A�kx; ky� exp�iφ�kx; ky�� is the complex-value expression
form of Eq. (7). According to Eq. (5), the Fourier transform
result in the image plane is given by
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here,
RR�∞

−∞ Φ1�kx; ky� exp�−2πi�sxkx � syky��dkxdky stands for
the Fourier transform of Φ1�kx; ky�. According to Eq. (7),
ϕ1�sx ; sy; 0� �
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Thus, the final Fourier transform result in the image plane is
given by
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The generated Airy beam using the improved method has
the identical expression as the conventional FTM, described
by Eq. (1). The deflection function is also expressed
as x � z2∕4 k2x30.

It is well known that the phase-only filter technique is
capable of generating an arbitrary complex-valued function
into the first diffraction order of the phase-only filter at the
image plane. It is realized by encoding the phase and amplitude

Fig. 2. Schematic of the improved method for generating an
Airy beam.
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information of the Fourier spectrum for the complex-valued
function onto the phase grating at the phase plane [17,20].
In our case, we take advantage of the phase-only filter to codify
a complex-valued function, A�kx; ky� exp�iφ�kx; ky��, onto a
plane wave at the phase plane. The detailed process is illustrated
as follows. First, a 45° oriented linear phase grating is designed
in the phase plane, which can be expressed as

φp�kx; ky� �
2π�kx; ky�

d
; (11)

where d is the period of the phase grating. Then, add the phase
term φ�kx; ky� and the linear grating together to come up with a
result φp�kx; ky� � φ�kx; ky�, defined between the range
�−π; π�. Following this, the amplitude information A�kx; ky�
is encoded by spatially modulating the phase filter, described as

expfiA�kx; ky��φp�kx; ky� � φ�kx; ky��g; (12)

where 0 ≤ A�kx; ky� ≤ 1, normalized by the maximum.
Finally, a distorted modulation function A 0�kx; ky� is calculated
by creating an appropriate lookup table for compensating the
slight amplitude distortion caused by the sinc function [20].
The desired amplitude compensation function can be ex-
pressed as

sinfπ�1 − A 0�kx; ky��g
π�1 − A 0�kx; ky��

� A�kx; ky�; (13)

where 0 ≤ A 0�kx; ky� ≤ 1. Therefore, the total phase loading
onto the LCoS device in the phase plane can be written as

expfiA 0�kx; ky��φp�kx; ky� � φ�kx; ky��g: (14)

Through the Fourier transform, a complex-valued function,
A�kx; ky� exp�iφ�kx; ky��, is acquired in the first diffraction
order in the image plane.

In this paper, we call the improved method with a phase-
only filter “PFM” for short.

3. NUMERCIAL SIMULATION

In simulation, the multiple-phase screen method [21] is used to
calculate the propagation dynamics of the generated Airy beam
of the FTM, the FHLM, and the PFM, respectively. In particu-
lar, we focus on the intensity distributions and the deflections at
different propagation distances of the generated Airy beams
using these three methods.

The parameters for numerical calculation are taken as fol-
lows: the arbitrary transverse scale x0; y0 is 30 μm, the decay
factor a is 0.03, the wavelength is 632.8 nm, the focal lengths
of Fourier transform and the Fresnel holographic lens are
200 mm, the simulated size is 0.8 mm × 0.8 mm, the corre-
sponding scale bar is 100 μm, and the propagation distance
at the image plane is defined as 0 m. In FTM, the input beam
is a Gaussian beam with the beam waist 50 mm at the phase
plane. The cubic phase of the Fourier spectrum of the Airy
beam is one screen at the phase plane, while the other screen
is the physical lens behind the phase plane 200 mm, in which
we use a 200 mm Fresnel holographic lens to replace it.
In FHLM, there is only one screen at the phase plane, super-
posing the cubic phase of the Fourier transform and the Fresnel
holographic lens together. And the input beam is also a

Gaussian beam with the beam waist 50 mm at the phase plane.
For PFM, the input beam is a 50 mm diameter plane wave, and
the Fourier transform of Eq. (8) is modulated onto the input
plane wave at the phase plane.

Figure 3 illustrates the simulated results of the three meth-
ods, in which Figs. 3(a1)–3(a3) stand for the intensity distri-
butions of the FTM at 0 m, 0.025 m, and 0.035 m,
respectively. Figures 3(b1)–3(b3) and 3(c1)–3(c3) correspond
to the intensity distributions of the FHLM method and the
PFM at the same distances (0 m, 0.025 m, and 0.035 m).
As predicted, the generated Airy beams of the PFM are entirely
the same as the FTM at different distances. It proves that the
method we proposed to compensate the additional square
phase aberration is correct and effective. However, the main
lobes of the generated Airy beams using the FHLM are obvi-
ously bigger than the other two methods at distances 0.025 m
and 0.035 m. The reason is the additional square phase term,
which is caused by removing the distance f between the phase
plane and the Fresnel holographic lens, resulting in the mag-
nified intensity distributions. In addition, it is shown that the
intensity distributions of the three methods at distance 0 m are
the same as each other, which can be interpreted using Eqs. (3),
(5), and (10). Under the calculation of the intensity value in
Eq. (5), the additional square phase term is offset due to
the multiplication of the complex conjugate at distance 0 m.

Figure 4 shows the normalized intensity values of the three
methods at distances (a) 0 m, (b) 0.025 m, and (c) 0.035 m,
respectively. The intensity value in every figure is normalized by
the maximum of the method itself. There are some conclusions,
as can be seen: first, the intensity distributions at distance 0 m
of the three methods are coincident, as shown in Fig. 4(a),

Fig. 3. Intensity distributions of the simulated Airy beams using
three methods at different distances. (a1)–(a3) stand for the intensity
distributions of the FTM at 0 m, 0.025 m, and 0.035 m, respectively,
and (b1)–(b3) and (c1)–(c3) correspond to the intensity distributions
of the FHLM and the PFM at the same propagation distances (0 m,
0.025 m, and 0.035 m).
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which we have explained above. Second, the normalized inten-
sity values of the FTM and the PFM are basically coincident
with each other at the three propagation distances. It declares
the correctness of the PFM for compensating the square phase
aberration. The slight difference in the intensity between them
is caused by the beam waist diameter of the input Gaussian
beam (50 mm) not absolutely matching the phase in FTM.
Third, the full width at half maximum (FWHM) of the main
lobes of the FTM and the PFM are 40 μm at distance 0 m and
48 μm at distance 0.035 m. However, the FWHM of the main
lobe of the FHLM are 40 μm at distance 0 m and 64 μm at
distance 0.035 m. It shows that after the same propagation

distance, the diffraction of the FHLM is 1.33 times that of
the FTM and the PFM. Finally, it is noted that the position
of the main lobe of the FHLM obviously deviates the positions
of the other methods (8 μm at distance 0.025 m and 24 μm at
distance 0.035 m), because their deflection functions are differ-
ent, as expressed by Eqs. (4) and (6).

To demonstrate the propagation trajectories of the gener-
ated Airy beams clearly, we draw the main lobes’ deflections
of the generated Airy beams of the three methods along x di-
rection varying with the propagation distances, as shown in
Fig. 5 The green triangle, blue circle, and red square correspond
to the FTM, the FHLM, and the PFM, respectively. Through
calculation, we find that the deflections of the FTM and the
PFM are excellently described by curve 1, which fits Eq. (4)
well, a parabola function. And the deflection of the FHLM,
curve 2, fits Eq. (6) well. This phenomenon agrees with the
theory we presented in Section 2.

4. EXPERIMENTAL GENERATION

In experiments, we present the formations of Airy beams using
FTLM and PFM. The experimental setup, the detailed calcu-
lations of the phase masks, and the analysis of the experimental
results for FTLM and PFM are illustrated, respectively. In order
to compare FHLM and PFM, we use the same setup in the
experiments. It indicates the input intensity and the beam waist
is identical. In addition, the focal length of the Fresnel holo-
graphic lens and the size and position of the captured images are
the same.

A. Setup
The schematic of the experimental setup is shown in Fig. 6, and
the operation of the optical system can be described as follows.
First, a HeNe laser (wavelength is 632.8 nm) goes through a
beam expander to expand the Gaussian beam waist to 50 mm.
Then, the expanded beam passes through a polarizer, which
ensures the polarized direction of the incident beam parallel
with the long axis of the liquid crystal molecules. After that,

Fig. 4. Normalized intensity values along the vertical direction of
the three methods at distances (a) 0 m, (b) 0.025 m, and
(c) 0.035 m, respectively. The green, blue, and red lines stand for
the FTM, the FHLM, and the phase-only filter method, respectively.
The intensity values in every figure are normalized by the maximum
of the method itself.

Fig. 5. Main lobes’ deflections of the generated Airy beams using
the three methods along x direction varying with the propagation dis-
tances, where the green triangle, blue circle, and red square correspond
to the FTM, the FHLM and the PFM, respectively. Curve 1 stands for
the fitting curve for the FTM and the PFM using Eq. (4), while curve
2 represents the fitting curve for the FHLM using Eq. (6).
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the beam gets to the LCoS device [22,23], of which the inci-
dent angle is about 5°. In phase-only modulation mode, the
incident beam is modulated by loading a phase mask of an
Airy beam onto the LCoS device. Finally, the propagation dy-
namics of a 2D Airy beam can be captured by a CCD camera,
which can axially scan near the focal plane of the Fresnel lens.

The LCoS used in the experiment is a reflective device,
which is manufactured by Holoeye incorporation. The device
panel has 1920 × 1080 pixels in a 15.36 mm × 8.64 mm array,
with a pixel pitch of 8 μm × 8 μm and 87% fill factor. The size
of the captured image is 2 mm × 2 mm, and the corresponding
scale bar in it is 250 μm.

B. Calculation of Phase Masks
The parameters for calculation of the phase masks [24] in the
experiment are taken as follows: the arbitrary transverse scale
x0; y0 is 26 μm, the decay factor a is 0.03, the wavelength
is 632.8 nm, the focal lengths of Fourier transform and the
Fresnel holographic lens are 170 mm, the phase range of
the linear grating is from −40π to 40π, the size of the phase
mask is 8.64 mm × 8.64 mm, the phase masks are sampled
1080 × 1080 pixels, and modulated in the range �0; 2π�.

Figure 7 illustrates the calculated phase mask for generating
Airy beams using FHLM and PFM. For FHLM, first a cubic
phase is obtained by extracting the phase information of the
Fourier spectrum of the Airy beam, as shown in Fig. 7(a1).
Second, a 170 mm Fresnel holographic lens is computed, as
shown in Fig. 7(a2). Finally, the total phase mask is acquired
by superposing the cubic phase and the Fresnel lens, as shown
in Fig. 7(a3).

For PFM, the calculation process can be expressed as fol-
lows: 1) The compensated amplitude is computed according
to Eq. (13), as shown in Fig. 7(b1). 2) The phase of a modified
Fourier spectrum of the Airy beam is computed according to
Eqs. (7) and (8), as shown in Fig. 7(b2). 3) The phase-only
filter is obtained by combining the 45° oriented linear grating
and the modified phase and then multiplying with the compen-
sated amplitude, as shown in Fig. 7(b4). 4) The total phase
mask is acquired by superposing the phase-only filter and a
170 mm Fresnel lens, as shown in Fig. 7(b6). The final phase
mask for PFM [Fig. 7(b6)] uses a modified Fourier spectrum to
compensate the additional square phase term, and adopts the
phase-only filter technique to realize the phase and amplitude
modulation together.

C. Experimental Results
Three intensity patterns of the generated Airy beams using
FHLM and PFM at three distances (0.17 m, 0.18 m, and
0.19 m) after the LCoS device, corresponding to Figs. 8(a1,
b1), 8(a2, b2), and 8(a3, b3), respectively, are captured in the
experiment. Figures 8(a1)–8(a3) represent the captured figures
of PFM, while Figs. 8(b1)–8(b3) denote the captured figures
of FHLM. Several excellent conclusions from the experimental
results in Fig. 8 are observed. First, the intensity profiles at the
origin (170 mm), as seen in Figs. 8(a1) and 8(b1), are uniform
basically, which agrees with the conclusion in simulation.

Fig. 6. Schematic of the experimental setup to generate Airy beams.
HeNe laser is a collimated 632.8 nm laser, BP is the beam expander,
P is a polarizer, LCoS is a refractive liquid crystal on silicon device, the
black dotted line denotes the propagation trajectory of the generated
Airy beam, and the black dotted arrow represents the axially scanning
direction of the CCD camera.

Fig. 7. Illustration of the phase mask for generating an Airy beam
using FHLM and PFM. (a1) Cubic phase mask of the Fourier spec-
trum of an Airy beam, (a2) phase mask of a 170 mm Fresnel holo-
graphic lens, and (a3) total phase mask, which consists of (a1) and (a2).
Compensated amplitude (b1) and phase (b2) of a modified Fourier
spectrum of an Airy beam, (b3) 45° oriented linear grating, whose
phase range is from −40π to 40π, (b4) phase-only filter computed
by Eq. (14), (b5) phase mask of a 170 mm Fresnel holographic lens,
(b6) total phase mask consisting of the Fresnel lens and the phase-only
filter. Blank stands for grayscale value 0, white stands for grayscale
value 255, and (0, 255) corresponds to �0; 2π�.
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However, the brightness of the two figures is different, because the
FHLM has no zero diffraction order, but the pattern of the PFM
is in the first order, as we clearly see the zero diffraction order in
the top left corner in Fig. 8(a1). Second, the propagation trajec-
tories of the two methods are different, because the deflections of
the generated Airy beams at the same distances are different, as
shown in Figs. 8(a2, b2) and 8(a3, b3). Third, with the propa-
gation increasing, the main lobes of FHLM are obviously bigger
than the main lobes of PFM, as seen in Figs. 8(a2, b2) and 8(a3,
b3). It indicates the diffraction in FHLM is stronger than in PFM.

Figure 9 demonstrates the normalized intensity profiles of
the experimental results along x direction using PFM and
FHLM at distances 0.17 m, 0.18 m, and 0.19m, respectively.
Figures 9(a1)–9(a3) stand for PFM, while Figs. 9(b1)–9(b3)
stand for FHLM. From Figs. 9(a1)–9(a3), the measurement
FWHMs of the main lobes are about 50 μm, 56 μm, and
61 μm, respectively. And in Figs. 9(b1)–9(b3), the FWHMs
of the main lobes are about 50 μm, 77 μm, and 94 μm, respec-
tively. Namely, the diffraction of FHLM is 1.55 times that of
PFM. It proves the derived result in Eq. (5), that the square
spherical aberration magnifies the shapes of the generated
Airy beams in FHLM.

The transverse accelerations in the x axis of the main lobes
varying with propagation distances in PFM and FHLM are

presented in Fig. 10 The red square represents the measure-
ment results of PFM, and the blue circle represents the mea-
surement results of FHLM. Curve 1 depicts a parabolic
trajectory, which is well described by Eq. (4), while curve 2
indicates a fitting curve, as expressed by Eq. (6). Obviously,
the deflection trajectory of PFM is closer to parabolic; however,

Fig. 8. Intensity distributions of the formed Airy beams using PFM
and FHLM in the experiments. (a1)–(a3) represent the captured fig-
ures of PFM, while (b1)–(b3) denote the captured figures of FHLM,
and (a1), (b1), (a2), (b2), and (a3), (b3) correspond to the intensity
patterns after the LCoS 0.17 m, 0.18 m, and 0.19 m, respectively. The
corresponding scale bar is 250 μm.

Fig. 9. Comparison of the normalized intensity profiles of PFM
and FHLM along x direction at distances 0.17 m, 0.18 m, and
0.19m, respectively. (a1)–(a3) stand for PFM, while (b1)–(b3) stand
for FHLM. The intensity value in every figure is normalized by the
maximum of the method itself.

Fig. 10. Transverse accelerations in x axis of the main lobes along
the propagation distances in PFM and FHLM. Red squares and blue
circles represent the calculation results corresponding to PFM and
FHLM. Curve 1 and curve 2 are the fitting lines according to
Eqs. (4) and (6), respectively.
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the deflection trajectory of FHLM is closer to the fitting line
expressed by Eq. (6). This phenomenon has been explained by
the theoretical relation presented in Section 2.

To demonstrate the self-healing properties of the generated
Airy beams using PFM, we block the main lobe at distance
0.17 m, as seen in Fig. 11(a1). Also, we capture three intensity
patterns at three distances, 0.170 m, 0.175 m, and 0.185 m,
after the LCoS device, corresponding to Figs. 11(a1)–11(a3),
respectively. It depicts the reformation of the main lobe begin-
ning from a 5 mm propagation at distance 0.175 m, and the
main lobe is reborn at the corner, clearly at distance 185 mm,
which is marked using white arrows, as shown in Figs. 11(a2)
and 11(a3).

In comparison, the formed Airy beams in PFM demonstrate
the quasi-non-diffraction, the parabolic trajectory, and the self-
healing property. It declares that the generated beam is the
theoretical finite-energy Airy beam. However, the diffraction
of the formed Airy beams in FHLM is more intense than
PFM, and the propagation trajectory is not parabolic. It shows
that the generated beam of FHLM is a quasi-Airy beam, not a
theoretical finite-energy Airy beam.

5. CONCLUSIONS

An accurate method to experimentally generate an Airy beam is
presented in this paper. It is realized by using a phase-only filter
to encode the phase and amplitude information of a modified
Fourier spectrum of an Airy beam onto the LCoS device, and
through the Fourier transformation of the superimposed
Fresnel holographic lens to generate an Airy beam at the image
plane. Excellent numerical simulations and experimental results
to verify the proposed approach are demonstrated. It shows that
the formed beam is a theoretical finite-energy Airy beam com-
pared to the quasi-Airy beam in FHLM. Meanwhile, the pro-
posed method greatly simplifies the experimental setup and
avoids the careful preparation process of the Gaussian beam
waist by using an input plane wave. The meaningful method
is useful to deeply investigate Airy beam in laboratory. In ad-
dition, the zero order diffraction in the generated result can be
removed by directly being blocked or using a spatial filter sys-
tem. And the improvement of the intensity of the generated
Airy beam in the first order is worth devoting more attention
to in research.
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