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Abstract It’s well known that rendering for a large

number of triangles with GPU hardware tessellation

has made great progress. However, due to the fixed

nature of GPU pipeline, many off-line methods that

perform well can not meet the on-line requirements. In

this paper, an optimized Feature-adaptive subdivision

method is proposed, which is more suitable for

reconstructing surfaces with repeated cusps or creases.

An Octree primitive is established in irregular regions

where there are the same sharp vertices or creases, this

method can find the neighbor geometry information

quickly. Because of having the same topology struc-

ture between Octree primitive and feature region, the

Octree feature points can match the arbitrary vertices

in feature region more precisely. In the meanwhile, the

patches is re-encoded in the Octree primitive by using

the breadth-first strategy, resulting in a meta-

table which allows for real-time reconstruction by

GPU hardware tessellation unit. There is only one

feature region needed to be calculated under Octree

primitive, other regions with the same repeated feature

generate their own meta-table directly, the reconstruc-

tion time is saved greatly for this step. With regard to

the meshes having a large number of repeated

topology feature, our algorithm improves the subdivi-

sion time by 17.575% and increases the average frame

drawing time by 0.2373 ms compared to the tradi-

tional FAS (Feature-adaptive Subdivision), at the

same time the model can be reconstructed in a

watertight manner.

Keywords GPU � Feature-adaptive subdivision �
Hardware tessellation � Rendering

1 Introduction

Nowadays, hardware tessellation shows a strong

ability in GPU (Graphics Processing Unit) graphics

pipeline [1, 17]. Researchers have proposed a variety

of offline rendering methods to adapt to this new GPU

rendering pipeline [14]. Stam [19] proposed a precise

calculation method for Catmull–Clark subdivision

surface in 1998. The subdivision surface was treated as

a parametric surface. The parametric surfaces adapted
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well to the patch processing mechanism of GPU

hardware subdivision unit, but Stam’s method could

not be used for the feature region such as arbitrary

vertices or creases, both the vertex and normals at

boundaries could not be exactly calculated bit-by-bit

due to the influence of feature space mapping. In order

to solve this problem, several approximate subdivision

methods were introduced. Vlachos et al. [21] proposed

a PN triangle method. Only the coordinates and

normals of the three vertices in each triangular patch

were used to create a cubic Bezier triangle. The PN

triangle appeared earlier than hardware tessellation,

but it was still suitable for the GPU hardware

tessellation pipeline. Although this method had

improved the rendering effect of triangular meshes,

the rendering rate decreased exponentially with the

increase of the number of triangular patches, PN

triangle was not the best method for representing the

approximate surface. Loop et al. [7] proposed that the

subdivision surface could be expressed as a bi-cubic

Bessel patch by inserting the vertices and tangent

planes that generated from Catmull–Clark subdivision

rule. The advantage of using the approximate Cat-

mull–Clark subdivision surface algorithm is that there

are many off-the-shelf tools for creating Catmull–

Clark control meshes, but the disadvantage is that the

resulting mesh is not crack-free. In 2008, Loop et al.

[8] proposed an ACC-2 (Approximating Catmull–

Clark) algorithm based on the Gregory block, which

was a fast method by inserting finite coordinates at

corners, smoother approximations were obtained at

other locations. However, the subdivision model

created by this approximation method still had incon-

sistency phenomenon. He et al. [4] proposed an

algorithm to reduce this inconsistency. Thus, the

hardware tessellation for watertight Catmull–Clark

surface rendering had become an important research

issue [12, 19, 24]. Nieener et al. [11] proposed a

Feature-adaptive subdivision method in 2012, which

was an algorithm for rendering Catmull–Clark surface

with crease edges. It combined the technology of

table-driven subdivision [5, 22] and hardware tessel-

lation. Schafer et al. [16] proposed a dynamic FAS

method in 2015, which assigned different tessellation

factors to the feature region, it greatly improved the

rendering speed. However, the decrease of subdivision

depth leads to the decrease of the rendering precision

in some feature region.

The traditional FAS method establishes the bi-

cubic B-spline patches only in feature regions so the

number of rendering patches are reduced. But when

the irregular region appears repeatedly, the conven-

tional FAS method will subdivide feature region to the

same depth one by one. Although the details of each

irregular region can be drawn accurately, the effi-

ciency of traditional FAS method will also be reduced

due to the large number of repeated cusps or creases.

In this paper, an improved Feature-adaptive subdi-

vision method is proposed based on Octree-primitive,

an uniform Octree-primitive data structure is establish

in feature regions which have the same arbitrary

vertices or creases. When these feature points appear-

ing repeatedly on the Catmull–Clark subdivision

surface, a set of Octree-primitives similar to the

structure of bi-cubic B-spline patches are build to

guarantee reconstruction precision, this uniform

Octree-primitive for a large number of repeated

feature points will improve the efficiency of hardware

tessellation. Then, the breadth-first strategy is used to

re-encode the meta-data, and the meta-table is gener-

ated to GPU hardware tessellation unit to realize the

fast reconstruction [15].

2 Related Work

2.1 GPU Hardware Tessellation Unit

GPU is modern graphics processor in a single

instruction and multiple data mode [3, 20]. Our

algorithm is designed upon the GPU to finish subdi-

vision for repetitive feature region, combining the

traditional CPU with GPU graphics pipeline to

achieve real-time reconstruction. GPU graphics pipe-

line is composed of five kinds of programmable

shaders, as shown in Fig. 1, in which the hull shader,

fixed pipeline tessellation and domain shader consti-

tute the GPU hardware tessellation unit. We use Direct

3D application programming Interface to do program-

ming in GPU [10, 24]. The principle of GPU graphics

pipeline is briefly described by five steps.

First of all, the vertex shader is responsible for

‘vertex-by-vertex’ operations. It receives an input

vertex and then produces an output vertex. It works

like an input streamline including coordinate trans-

formation, skinning, animation, and vertex lighting.
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Second, GPU hardware tessellation unit introduced

by Direct3D 11 is composed of three stages. They are

shell shading, fixed pipeline tessellation and domain

shading. Hardware tessellation receiving part of input

control vertices produces a large number of output

polygons. It’s able to save GPU memory. The simple

input mesh is converted into patch style in the stage of

hull shading. During this stage, a number of patch-by-

slice calculations is being done to guarantee the next

two sub-stages. Fixed tessellator consists of a fixed

pipeline function that subdivides a primitive (quadri-

lateral, triangle, or line segment) into smaller one.

These primitives are tiled in a canonical coordinate

domain. For example, a square domain is subdivided

into a series of squares. The domain shader outputs the

coordinate information for each vertices within the

patch.

Once again, the geometry shader is a new applica-

tion-specific stage introduced by Direct3D 10. It

generates new output vertices based on input vertices.

In this stage, the input is a primitive, and the output is a

set of vertices with the same topology. The outputs

will be attached to the stream object. For example,

triangular patches.

At last, pixel shader allows for pixel-by-pixel

output through constant, texture, interpolation and

something else, such as pixel-by-pixel illumination

and post-processing. The pixel shading program will

be executed once a time for each pixel by Raster

processor. It also can be programmed to skip this step.

2.2 Repeated Topology Surface

GPU hardware tessellation allows for high order

primitive. Especially parametric patches will be

mapped from quadrilateral or triangular mesh to

three-dimensional space. This step can be finished

by programming the hull shader and the domain

shader. According to the Catmull–Clark subdivision

rule [2], the algorithm subdivides the initial control

mesh repeatedly to obtain a smooth bi-cubic B-spline

surface. Repeated topology surface is a kind of bi-

cubic B-spline surface where a large number of feature

topology are repeated. The topology of the patch can

be a feature region containing arbitrary vertices or

crease edges, as shown in Fig. 2a. As the figure shows,

the pineapple model as well as the XO model consists

of a large number of repeating feature detail, which is

represented by repeated bi-cubic B-spline patches. In

Fig. 2b, the vertex mapping of the model is shown.

The symmetrical structure between adjacent meshes

can be clearly seen. Our algorithm performs real-time

subdivision rendering for this kind of feature surface

with repeated topological structure. The bi-cubic B-

Fig. 1 GPU graphics pipeline (Direct3D 11 pipeline). GPU

pipeline allows for real-time communication between CPU

applications and screen. GPU hardware tessellation unit is

composed of hull shader, tessellator and domain shader, in

which the hull shader and the domain shader are programmable.

We use Direct 3D application programming Interface to do

programming in GPU

3D Res (2017) 8:6 Page 3 of 16 6

123



spline surface is a segment mapping [9] between

0;mþ 1½ � and 0; nþ 1½ �:

Pðu; vÞ ¼
Xm

i¼0

Xn

j¼0

di;jN
3ðu� iÞN3ðv� jÞ: ð1Þ

di;j is a control vertex matrix for B-spline surface,

N3ðtÞ is a cubic B-spline basis function, and the cubic

polynomial curve is composed of four nonzero curves.

Since these basis functions are tangent continuous (C2

continuous), their linear combinations are still C2

continuous. Each bi-cubic B-spline surface is deter-

mined by 16 control vertices. The adjacent patches

own the same 12 control vertices, which are used to

determine the vertex coordinates and the normals at

the boundary. This makes it easier to construct a

repeating topology feature surface with continuous

curvature.

3 The Building of Octree Primitive

For the repeated feature region of initial mesh, a

corresponding Octree primitive is built to cover the

geometric information of the patch. The patches to

be subdivided store the primitive constant function.

The patch geometry information is composed of

three kinds of information, they are three-dimen-

sional vertex coordinates, displacement mapping

information and texture attributes of high-order

parametric patches. The primitive constant function

is used to generate a tessellation factor for the

feature region. For other recurring feature regions,

the first Octree primitive is used to generate their

own meta-table.

3.1 Octree-primitive Data Structure

The octagonal tree structure is used to convert the

feature region into a three-dimensional primitive

logically, as shown in Fig. 3a. The sub-primitive

region is established to correspond to each subdivision

level, as shown in Fig. 3b. The access to each sub-

region keeps corresponding to the subdivision around

arbitrary vertices. The algorithm uses the index pointer

and octal-linear codes to build the Octree-primitive.

The codes are written into GPU hardware tessellation

unit to drive reconstruction.

There are several steps will be done to keep the

Octree-primitive topology matching with the feature

region. First of all, the irregular patches are stored as a

triangular patch table, which is used to store the

property of patches. Second, the index list is used to

make the tree-shaped topology list converting into a

Octree-primitive structure, as shown in Fig. 4. Each

node contains eight data elements representing the

sub-primitive. While all the vertices in the sub-

primitive have the same texture information, the

vertex geometry information is stored into the corre-

sponding data element. While the arbitrary vertice is

included into the element, the corresponding data

element holds a pointer to the next sub-primitive.

At last, the octal-linear method is accomplished to

encode the Octree-primitive index list. The vertex

information for the next stage of the algorithm is

generated based on the index list. Octree-primitive

Fig. 2 Repeated topological feature model. There are a large

number of repeated feature points on the surface of XO and

pineapple. These feature details are represented by repeated bi-

cubic B-spline patches. The graph shows the 2D distribution of

the vertices in repeated feature region, the symmetrical structure

between adjacent meshes can be clearly seen. a XO model and

pineapple model. b The 2D mapping of repeated region
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data structure is shown in Fig. 5. Octree primitive

construction procedure is shown in Fig. 6.

The octal-linear coding in the primitive list is to

facilitate the geometric transformation. It is time-

saving for the shader to get the primitive data quickly

before transferring to GPU hardware tessellation unit.

Each node has the same code length. According to the

sub-primitive code, its parent-primitive code as well as

the local origin coordinate can be generated. These

coordinates include eight vertices among Octree-

primitive owning arbitrary vertices with the smallest

coordinate values.

3.2 Octree-primitive Access Operation

3.2.1 The Octree-primitive Being Inserted

into the Index Table

First, the index value corresponding to the Octree-

primitive block is calculated, and the target sequence

Fig. 3 Three-dimensional Octree primitive model (arbitrary

vertice valence 3). The subdivision details are shown level-by-

level in an Octree-primitive area, colors denote different

subdivision levels. A subordinate primitive is highlighted to

display the patches around an arbitrary vertex in local

coordinate. a Octree-primitive, b sub-primitive region. (Color

figure online)

Fig. 4 Octree-primitive index list. Each node contains eight

elements representing the sub-primitive, when all the vertices in

the sub-primitive have the same texture information, the vertex

geometry information is stored into the corresponding element.

The arbitrary vertice is also been included into the element, the

corresponding data element holds a pointer to the next sub-

primitive
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is determined. Second, the sequence is traversed,

including the list attached to the sequence. When an

element with the same position as the world coordinate

is found, an index is returned, otherwise, the first null

position in the sequence is searched. When a position

in the sequence is available, a new Octree-primitive is

inserted. Finally, when the sequence is full, the voxel

item is appended to the linked list of the sequence, as

shown in Fig. 7.

When the GPU inserts the Octree-primitive into the

sequence in parallel, in order to avoid the preemptive

phenomenon, when an Octree-primitive finds an

empty position, the algorithm locks the sequence

where the Octree-primitive is located, and other

primitives can not be written. When the sequence is

locked to write, the allocation of other Octree-

primitives within the sequence is slow down until

the processing of the next frame of data begins. In this

paper, it is proved that because the volume recon-

struction method supports the sequence-independent

updating, the slight delay does not cause the recon-

struction quality to decrease.

3.2.2 Reading the Sub-Primitive from the Index Table

In order to find the position of the sub-primitive in the

index table, firstly, the index address value of the sub-

primitive is calculated; secondly, linear traversal is

carried out in the sequence according to the index

value; when the specified item is not found in the

sequence, Finally, since the deletion of the primitives

causes fragmentation to occur, the traversal will be

repeated until the empty position is found.

Fig. 5 Octree-primitive data structure

Fig. 6 Octree-primitive

construction procedure. Our

algorithm improves the FAS

by converging repeated

feature regions to an

uniform Octree-primitive.

Three steps are being done

to construct the Octree-

primitive, as shown in

purple box. (Color

figure online)
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3.2.3 Delete the Sub-primitive in the Index Table

Similar to the insert operation, for a given world

coordinate position, we first calculate the index

address value, then traverse the sequence correspond-

ing to the sub-primitive linearly (including linked list).

Then, when the specified sub-primitive is found and

the primitive is not linked, the index entry is deleted.

When the sub-primitive is the last element of the

sequence and there is a non-zero offset indicating that

the primitive is the head of a linked list, the address of

the index entry being pointed by the offset is copied to

the sequence, and removes the sub-primitive from the

sequence. Finally, due to the modification of the linked

list, the algorithm locks the sequence and delays the

associated operations of the linked list, specifying the

next frame position.

3.3 Primitive Constant Function

The primitive constant function is used to generate

tessellation factor for each irregular region, which is

divided into two types of regions including triangle

and quadrilateral. The number of vertices outside of

the triangle is 3, and the vertices outside of the

quadrilateral is 4. Similarly, the number of vertexes

inside the triangle is 1, and the number of vertexes

inside the quadrilateral is 2. Two regions own different

numbers of edges and vertices. The connection

between regions is determined by transform patches.

In order to achieve seamless connection between

patches, tessellation factor of the irregular region must

be consistent with adjacent patch.

During the stage of GPU hull shading, a dynamic

tessellation factor is assigned to each patch. The

simple mesh is converted into a patch, and the data

needed for tessellator and domain shader is computed

patch-by-patch. Tessellation factor being used to

control seamless connection as well as the subdivision

depth. The octree structure is used to logically fit the

depth and irregularity of the patch. The vertex of the

octree is correspond to the arbitrary vertice in feature

region. The new vertexes born from each subdivision

level is correspond to the vertices on the octree. The

maximum subdivision depth of GPU is 6. The

subdivision depth to each feature vertex is determined

by the layers of octree, then the dynamic subdivision

factor is generated. The algorithm set the tessellation

factor as t, subdivision depth as d. According to the

type of octree-primitive, there are three kinds of

calculation. First, if there are arbitrary vertices with

valence three, then d is 3, and t is 8. Second, if the

Fig. 7 Octree-primitive

access operation. When

multiple primitives are

mapped to the same index

cell, a conflict occurs. In this

paper, the indexing unit is

divided into a sequence of

multiple spatial voxels, each

of which is assigned a

unique indexed address.

Each sub-primitive

corresponds to a unique

voxel of world coordinates.

While a collision occurs, the

pointer of the sub-primitive

is stored in the next

unoccupied memory

location in the sequence

3D Res (2017) 8:6 Page 7 of 16 6

123



valence is 5, then d is 6, and t is 32. At last, if there are

crease edges, then d is 5, and t is 32.

4 Breadth-first Strategy

4.1 Meta-table Generation

The algorithm uses the top-down, out-in strategies to

access the data element of octree primitive. Since the

primitive is represented by the index list, we only need

to get the pointer to access each feature primitive and

the geometry information toward each feature vertex.

The access sequence is stored in the meta-table for

next GPU stage. The access numbers are generated

from Catmull–Clark subdivision rule, as shown in

Fig. 8.

The control points are subdivided to generate

Catmull–Clark surface in feature region. The initial

control points being encoded by 0–15 numbers are

correspond to 16 control vertices on the Octree-

primitive, as shown in Fig. 9. Three groups of access

sequences are presented based on the breadth-first

strategy toward the octree structure of feature region.

The sequences being stored into meta-table are cor-

respond to the points of face, edge and vertex. Our

algorithm achieves the real-time subdivision through

the meta-table programming the domain shader which

is a part of GPU hardware tessellation unit.

4.2 Meta-table Structure

According to the access sequences which is produced

from the breadth-first strategy, meta-table is created

for each patch during the pre-processing stage. Since

the Octree primitive is established to match the feature

region topology, the geometry information of vertex

being stored into meta-table have been ordered in

subdivision rule. Each element in the meta-table rep-

resents a control point number for patches to be

subdivided. GPU domain shader gets the geometry

information of vertexes based on the control point

number. The level-by-level subdivision is being done

by the fixed tessellator. The algorithm is going into the

next stage of GPU rendering pipeline.

The meta-table is stored as a texture map in RGB

format [6]. The d row texture includes the texture

information of the d level patches which is used to

produce the indices of the patches in d þ 1 level, as

shown in Fig. 8. For an ordinary edge point E with

depth 2, three values need to be find including (2,0).r,

(2,0).g, (2,0).b. These three values being contained

with the index of the four vertexes in the patch texture

contribute to the ordinary edge in the template; for an

ordinary vertex point V . The values including (3,0).r,

(3,0).g, (3,0).b, (3,1).r, (3.1).g, and (3.1).b need to be

find, these six values being contained with the index of

the seven vertexes in the patch texture contribute to the

ordinary vertex in the template. For an boundary edge

point E1 with depth 4, only two values need to be find,

they are (4.0).r, (4.0).g.

The algorithm specifies the maximum degree of

vertices as eight. In this way, the first nine RGB

channels can satisfy the largest Catmull–Clark subdi-

vision template. The template type is stored in the

tenth channel. The eleventh channel is for markings

such as subdivision level information, crease edge and

boundary information. The first row of meta-table cor-

responds to a vertex with degree n in the center

position, which is determined by the adjacent n

Fig. 8 Encode for an Octree-primitive around the arbitrary

vertex with a valence of three. Colored squares show vertex

points in red, face points in green, and edge points in yellow,

based on the rules of Catmull–Clark. (Color figure online)

Fig. 9 Control points in Octree-primitive. Octree-primitive

encoded by different kinds of vertex, it’s 3D version of Fig. 8,

omitting the number of colored points. (Color figure online)
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vertices as well as itself. The location of vertexes

keeps in queue in the GPU memory, so the other vertex

locations are been obtained through ascending order.

The first row of the meta-table can be omitted.

While a new subdivision hierarchy is added, the

index for the new vertex is simply appended to the

meta-table. The d level meta-table owns more items

than the d � 1 level. When the meta-table reaches the

maximum subdivision level, all lower-level indices

are available.

5 Algorithm Overview

This presentation is composed of two stages including

preprocess and hardware tessellation stage. In the first

stage, we get the initial 3D model from depth sensor.

Then, the model is divided around the arbitrary

vertexes as well as the crease boundary edge to

produce patches for hardware tessellation. The Octree

primitive is used to generate the meta-table based on

the feature patches divided before, while the same

Octree-primitive is used to the repeated feature region.

Then the vertex information in the initial control mesh

are transferred to the GPU hull shader together with

meta-table.The hull shder dispatches a thread to each

patches. Every input vertexes share the same hull

shading program among patches. The number of input

vertexes is limited to 32. In the second stage, each

feature mesh is subdivided by the GPU tessellator, and

the newly generated vertex is calculated as the input of

GPU domain shader. Domain shader processes the

properties of vertex including texture coordinate as

well as tangent information based on the tessellation

factor, then outputs the mesh. Finally, GPU rendering

pipeline is used to draw the final model.

The processing stages between CPU and GPU is

shown in Fig. 10. The control mesh is divided into

ordinary patches and feature patches. The patches are

continuously subdivided in the GPU pipeline (parallel

processing in multi-channel GPUs). The final patches

strictly matching boundaries can be directly rendered.

The preprocessing stage is done in CPU, while the

subdivision is performed in GPU hardware tessellation

unit. The data for reconstruction is stored in the frame

buffer. During the process of rendering, the data

transferring between CPU and GPU is finished by five

steps. In the first step(preprocess stage), the feature

patch and the meta-table are transferred from the CPU

memory to graphic memory in the form of texture, as

shown in Fig. 9. In the second step(tessellation stage),

the patches to be subdivided are obtained from graphic

memory through the indices accessing from meta-

table. The new vertices boring from Catmull–Clark

rule are transferred to frame buffer. In the third step,

the vertex information is transferred from frame buffer

to texture unit for the next time of subdivision. In the

fourth step, according to the tessellation factor, the

feature patch is subdivided to the maximum level. The

data being ready to render the finial mesh is delivered

back to CPU memory. In the last step, the information

including vertex data, normal vector, illumination

parameters and displacement mapping data are trans-

ferred to GPU graphic pipeline for reconstruction.

6 Results and Discussion

6.1 Experimental Environment

Operating System: Windows 8.1

Programming language: C ? ? .

Development tools: Microsoft Visual Studio 2014.

3D graphics programming interface: Direct3D 11.

CPU type/frequency: INTEL Core i5/3.0 GHz.

Memory: 8G.

Graphics Processors: NVIDIA GTX 960 [13], GTX

960 graphics processor owns 11 pixel pipeline,

support OpenGL4.4/DirectX11 [11].

Depth sensor: Asus Xtion Pro,RGB-D 30 Hz.

6.2 Simulation Test

6.2.1 Comparison to FAS for Refinement

The base model is composed of quadrilateral meshes

including 11,724 triangular patches, as shown in

Fig. 11a. The feature region is surrounded by a

rectangular box, and the zoom picture shows that the

arbitrary vertices appear in the irregular region near

the cusp. The octagon primitive is emphasized by the

grad hexagon mark. An Octree-primitive is produced

from this octagon patch. The GPU hardware tessella-

tion unit is driven by the meta-table generated from

Octree-primitive. The result of rendering shows that

our algorithm is similar to FAS. The differences
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between two algorithm can not be distinguished by

naked eyes.

In Fig. 11b, the time required to render the hair

dryer model is shown by using traditional FAS

algorithm, Stam algorithm and our algorithm. When

the tessellation factor is less than 8, our algorithm is

equivalent to FAS algorithm. When the subdivision

factor reaches 64, our algorithm draws faster than FAS

algorithm. The histogram shows that when the same

model is drawn under a higher subdivision depth, our

algorithm is more outstanding than the FAS. That

means the more deep the subdivision done, the more

quick our algorithm subdivided. The result shows that

the classical FAS algorithm uses a uniform subdivi-

sion depth for every irregular patches, and the

rendering efficiency plays well, but the patch compu-

tation is larger. Our algorithm extends the traditional

FAS algorithm, the Octree-primitive matches the

irregular blocks in repeated regions efficiently. The

matching result plays better than FAS. The

Fig. 10 The reconstruction

framework. The pre-

processing stage is done in

CPU, while the subdivision

is performed in GPU

hardware tessellation unit.

The data for reconstruction

is stored in the cache and

GPU memory

Fig. 11 a Rendering of the hair dryer model. The hair dryer

mesh is rendered by our algorithm, the zoom region shows an

irregular patch corresponding to an Octree-primitive in red

color. b Comparison of three algorithms in different tessellation

factor applied to the hair dryer model
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computation of our algorithm is small and the

rendering effect is more realistic.

6.2.2 Comparison to FAS for Memory Requirement

The traditional FAS algorithm allocates a certain

amount of GPU memory for each feature region to

store the subdivision table. It also needs a large enough

buffer to store the vertex information of each level. So

when the feature region repeats normally, the subdi-

vision table and the number of vertex in each

subdivision level will be increased. The GPU occu-

pancy is increased. In order to reduce the occupancy

rate of GPU and improve the efficiency of rendering,

Our algorithm distributes an uniform Octree-primitive

to the repeated feature region, reducing the memory

space occupied by GPU and CPU for large amount of

data transferring.

See from the Fig. 12a, the memory requirement of

models including XO model, candlestick model, vase

model, pineapple model and hair dryer model (see

Fig. 13) are shown in different subdivision depths.

The memory occupied by our algorithm is not

significantly increased when the number of repeated

cusps or creases on the model is increased.

In Fig. 12b, both algorithm is used to subdivide the

pineapple model and the XO model. The result shows

that when the arbitrary vertice or crease edge appears

repeatedly. Our algorithm’s GPU occupancy rate is

also been reduced. It is mainly due to the GPU hull

shader programmed to the repeated feature of the

different patches in uniform processing saving the

GPU cache memory. Therefore, our algorithm ensures

real-time rendering more efficiently. The GPU cache

is used to maximize when complex high-order model

being rendered.

6.2.3 Comparison to FAS for Render Time

Our algorithm and FAS algorithm are applied to the

four kinds of rendering models. The rendering result is

shown in Fig. 13. The number of irregular patches

being rendered is calculated to evaluate the processing

ability of two algorithms, as shown in Table 1. XO

model is composed of 40,640 quadrilateral patches.

The pineapple model is composed of 50,210 quadri-

lateral patches. The candlestick and vase model are

composed of 19,166 and 29,280 patches. These

models with significant repeating topological charac-

teristics are rendered to evaluate the render time of two

algorithms, which can effectively evaluate the render-

ing ability.

In Fig. 13a, XO model is the model with the largest

number of repeated crease edges compared with the

other four models. The subdivision time of the XO

model is about 0.5 ms per frame, and the FAS

algorithm is about from 0.5 to 0.6 ms. Since the FAS

algorithm uses the same subdivision depth for each

feature region, the subdivision time will be increased

when the crease edge is repeated in large area.

Contrast to the traditional FAS method. Our algorithm

using an uniform Octree-primitive to match the feature

region is more competent for the rendering of surfaces

with large number of repeated features such as

arbitrary vertices or crease edges.

Fig. 12 Comparison of GPU memory requirement. a GPU memory requirement of rendering five kinds of models using our algorithm.

b Comparison between our algorithm and FAS in memory requirement for XO and pineapple model
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Fig. 13 Comparison between our algorithm and FAS method in rendering performance
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Similarly, in Fig. 13g, the pineapple model con-

tains the largest number of arbitrary vertices compar-

ing with other three modes, and these arbitrary vertices

repeat the same topological structure. In our algo-

rithm, the Octree-primitive is constructed only for the

first feature region containing arbitrary vertices. The

render time will be more reduced when the repeated

region is more complicated in topology. The experi-

mental result shows that the overall rendering time of

our algorithm is 0.2 ms less than that of FAS.

Analysis of the data in Table 1 leads to the

following conclusions. First, in spite of the additional

time spent to the construction of Octree-primitives,

our algorithm performs better than that of FAS in

terms of the subdivision time for repeated feature

regions. Second, four kinds of models with repeated

topological characteristics are selected to compute the

sub-time between the FAS algorithm and ours. The

more repeated feature the model owns, the faster the

model is drawn by our algorithm.

6.3 Reconstruction result

In this presentation, our algorithm performs high-

quality 3D reconstruction at higher frame rates, as

Table 1 Comparison

between our algorithm and

FAS in terms of subdivision

and render time for the

models shown in Fig. 13

(ms)

Model XO Vase Pineapple Candlestick

Base patches 1882 1550 2260 1310

Feature patch 872 742 902 664

Feature vertex 398 274 480 244

Algorithm FAS Ours FAS Ours FAS Ours FAS Ours

Render time 0.623 0.562 0.611 0.536 0.687 0.624 0.627 0.58

Subdivision time 0.576 0.392 0.391 0.258 0.598 0.388 0.388 0.212

Sub-time 0.245 0.208 0.273 0.223

Draw total 1.199 0.954 1.002 0.794 1.285 1.012 1.015 0.792

Fig. 14 Desk scene used to

compare the performance of

several reconstruction

system. a Whelan algorithm,

b Whelan algorithm (4mm),

c Newcombe algorithm,

d our algorithm
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shown in Fig. 14d. The large-scale dense fusion

algorithm has a more coarse voxel resolution [25], as

shown in Fig. 14a with yellow rectangle, but there is

voxel loss (shown in Fig. 14b). The layer volume

algorithm [26] results in a larger number of voxel

blocks and the overall reconstruction quality is

reduced (as shown in Fig. 14c). Because the recon-

structed quality of dense fusion algorithm is limited by

the small spatial extent of the moving volume, some

sensor data are not completely integrated beyond the

range. The poor frame rate of the hierarchical fusion

algorithm causes the input data to be skipped, which

affects the accuracy of attitude estimation. Inaccurate

surface fusion and drift phenomena occur.

In a variety of lighting conditions, multiple scenes

are taken and the performance of the reconstruction

system based on our algorithm is tested, as shown in

Fig. 15. The reconstruction of dining room about 3 m

high (16 m2) takes about 5 min, the reconstruction

time of 12 m long office room is 4 min. The average

reconstruction rate of these large-scale scenes reaches

30 Hz, and the proposed algorithm performs well in

reconstruction quality and rate.

The average time of reconstructing is 21.6 ms, the

ICP posture is estimated 15 times, the time spent

8.0 ms, accounting for 37% of the total reconstruction

time, the surface fusion is 4.6 ms (21%), the surface

extraction took 4.8 ms (22%), Ms (20%).

Fig. 15 Scenes used to test the performance of our reconstruc-

tion system. aThe dining room reconstruction is shown from top

view, the reconstruction quality is acceptable trading off with the

reconstruction speed. This large scale scene is composed of

199,958 faces, and the right screenshot shows the depth map,

normal map, fusion map and zoom map. b The office room is

reconstructed from top view, the reconstruction quality is

acceptable trading off with the reconstruction speed. This large

scale scene is composed of 249,505 faces, and the right

screenshot shows the depth map, normal map, fusion map and

zoom map. (Color figure online)
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7 Conclusions

In this paper, a feature-adaptive subdivision method is

presented based on GPU hardware tessellation, and an

reconstruction framework based on GPU hardware

acceleration and depth Sensor is performed in real-

time. The optimized algorithm establishes an unified

Octree-primitive for the repeated feature regions

including arbitrary vertices or crease edges without

causing additional reconstruction time. It is particu-

larly efficient for drawing the surfaces with a large

number of repeated area. For example, the reconstruc-

tion of tiles ground with similar structure, hedgehogs

in animated models, and plant in botany representa-

tions. Under the development of GPU hardware

tessellation, real-time reconstruction for repeated

feature regions appears to be more important. In the

near future, the new method based on hardware

tessellation will be widely used in mobile devices,

and the 3D reconstruction technology based on our

algorithm will be more prospective in the field of

mobile graphics.
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