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Abstract In machine vision sensing system, it is

important to realize high-quality real-time 3D recon-

struction in large-scale scene. The recent online

approach performed well, but scaling up the recon-

struction, it causes pose estimation drift, resulting in

the cumulative error, usually requiring a large number

of off-line operation to completely correct the error,

reducing the reconstruction performance. In order to

optimize the traditional volume fusion method and

improve the old frame-to-frame pose estimation

strategy, this paper presents a real-time CPU to

Graphic Processing Unit reconstruction system. Based

on a robust camera pose estimation strategy, the

algorithm fuses all the RGB-D input values into an

effective hierarchical optimization framework, and

optimizes each frame according to the global camera

attitude, eliminating the serious dependence on the

tracking timeliness and continuously tracking globally

optimized frames. The system estimates the global

optimization of gestures (bundling) in real-time,

supports for robust tracking recovery (re-positioning),

and re-estimation of large-scale 3D scenes to ensure

global consistency. It uses a set of sparse correspond-

ing features, geometric and ray matching functions in

one of the parallel optimization systems. The exper-

imental results show that the average reconstruction

time is 415 ms per frame, the ICP pose is estimated 20

times in 100.0 ms. For large scale 3D reconstruction

scene, the system performs well in online reconstruc-

tion area, keeping the reconstruction accuracy at the

same time.
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1 Introduction

At present, the three-dimensional reconstruction tech-

nology based on image is developing continuously. It

is widely used in robot vision, 3D manufacturing,

implicit space tracking and virtual reality. For exam-

ple, as a user or robot requires real-time scanning of

the entire room or multiple spaces, the cumulative 3D

model is instantaneously fused to the target applica-

tion; the robot navigation needs to map the physical

world to the virtual world and provide immediate

feedback during the scan; These requirements have led

researchers to begin a real-time reconstruction of

large-scale scenarios.

There has been a lot of work on 3D reconstruction

over the past decades. Key to high-quality 3D

reconstruction is the choice of representation for

multiple sensor measurements. Approaches range

from unstructured point-based representations meth-

ods to volumetric approaches. While each has trade-

offs, volumetric methods based on implicit truncated

signed distance fields have become the general method

for highest quality reconstructions. They model con-

tinuous surfaces and efficiently perform incremental

updates. The most prominent recent example is Kinect

Fusion where real-time volumetric fusion of smaller

scenes was demonstrated. One inherent issue with

these implicit volumetric methods is their lack of

scalability due to reliance on a uniform grid. This has

become a focus of much recent research, where real-

time efficient data structures for volumetric fusion

have been proposed. We exploit the sparsity of TSDF

to create more efficient spatial subdivision strategies.

While this allows for volumetric fusion at scale, pose

estimates suffer from drift. Even small pose errors can

accumulate to dramatic error in the final 3D model.

Most of the research on achieving globally consistent

3D models at scale from RGB-D input requires offline

processing and access to all input frames. Globally

consistent models are provided by optimizing across

the entire pose trajectory, but require minutes or even

hours of processing time, meaning real-time revisiting

or refinement.

Real-time, drift-free pose estimation is a key focus

in the simultaneous localization and mapping (SLAM)

literature. Many real-time monocular RGB methods

have been proposed, including sparse methods, semi-

dense or direct methods. Typically these approaches

rely on either pose-graph optimization or bundle
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adjustment, minimizing re-projection error across

frames and distributing the error across the graph.

While impressive tracking results have been shown

using only monocular RGB sensors, these approaches

do not generate detailed dense 3Dmodels, which is the

aim of our work. Real-time SLAM approaches typi-

cally first estimate poses frame-to-frame and perform

correction in a background thread. In contrast, DTAM

uses the concept of frame-to-model tracking to

estimate the pose directly from the reconstructed

dense 3D model. This omits the need for a correction

step, but clearly does not scale to larger scenes. Pose

estimation from range data typically is based on

variants of the iterative closest point (ICP) algorithm.

In practice, this makes tracking extremely brittle and

has led researchers to explore either the use of RGB

data to improve frame-to-frame tracking or the use of

global pose estimation correction. These systems are

state-of-the-art in terms of online correction of both

pose and underlying 3D model. However, they usually

need more time to perform online optimization.

In order to solve the above problems, an end-to-end

real-time reconstruction system is proposed. The core

is a robust attitude estimation strategy, which opti-

mizes the camera trajectory of each frame and fuses all

RGB-D input values into an effective local-to-global

hierarchical optimization framework. The system is

globally associated with each RGB-D frame, which

can implicitly and continuously process the cyclic

closures, eliminating the need for them. So if the

tracking fails, the scan is interrupted or restarted from

a completely different corner, the system will be re-

positioning in a globally consistent manner, with good

reconstruction accuracy and robustness. The main

work of this paper includes the following aspects:

First, a global attitude alignment framework is

presented. According to all the RGB-D values of the

input frame, the inaccurate characteristics of the

tracking aging are eliminated, and the scalability of

the scene is achieved by the localized global hierar-

chical decomposition strategy reconstruction.

Second, according to the alignment strategy from

sparse to intensive items, the global structure with

implicit closure is aligned with the exact attitude of the

precise scale to achieve accurate reconstruction of the

local surface detail.

Third, an RGB-D fusion method is implemented.

The sparse correspondence with RGB feature is used

to estimate the global pose. In order to guarantee the

reconstructed target being refined according to geo-

metric consistency of dense area, 3D scene is updated

continuously.

Fourth, the large-scale reconstruction of the geo-

metric texture scene is achieved, the model of the re-

access area is improved, the tracking failure is

restored, and the robustness of the drift and continuous

closed loop is restored.

2 Related Work

In the past few decades, researchers have done a lot of

research on 3D reconstruction methods. The key to

high-quality 3D reconstruction is to integrate the

underlying representation of multiple sensor measure-

ments. From the point-based unstructured representa-

tion [1–4], the 2.5D depth map representation [5, 6]

and the height field representation [7] to the volume

representation [8, 9], each method is a trade-off

between reconstruction quality, rate and scale. The

volume fusion method based on truncated signed

distance fields (TSDF) is a representative high-volume

reconstruction method [10]. The surface of the model

is represented continuously and systematically, and

the explicit topology is removed.

These implicit volume reconstruction methods

relying on uniform grids lack scalability. In response

to this deficiency, the researchers have given a variety

of effective data structures for real-time volume fusion

[11, 12], using TSDF’s sparseness to create a more

effective spatial segmentation strategy. Although

these methods achieve a large-scale volume fusion,

they may cause the attitude estimation drift phe-

nomenon, leading to the final 3D model distortion.

Even a smaller attitude error, which appears to be

negligible on the local scale, accumulates a significant

error in the final model.

Global consistent 3D reconstruction based on RGB-

D input association usually requires off-line process-

ing. For example, Zhou et al. [13] proposed a globally

consistent model based on global attitude trajectory

optimization, which takes several minutes or even

several hours of off-line processing. Choi et al [14].

proposed globally consistent models by optimizing

across the entire pose trajectory. simultaneous local-

ization and mapping (SLAM) is the core of real-time

drift-free camera attitude estimation. Researchers

have proposed a variety of real-time monocular RGB
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methods, including sparse methods, semi-density

methods and direct reconstruction methods [15, 16].

These methods rely on the optimization or bundling of

monocular RGB sensors to minimize the cross-frame

re-projection error and cross-regional distribution

errors, but do not generate accurate dense 3D models

that affect the reconstruction of fine-grained details.

The monocular fusion method increases the binding

adjustment of sparse SLAM, achieves dense volume

fusion, and the reconstruction effect is better, but only

for small scale scenes. SLAM-based reconstruction

methods typically use frame-to-frame strategies for

gesture estimation and perform corrections in back-

ground threads to reduce real-time rates. Newcombe

et al. proposed a frame-to-model tracking framework

to estimate the gesture directly from the reconstructed

dense 3D model, eliminating the need for corrective

steps, but not for large-scale scene reconstruction.

The attitude estimation strategy based on the

iterative closest point algorithm relies on the mea-

surement of distance data, which makes the robustness

of real-time tracking worse. Researchers began to use

RGB data and global attitude estimation correction to

improve frame-to-frame tracking robustness [17],

including posture optimization, closed-loop detection,

incremental bundling, and recovery by image or point

relocation. These systems perform well on the online

posture correction of the standard 3D model, but the

online optimization time is longer. When camera

tracks in closed-up trajectory, the system limits the

free motion and scanning trajectory of camera; when

fusion step is done, the camera’s attitude is optimized

and the previous data is calculated efficiently, but the

accuracy of the model correction is limited.

3 System Overview

The system is based on a robust global attitude

optimization algorithm that performs continuous pos-

ture optimization for each frame of data. It updates

corrections based on newly generated attitude esti-

mates supporting free change of camera paths,

instantaneous relocation, and frequent re-scanning of

the same scene area. Our system owns the robust

implementation of sensor block, fast frame to frame

motion and no feature area tracking scan. It can

achieve large-scale three-dimensional scene real-time

reconstruction, as shown in Fig. 1.

First, the RGB-D stream input is obtained from the

depth sensor and a set of sparse corresponding term

features are used to obtain coarse global alignment.

The alignment is corrected by optimizing the density

and geometrical consistency to calculate the paired

scale of all input frames feature transform (SIFT,

Scale Invariant Feature Transform). It detects all SIFT

keys that match the previous frame, and filters out the

outliers.

Secondly, in order to achieve real-time alignment

of global pose, the system uses localized global pose

optimization of hierarchical filtering frames. At first

level, consecutive n frames constitute a block and are

localized to the local level. At second level, all blocks

are correlated and globally optimized. This method is

similar to the hierarchical sub-graph algorithm, and

performs global correlation analysis on all frames. The

algorithm is based on the currently visible frustum

region optimizing the two-stage attitude alignment

based on the sparse corresponding feature of the filter

and the dense photo-metric geometric constraints.

This hierarchical phase optimization strategy reduces

the non-associated nature of each optimization step.

Our algorithm is suitable for large-scale scene recon-

struction. The system uses a Graphic Processing Unit

(GPU) nonlinear iterative solver to handle highly

nonlinear optimization problems at two levels.

Finally, the RGB-D frame is quickly re-fused based

on a continuously updated representation of the global

3D scene based on the continuously changing global

gesture, and the old gesture RGB-D image is removed.

The new gestures are reintegrated into RGB-D images.

With more RGB-D frames and sophisticated gesture

estimation, the volume model is continually improved

to ensure the quality of reconstruction of large scenes.

4 Global Alignment

The globally consistent online 3D reconstruction is

based on robust global gesture optimization strategies.

The system input is captured by the sensor RGB-D

stream: S ¼ ffi ¼ ðCi;DiÞgi, Ci is for each frame of

time space alignment color, Di is depth data, the frame

rate of the sensor is 30 Hz and the pixel resolution is

640*480. The goal of global alignment is to find a set

of 3D counterparts between input frames. It aligns all

frames according to the optimal set of rigid camera
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transformations. The transformation is mapped from

the local camera coordinates of the frame to the spatial

coordinate system: CiðpÞ ¼ Ripþ ti, p is a coordinate

vector, which represents the mapping of local coordi-

nates to global coordinates. Ri is for the rotation angle,

ti is for the translation size. It is assumed that the first

frame is defined as the world coordinate system.

4.1 Matching of Feature Counterparts

The system uses feature detection, feature matching,

and corresponding filtering steps to search for sparse

correspondence between input frames. Accurate

sparse correspondence is critical to obtain a dense

optimized convergence area. This section details the

search and filtering steps for the corresponding item.

The system detects the SIFT feature for each new

frame of input and matches it to all previously visible

frames. SIFT represents adjustment of RGB-D scans,

it involves several steps including image translation,

scaling, rotation, et al. Then the matching between

each pair of frames is filtered to produce a valid list of

corresponding items as a global gesture optimization

input. The search step is performed entirely on the

GPU, saving the cost of copying data to the CPU. The

GPU and CPU working process is shown in Fig. 2.

The system calculates the SIFT key and descriptor for

a time of 4–5 ms per frame, and the time for matching

a pair of frames in parallel is 0.05 ms. For each newly

input RGB-D image, the system can search for up to

20 K frames in real time to match the corresponding

items.

4.2 Correspondence Filtering Step

In order to minimize the outliers, the system filters the

detected set of identities based on photometric and

geometric consistency. Robustness in the detection is

built into subordinate optimization .

First, for a pair of input frames fi and fj, they are

corresponding to the two 3D spatial points detected.

The corresponding relationship between the frame-to-

point is referred to as the corresponding term. The

corresponding key filter detects a set of corresponding

items. These corresponding items have a steady state

distribution and have a consistent rigid conversion

characteristic. The corresponding items are aggre-

gated according to the matching distance. For each

newly added correspondence, the rigid transform

minimizes the RMSD between the current set of

correspondences. If this condition number is high then

the system is considered unstable. Therefore, when the

re-projection error is high or the conditional analysis is

an unstable system, the corresponding term is deleted

in the order of the re-projection error until the

unstable condition is ended or the corresponding item

amount is too small to determine the rigid transfor-

mation. When the corresponding result does not

produce a valid transformation, the corresponding

item corresponding to the frame and associated is

discarded.

Secondly, the system detects whether the surface

size of the corresponding item is large enough to

calculate the cross-surface area between the corre-

sponding key point and the corresponding key point.

For each set of three-dimensional space points, it will

Fig. 1 Block diagram of

reconstruction system
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be projected to the respective 2D plane. The two-

dimensional directional bounding box is calculated for

the surface area. When the surface area is not large

enough, then delete the corresponding item.

Finally, the system performs dense double-sided

geometry and photometric verification. It will keep

aligning the coordinate system using the transforma-

tions calculated from the key-point filter. It measures

the average depth of the re-projection in both direc-

tions, the method phase offset, and luminosity consis-

tency. In order to improve the efficiency of

reconstruction, the system performs the checks on

the filtered and down-sampled frames, and when the

new RGB-D images are captured, including the

filtered and down-sampled color intensities, depths,

camera spatial positions, and phase coordinates

putting into the GPU cache. From fi to fj the total

projection error is:

Erðfi; fjÞ ¼
X

x;y

Cijðpi;x;yÞ � qj;x;y
�� ��

2
ð1Þ

in which pi;x;y ¼ Plowi ðx; yÞ,
qj;x;y ¼ Plow

j ðp�1ðCi;jpi;x;yÞÞ. When the position, nor-

mal or color value of them does not correspond, it

indicates that the occlusion phenomenon occurs, and it

is determined that the dense corresponding item is

invalid. When the re-projection error is too large

([0.065 m) or the effective counterpart is insufficient

(\0.01 wh), the match is invalid. The system

implements detection through a single GPU call,

allowing each thread to process an image (1 frame).

When all tests are passed, the corresponding entry is

added to the valid set, which is later used for gesture

optimization.

4.3 Hierarchical Optimization

In order to process tens of thousands of RGB-D input

frame data in real time, the system adopts the

hierarchical optimization strategy. The input contin-

uous frame sequence is divided into blocks, and in the

first layer, the intra-block optimization is performed to

the local alignment mode. At the second level, the key

frames associated with each block are used for global

alignment optimization. Table 1 shows the allocation

and optimization pseudocode used in this paper for

sparse voxel levels.

First, the system performs inter-block gesture

optimization operation with 11 consecutive frames

in the input RGB-D stream and one block adjacent to

each other. The purpose of local attitude optimization

is to use the first frame in the block as the reference

frame to calculate the best intra-block alignment. That

is the best camera attitude transformation. The system

searches for valid feature counterparts between all

frame pairs and uses the energy minimization method

to ensure that all frames are aligned in the best possible

way. Since each block contains only a small number of

Fig. 2 GPU and CPU

streaming process
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consecutive frames, the attitude changes within the

block are small and the system is initialized to a unit

matrix. In order to ensure that the localized posture

optimization results are accurate enough, the system

uses an optimized local trajectory to apply intensive

verification tests for each image within the block.

When the re-projection error is too large for the frame

image, it will discard the block.

Secondly, the first frame RGB-D data in the block is

defined as the key frame of the block. The aggregation

key frame is calculated, and the three-dimensional

position information of the inter-block feature points

in the world space is calculated based on the optimized

attitude trajectory of the block. These three-dimen-

sional position information contains the same real

world space points, belonging to different frame pairs

of geometric information. In order to obtain the key

frame feature set, a plurality of feature points match-

ing the feature descriptors and merging in the three-

dimensional space are combined into a best three-

dimensional representation. The system maps the key

frame feature set to the respective key frame space

Table 1 Optimization step of our algorithm

Algorithm: Hierarchical optimization

input struct voxel{

float SDF;  //Signed distance field

char RGB;  //input RGB color image

char weight;  //weight

float LA;  //albedo 

float RD; //corrected distance

};

int level;  //corrected level

output D~ //corrected image

Begin //GPU parallel optimization

allocate(level);  //allocate sparse grades

initialfuse(level);   //fuse sparse model

for k=1 to level 

allocate_fine(k,k+1);  //allocate the correction grid

RGBfuse(k);   //fuse target with color

amend(k);    //fuse results with shadow correction 

end for

end
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using the corresponding item transformation. Once the

global key frame and feature integration are created,

the system discards the block data, including the in-

block features, descriptors, and counterparts.

Finally, the sparse correspondence of the global

keyframe is searched and filtered. If no match is found

for the previous keyframe, it is marked as invalid and

treated as an alternative key frame for re-verification.

Global pose optimization calculates the best global

alignment of all global key frames to achieve global

alignment of all blocks. Then it will apply the energy

minimization method to perform intra-block align-

ment after each new global key frame finds the

corresponding entry. The incremental transformation

is calculated using the corresponding inter-block

optimization, using the incremental transform to

initialize the gesture of the global key frame, which

consists of the previous global key frame gestures.

After inter-block transformation, the corresponding

incremental transform (from local optimization) is

applied to the frame in the block, and thus the global

uniform transform is obtained from the input frames.

4.4 Global Pose Optimization Strategy

Global attitude alignment is a nonlinear least squares

problem for unknown camera parameters. In order to

realize the on-line global camera attitude optimization

for long scan sequences with more than 20,000 frames,

this paper adopts a GPU-based nonlinear iterative

solver. Because sparse patterns require different

parallel strategies, this paper is based on the Gauss–

Newton method, namely:

v2 ¼ argminEalignðvÞ
v

ð2Þ

For ease of representation, we reformulate the

objective in the following canonical least-squares

form:

EalignðvÞ ¼
XR

i¼1

riðvÞ2 ð3Þ

in which R ¼ 3Ncorr þ Ej j � ð Cij j þ Dij jÞ, Ncorr is the

number of sparse correspondence entries for inter-

block alignment.

The system solves the pre-processor conjugate

gradient (PCG) solver in parallel with the GPU and

uses the Jacobi pre-processor to solve the above

equation. Our optimization architecture is shown in

Fig. 3. It uses the iterative strategy to exploits the

sparseness of the system matrix. The related linear

least squares problem are solved by Gauss–Newton

iteration, and the optimization process is performed

based on the result of the last frame.

The system uses a single kernel to calculate the

optimal step size, update the camera down direction

and global-local handover to accumulate the final

scan results. It also uses the PCG algorithm to

calculate the system matrix with the current drop

direction. In order to avoid filling in, we multiply

the system matrix by applying two separate kernel

calls: the first kernel is multiplied by the second

kernel call. Because there are different sparse-by-

row patterns, using two different kernels to do

parallel processing. Specifically, for sparse items,

each row is precisely encoded as a corresponding

term according to up to two external camera

gestures or 2 9 6 = 12 non-zero matrix entries.

Since the number of operations required is small,

the matrix vector can be calculated by assigning a

dedicated thread to each 3D block row, i.e.,

processing the correspondence, and residuals.

Because different dimensions use the same operation

for evaluation, the number of nonzero terms in each

row is equal to the corresponding number of

unknown frames for each unknown item. For longer

scan sequences, this results in thousands of entries

per line, and in order to reduce the amount of

memory read and computation for each thread, we

chose a simplified method to calculate the matrix

vector product. We use the size of a block to

compute the dot product of each row direction. Each

thread of the block executes the thread based on

PCG algorithm. For calculation, the auxiliary list is

pre-computed to allow you to find all the corre-

spondence of a variable that populates the individual

thread cores for each communication. It adds the

entries to the corresponding list of associated

variables. The memory of each list is managed

using an atomic counter, and the table is recalcu-

lated when the set of corresponding items changes.

For precise photo-metric and geometrical align-

ment items, the number of related residues is quite

high. Since the system matrix is fixed during PCG

operation, we pre-computed it at the beginning of each

non-linear iteration. The required memory is pre-

allocated, and we can only update nonzero items
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through voxel fusion. Note that as the local memory of

the shared memory decreases, only a small amount of

write operations are required.

As an optimizationmeasure, the system performs the

corresponding frame filtering after each optimization,

which is robust to the processing of potential commu-

nication anomalies (which are mistakenly considered to

bevalid). That is,weuse the parallel reduction operation

of the GPU to determine the maximum residual, when

all the corresponding itemsbetween the two frames i and

j are removed. Note that all correspondence between i

and j is removed in order to minimize the number of

optimization and the number of all bad correspondence.

In addition, for frames that do not have a corresponding

relationship, they are implicitly removed from the

optimization and are marked as invalid.

5 Dynamic 3D Reconstruction

The global consistent reconstruction uses camera

hierarchical optimization to update 3D models in real

time. The system monitors successive changes in the

posture of each frame, updating the volume scene

representation by frame fusion and de-fusing. Based

on this strategy, once a better attitude estimate is

detected, the error in the volume representation due to

the cumulative drift or dead reckoning in the non-

characteristic region can be fixed.

5.1 TSDF Representation

TSDF is defined in the volume grid of voxels. It is saved

inGPUcache. Inorder to store andprocess thesedata, this

paper adopts the adaptive feature reconstruction method

proposed by Lin et al. [18] to reconstruct large-scale

scene, and the blank space does not need to be expressed

with the use of spatial voxel index TSDF stored in sparse

volume grid, using 8*8*8 voxel block. In addition, in

order to achievedynamicupdatingofgestures, the system

implements the integration of RGB-D frames into TSDF

as well as de-fusing operations (ie, adding and removing

frames from reconstruction) [19, 20].

5.2 Fusion and De-fusion

For each spatial voxel in a complex scene, D(v) is the

signed distance of the voxel,W(v) represents the voxel

weight, wi(v) represents the fusion weight of Di, di(v)

represented the projection distance (along the z-axis)

between voxel and the depth frame Di. The following

fusion is updated for each voxel:

D0ðvÞ ¼ DðvÞWðvÞ þ wiðvÞdiðvÞ
WðvÞ þ wiðvÞ

;

W0ðvÞ ¼ WðvÞ þ wiðvÞ
ð4Þ

The integration of each system is updated as

follows:

D0ðvÞ ¼ DðvÞWðvÞ�wiðvÞdiðvÞ
WðvÞ�wiðvÞ

;

W0ðvÞ ¼ WðvÞ�wiðvÞ
ð5Þ

The system integrates the original posture and

reintegrates it with the new gesture to update the

reconstructed frame data. The integrated surface

measurements are well adapted to the continuously

changing attitude estimation flow, which is obtained

when the scene is closed.

6 Experimental Results and Analysis

6.1 Experimental Parameters and Evaluation

Criteria

In order to test system performance, we use a variety

of light changing under the real three-dimensional

scene.

Fig. 3 Pose optimization

architecture
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Operating system: Windows 8.1;

Development language: C??;

Development tools: Microsoft Visual Studio 2014;

3D graphics programming interface: Direct3D 11;

CPU type/frequency: INTEL Core i5/3.0 GHz;

RAM: 8G;

Graphics processor: NVIDIA GTX 960;

Sensor: Asus Xtion Pro, RGB-D stream frame

drawing rate of 30 Hz, and 640 9 480 color and

depth resolution capture.

We use the wireless network connection to transfer

the captured RGB-D data stream to the system for

global attitude optimization and real-time reconstruc-

tion of the 3D model. The reconstructed visual

feedback is streamed to the system interface to aid in

the scanning process. To reduce the bandwidth

required, we use data compression based on depth

and jpeg color compression. We use the CUDA 7.0

architecture to implement the global attitude align-

ment framework. Using six large-scale scenes (4

roomsM1–M4, 1 desktopM5, 1 texture wall M6, up to

80 m camera trajectory) to complete the reconstruc-

tion effect shows that the attitude alignment without

obvious camera drift, with geometry and texture of

high local display accuracy. This also shows that the

proposed global attitude alignment strategy can be

well extended to large spatial and long sequences

(more than 10,000 frames). In order to quantitatively

evaluate camera parameters and three-dimensional

structure estimation accuracy, the following evalua-

tion criteria are defined:

(1) The camera focal length estimation error is

defined as:

Df ¼ 1

2

f̂1 � f1

f1

�����

�����þ
f̂2 � f2

f2

�����

�����

 !
ð6Þ

in which f1 and f2 are the true values of the two

camera focal lengths; f̂1 and f̂2 are the estimated

values of the two camera focal lengths.

(2) The camera relative rotation estimation error

DR is defined as the rotation axis of the rotation

matrix R̂R
�1

and the size of the angle in the

angle representation (in degrees). Where R and

R̂ is the true value and the estimated value of the

relative rotation matrix of the camera.

(3) The camera relative translation estimation error

Dt is defined as the angle between the camera’s

relative translation vector true value t and the

camera’s relative translation vector estimate t̂.

(4) The RMS error of the 3D point re-projection is

RMS2D. Since the re-projection error is not

significant, the index is calculated only at the

interior point.

(5) The RMS error of the three-dimensional point

estimate RMS3D, the three-dimensional point

estimation error refers to the Euclidean distance

between the three-dimensional point true value

and the estimated value. The maximum side

length of the bounding box is set to unit 1.

6.2 Quantitative Analysis

6.2.1 Single Scene Quantitative Analysis

In this group of experiments, we select the texture wall

model for rapid reconstruction, as shown in Fig. 4.

The distance between the two cameras and the center

of the model is about 1 to 2 times the height of the

model. The true values of the two camera focal lengths

are:

f1 ¼ 1400

f2 ¼ 1100
ð7Þ

Table 2 gives the average result of the noise

intensity, the number of internal points, the external

point ratio and the running time, the camera parameter

estimation error and the three-dimensional point

estimation error of the 15 test results for each test

instance. It can be seen from the table that the average

three-dimensional reconstruction error of the experi-

ment is between 0.025 9 10-7 and 4.374 9 10-11, as

shown in Table 3. It can be seen from the experimental

results that the reconstruction accuracy of the three-

dimensional structure decreases smoothly with the

increase of noise, and no mutation occurs. It can be

seen from Fig. 3 that the reconstruction accuracy of

the three-dimensional scene does not change signifi-

cantly when the external noise ratio increases from 1.5

to 2.0 color levels per pixel. The experimental results

show that the effect of model fusion is large when the

noise is small, and the model does not change when the

noise reaches a certain value. It can be seen that the

algorithm correctly identifies the external points and
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successfully reconstructs inter point, external point.

The algorithm is robust for noise.

In order to visually observe the effect of noise

intensity and external point ratio on the 3D recon-

struction error, the 3D reconstruction error of each

point is taken as the logarithm of 10, and then it is

mapped to the color space and the result is visualized

in Fig. 4. The first column of Fig. 3 shows that there is

no significant change in the reconstruction accuracy of

the 3D structure in the absence of noisy data, while the

external point ratio rises from 0 to 30%. Column 2

shows the change in the accuracy of the reconstruction

process when the noise intensity is increased from 0.1

to 2.0 in the case where the external point ratio is fixed.

It can be seen that the reconstruction accuracy of the

3D structure decreases smoothly with the increase of

noise, no mutation occurs. The results of the exper-

iment with 20% of the external points are shown in

column 3 of Fig. 3. Our algorithm correctly identifies

the external points and successfully reconstructs the

interior points. The experimental results show that the

proposed algorithm is robust to external points and

noise.

6.2.2 Quantitative Comparison of Large Scale Scenes

The alignment performance is tested in this group of

experiment, it is compared with modern online and

offline methods, our method shows a better camera

tracking results. First, we mark real large-scale scenes

as M1, M2, M3 and M4. We change the camera

posture several times for 3D reconstruction. Table 4

shows the trajectory estimation performance of the

system’s absolute trajectory error measurements in six

scenes (including synthetic noise) [21–25]. The real-

time reconstruction performance of this system is

better. In addition, the system is tested based on the

RGB-D benchmarks proposed by Sturm et al. [26–28].

Fig. 4 Texture wall model M6 three-dimensional reconstruc-

tion effect map

Table 2 Test results of scene M6 with algorithm performance

Scene Noise r Inner point Outer point (%) Time/ms

P1 0.0 4700 1410 (30) 327

P2 0.0 5210 1042 (20) 368

P3 0.0 5730 573 (10) 401

P4 0.0 5980 299 (5) 398

P5 0.0 6230 0 (0) 386

Q1 0.1 6230 0 (0) 438

Q2 0.5 6230 0 (0) 459

Q3 1.0 6230 0 (0) 429

Q4 1.5 6230 0 (0) 444

Q5 2.0 6230 0 (0) 507

R1 0.1 5730 573 (10) 374

R2 0.5 5730 573 (10) 426

R3 1.0 5730 573 (10) 368

R4 1.5 5730 573 (10) 460

R5 2.0 5730 573 (10) 446
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The benchmark gives the calibration of the motion

capture system for the ground scene of the camera

attitude estimation. For these scenes, only the small

scale scene and simple camera trajectory are covered.

The reconstruction effect of this system is comparable

to that of the prior art, which is suitable for faster

tracking with more cycles closed. The Redwood

system, which relies only on geometric registration,

has a relative lack of view diversity in the camera

trajectory and affects the reconstruction effect. For

example, M5 is a desktop with texture features that can

not be geometrically treated. Through these scenes, we

validate the relevance of the global consensus deci-

sion. The system is based on the sparse features of the

online alignment to achieve accurate reconstruction,

only in each block alignment using dense matching to

increase the accuracy. The algorithm achieves the

local and global level precision reconstruction. Fig-

ure 5 shows the Whelan, Redwood and our algorithm

for the reconstruction performance comparison. The

data in the graph show the change of the objective

function value with the number of iterations in the case

of different noise and 3D points. The convergence

time of our method scales linearly with the 3D points.

The convergence performance is changed under

different noise intensity. Our algorithm allows for a

large number of 3D points in practical application, it is

suitable for real-time 3D reconstruction of large-scale

scene.

6.3 Qualitative Analysis

This group of experiments uses Titan X for volume

reconstruction. For all test scenarios, the system runs

at a frame rate of more than 30 Hz, and global

intensive optimization runs at less than 500 ms at the

end of the sequence. The reconstruction effect is

shown in Fig. 6. From the reconstruction results, we

can see that the real-time global attitude optimization

strategy is superior to the current most advanced

online reconstruction system, and the reconstruction

quality has reached the standard of off-line recon-

struction. Reconstruction has integrity, global align-

ment without obvious camera drift. Our algorithm has

high local precision of geometry and texture

reconstruction.

When the new key frame can not be successfully

aligned, the reconstruction system needs to be robustly

restored to the previous reconstruction area, i.e., the

track is lost and the fusion surface measurement is

canceled, as shown in Fig. 7. In order to show the

tracking failure, with the shade in front of the camera

shaking, the color image shows the effect of occlusion.

In this case, the fusion map basically shows no

transformation. The system can return to the previ-

ously scanned area to restore the rebuild area. Since

this method globally matches the new frame with all

existing data, it does not require time and space to be

associated. Thus, the reconstruction can be interrupted

and it can continue at a completely different location.

In Fig. 8, the time required for the reconstruction of

scene M1 is shown. When the hierarchical factor is

less than 8, our algorithm performs equivalent to the

Whelan algorithm; when the hierarchical factor

reaches 64, our algorithm runs faster than the Whelan

algorithm. We can see from this graph, the same scene

Table 3 Error analysis for

scene
Scene Df DR Dt RMS2D RMS3D

P1 8.185 9 10-9 2.550 9 10-7 3.337 9 10-7 4.793 9 10-7 3.233 9 10-9

P2 2.398 9 10-8 3.071 9 10-7 4.159 9 10-7 4.842 9 10-7 3.430 9 10-9

P3 2.294 9 10-8 3.539 9 10-7 6.457 9 10-7 4.755 9 10-7 4.007 9 10-9

P4 2.119 9 10-8 3.604 9 10-7 6.497 9 10-7 4.737 9 10-7 3.794 9 10-9

P5 2.876 9 10-10 2.993 9 10-7 2.320 9 10-7 4.828 9 10-7 3.717 9 10-9

Table 4 Quantitative comparison of several reconstruction

algorithms (error unit: cm)

M1 M2 M3 M4 M5 M6

DVO SLAM [21] 9.3 1.8 17.0 14.2 1.7 3.3

RGB-D SLAM

[22]

11.2 3.1 18.1 16.6 1.8 3.5

MRSMap [23] 21.3 23.2 18.9 89.3 222.1 199.2

Kintinuous 8.2 2.6 5.0 23.2 3.2 5.4

VoxelHashing [24] 2.4 3.1 3.0 2.3 7.9 6.6

Whelan method 1.9 2.5 3.1 2.2 1.8 2.1

LSD-SLAM [25] – – – – 1.5 1.6

Redwood 26.2 2.1 3.0 6.1 3.0 4.2

Our algorithm 1.7 1.2 2.9 1.1 1.2 1.5
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is reconstructed at the higher depth of hierarchical.

Our algorithm runs faster, that is, when the hierarchi-

cal depth increases, our algorithm draws in better

speed. The Whelan algorithm uses a uniform hierar-

chical depth for the irregular blocks of the initial

control grid, and the reconstruction effect is good, but

the block computation is large.

The Whelan algorithm allocates a certain GPU

storage space for each feature area, stores the

hierarchical table corresponding to the feature area,

it needs a sufficiently large vertex buffer to store the

vertex information of each slice. When a large

number of feature regions are repeated, the hierar-

chical table of each layer also increases, and the

memory occupancy rate increases. In order to

alleviate the occupancy rate of the GPU and

improve the reconstruction efficiency, our algorithm

uses the hierarchical optimization strategy to reduce

GPU memory footprint.

In Fig. 9, the reconstruction result is shown for M3,

M4,M7 scene, the number of singular points in theM8

scene is large, and these singular points have the same

topological characteristics. Our algorithm only estab-

lishes the hierarchical table for the first singular point,

and other feature points are reused in turn. The

reconstruction results show that our algorithm recon-

structs the complex scene in robust manner, while the

calculation is small.

Fig. 5 Comparison of

Whelan, Redwood and our

algorithm for convergence
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Fig. 6 System large-scale reconstruction map (depth grid, color map, fusion map). a Large scale scene M1 depth grid and

reconstruction graph, and b large scale scene M2 depth grid and reconstruction graph
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7 Conclusion

In this paper, an on-line 3D reconstruction method

based on global camera attitude updating is proposed.

By optimizing the trajectory of each captured frame, it

provides a robust tracking and implicit solution to the

loop closure problem. In the sparse feature and the

dense correspondence, the online SIFT feature extrac-

tion combined with the parallel nonlinear attitude

optimization framework make the system to solve the

global alignment problem in real time. The system

monitors the continuous optimization of the posture

flow, it also updates the optimization by dynamic

fusion and de-fusing. This algorithm is suitable for

real-time 3D reconstruction of large-scale scenes. The

reconstruction accuracy and integrity are better. For a

frame with resolution of 640*480, the average on-line

reconstruction time is 415 ms, and the ICP attitude is

estimated 20 times, with 100.0 ms, which is suit-

able for robot vision, AR/VR application and other

high-speed tracking area for the reconstruction of

visual scene.

Fig. 7 Reconstruction recovery of our system (M5 and M1)

Fig. 8 Time and space complexity comparison for reconstruction of large-scale scene
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