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Abstract Off-line reconstruction of rigid scene has

made a great progress in the past decade. However, the

on-line reconstruction of non-rigid scene is still a very

challenging task. The casting process is a non-rigid

reconstruction problem, it is a high-dynamic molding

process lacking of geometric features. In order to

reconstruct the casting process robustly, an on-line

fusion strategy is proposed for dynamic reconstruction

of casting process. Firstly, the geometric and flowing

feature of casting are parameterized in manner of

TSDF (truncated signed distance field) which is a

volumetric block, parameterized casting guarantees

real-time tracking and optimal deformation of casting

process. Secondly, data structure of the volume grid is

extended to have temperature value, the temperature

interpolation function is build to generate the temper-

ature of each voxel. This data structure allows for

dynamic tracking of temperature of casting during

deformation stages. Then, the sparse RGB features is

extracted from casting scene to search correspondence

between geometric representation and depth con-

straint. The extracted color data guarantees robust

tracking of flowing motion of casting. Finally, the

optimal deformation of the target space is transformed

into a nonlinear regular variational optimization

problem. This optimization step achieves smooth

and optimal deformation of casting process. The

experimental results show that the proposed method

can reconstruct the casting process robustly and

reduce drift in the process of non-rigid reconstruction

of casting.

Keywords Non-rigid � Online reconstruction �
TSDF

1 Introduction

In recent years, with the introduction of depth sensors,

researchers began to study high-speed algorithm of 3D

reconstruction. Newcombe et al. [1] proposed an

effective method to reconstruct 3D scene in real-time,

but his method is usually interfered by noise.

Researchers have improved the underlying data

structure and the depth fusion feature of 3D recon-

struction algorithm, a variety of reconstruction meth-

ods [2–4] are presented to provide high quality

reconstruction [5].

These methods are able to reconstruct static scene

effectively, but these methods can not reconstruct
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non-rigid scene. However, the non-rigid reconstruc-

tion is widely used in industrial field. At present,

there are many geometric-tracking methods, either

multi-view camera or single RGB-D camera is used

for reconstruction in these methods [6]. These

methods need initial template for tracking, then the

template must be updated according to geometric

details. This object-specific template limits the

applicability to static scene, it is often difficult to

reconstruct dynamic scene in practice. To this end,

researchers present the template-free method [7], but

the real-time performance of reconstruction can not

be guaranteed.

Recently, the Dynamic Fusion method proposed by

Newcombe et al. can reconstruct the implicit surface

and deal with the reconstruction and tracking problem

of the hard joint model at real time [8]. The algorithm

achieves detail reconstruction of non-rigid scene.

However it is also limited by reconstruction time.

Because the color information is omitted, the tracking

strategy can not effectively track the tangential

motion. And the depth only strategy is also easy to

generate cumulative error. To solve this problem, this

paper uses sparse RGB feature to improve the tracking

robustness.

Our algorithm captures discrete and subtle shape

deformation by dynamically tracking the scene, rather

than using rough deformations. ARAP (as-rigid-as-

possible surface modeling) [9] is applied to the spatial

region of the embedded surface, and it is combined

with the automatically generated volumetric block to

extract the geometric complexity. Volumetric block is

an effective multi-resolution deformation control

field, it is build to solve the nonlinear optimization

problems. Finally, the robust alignment is achieved by

the correspondence of sparse SIFT, reducing the drift,

and realizing the stable tracking of the motion of

casting process. The main innovations of the non-rigid

reconstruction method proposed in this paper are as

follows:

1. A dense surface volumetric representation method

is presented to parameterize the geometric surface

and the motion of casting.

2. The globally sparse SIFT correspondence is build

to achieve robust loop-closed-tracking.

3. The optimization strategy of space deformation is

designed to solve the real-time tracking problem

in the non-rigid alignment process.

2 Related Work

The static reconstruction method based on RGB-D

scanning is divided into point-based representation and

grid-based representation method [10]. Following the

development of depth sensors, the implicit surface are

normally used for reconstruction [11]. The implicit

surface can effectively regularize the noise of low-

resolution data. Based on this surface representation,

there has been a way to reconstruct geometric details in

real-time. For example, the static reconstructionmethod

proposed by Newcombe et al. in 2011 captures the

truncated signed distance field (TSDF) to achieve dense

reconstruction of the scene at sensor rate [12].

Rusinkiewicz et al. proposed iterative closest point

(ICP) algorithm that can perform model-to-frame

tracking in real-time [13]. Steinbruecker et al. proposed

amulti-resolution reconstruction algorithm that extends

surface representation to larger volumetric reconstruc-

tion [14]. In recent years, on-line reconstruction meth-

ods are mostly based on sparse feature tracking, motion

structure and multi-view combination. They are inte-

grated into a signed distance field to achieve the on-line

reconstruction of geometric surface [15–17].

These static reconstruction methods perform well

for solid scenes, they still can not be adapted to non-

rigid reconstruction. In order to do dynamic recon-

struction, several methods are proposed to track non-

rigid deformation in real-time. For example, Collet

et al. [18] proposed the use of multiple RGB or depth

inputs to achieve non-rigid tracking of certain types of

objects. Guo et al. [19] also proposed a template-based

approach for tracking deformed mesh. Garg et al. [20]

proposed a non-rigid self-motion method that captures

the deformation geometry of RGB video, whereas the

reconstruction results are rough. Thus, non-rigid

reconstruction methods compensate the deficiency of

traditional static reconstruction method. For example,

Li et al. [21] proposed a non-rigid method to track

deformation of objects, the objects is scanned by

RGB-D camera, but an initial step is needed to

integrate the static templates before reconstruction. To

this end, template-free method is proposed for tracking

of moving scene in real-time [22]. Most of these

tracking methods are based on empirical analysis of

captured motion. Therefore, in addition to the time

problem, the drift and over-smooth are also a long

input sequence problems. DF method uses RGB-D
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input to reconstruct non-rigid scene. The method uses

sparse deformed graph to achieve the optimization of

the non-rigid motion.

The works of Agudo et al. [23–27] and others [28]

provide online solutions for the dynamic domain,

using exclusively a sequence of RGB images. It is

worth noting that the Non-Rigid reconstruction meth-

ods proposed by Agudo et al. can run even in real time

at frame rate of 30 Hz.

Most of these methods reconstruct non-rigid scene

such as people or objects, they can not reconstruct the

process of casting. In this paper, TSDF is embedded

into the deformation of casting, color features are used

for matching correspondence between frames, these

features are also used as global anchors to reconstruct

casting.

3 System Outline

We use an RGB-D sensor running at 30 Hz frame rate

to capture the frame sequence of casting. The color

and depth image are captured in resolution of

640� 480. The truncated signed distance field

(TSDF) is used for parameterizing the geometry and

deformation feature of casting [29] (see Sect. 4). The

geometric and color information of casting are stored

in its undeformed mesh. In order to define the rigid

transformation of each voxel, the deformation field is

stored at the same resolution as TSDF. In each input

frame, the deformation field is continually updated and

the new RGB-D image is integrated into an unde-

formed shape. The reconstruction pipeline of our

method is shown in Fig. 1. The polygon mesh of shape

P is first generated, which is the isometric surface of

the current deformation field. Then, the correspon-

dence between P and depth graph is matched robustly

based on the sparse RGB feature and the dense depth

data (see Sect. 5). The space deformation is adjusted

to match the best correspondence. The update of the

deformation field is repeated in iterative closest point

(ICP) manner. Next, the depth and color data of each

captured frame are integrated into the TSDF. In each

reconstruction step, a data parallel iterative strategy is

used for solving the high dimensional nonlinear

optimization problem of space deformation (see

Sect. 6). Finally, the non-rigid reconstruction of

casting is done in real-time, the comparison is made

between the advanced methods (see Sect. 7).

4 Deformation Field with Temperature Feature

We reconstruct non-rigid scenes by combining sur-

face reconstruction and motion tracking. In this

paper, the truncated signed distance function (TSDF)

is used for representing the initial undeformed model,

and the deformation field is used for tracking motion.

First, the model is initialized through regularization

of volumetric grid, the points of grid are saved in

index table. Each grid point stores six properties, the

first three properties are truncated signed distance of

Di 2 R, color values Ci 2 ½0; 255�3 and confidence

weights Wi 2 R. The function values of D at the zero

point represent undeformed meshes, which are

referred to as canonical gestures. The essence of our

deformation is the newly acquired depth data is

continuously fused into this canonical frame and the

D is updated according to the confidence weight to

achieve non-rigid deformation. The last three proper-

ties store the information of the current space defor-

mation. For each grid point i, the position of the

deformed point is stored in ti, the current rotation angle

is stored in Ri (3 Euler angles), and the temperature

value of the point is stored in Ti. The improved data

structure with the temperature property is shown in

Fig. 2.

In this paper, the temperature interpolation function

is proposed to calculate the temperature field of

casting, the temperature field refers to the change of

the temperature with time or space. The finite element

method [30, 31] is used for establishing the temper-

ature function (T) of the voxels of casting. The four

vertexes of voxel are numbered according to right

hand criteria in clockwise direction, see Fig. 2. The

calculation of the temperature field during the casting

process is defined as follows:

T ¼ NiTi þ NjTj þ NkTk þ NlTl ð1Þ

in which, Ni;Nj;Nk;Nl is the shape factor, which

defined as follows:

Ni ¼
1

6V
ðai þ bixþ ciyþ dizÞ

Nj ¼
1

6V
ðaj þ bjxþ cjyþ djzÞ

Nk ¼
1

6V
ðak þ bkxþ ckyþ dkzÞ

Nl ¼
1

6V
ðal þ blxþ clyþ dlzÞ

8
>>>>>>>><

>>>>>>>>:

ð2Þ
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Fig. 1 Reconstruction pipeline of our method. The polygon

mesh of casting is first generated, which is the isometric surface

of the current deformation field. Then, the correspondence

between model and depth graph is matched robustly based on

the sparse RGB feature and the dense depth data
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in which, ai�l; bi�l; ci�l; di�l is constant value, V is the

volume of voxels. Ti; Tj; Tk; Tl is the pouring temper-

ature of points.

When the metal liquid is poured into the cavity,

pouring temperature (T) refers to the temperature of

the metal liquid. This temperature is composed of two

parts: liquidus temperature (Ty) and super-heat (Tg).

Liquidus temperature is determined by the chemical

composition of the metal liquid itself. The chemical

compositions of the metal liquid used in this paper are

as follows: 3.6% C, 0.1% Cu, 0.036% Mg, 0.15% Mn,

0.007%Mo, 0.029% Ni, 0.016% P, 0.02% S, 2.65% Sn

[32]. The liquidus temperature is calculated as follows:

Ty ¼ 1538�
X

i¼chemical
composition

aiwi ð3Þ

in which, ai ¼ ac; acu; aMg; aMn; aMo; aNi; ap; aS; aSn, it

is the temperature coefficient of the chemical compo-

sition.wi ¼ wc;wcu;wMg;wMn;wMo;wNi;wp;wS;wSn, it

is the ratio of chemical composition contained in the

metal liquid. 1538 is melting point of pure iron. Based

on the pouring temperature of each points, the

temperature of casting is computed by the formula

(1), the computed result is stored as a property of

TSDFwhich is integrated into the deformation field. In

this paper, we get the temperature of casting after

matching correspondence.

At the top of the deformation field, the rotation

angle (R) and displacement (t) are defined to simulate

the global motion of the scene. Each grid point is

initialized to zero, except for the position of ti, and ti is

initialized as the displacement of regular grid. Unlike

the dynamic fusion method, the regular volumetric

mesh g is more close to the shape of the real scene, it is

more suitable for dynamic relocation of the spatial

position of the non-rigid object. The property values of

the grid points are obtained by tri-linear interpolation.

The change of the position of the points is achieved by

the space deformation function:

SðxÞ ¼ R � ð
Xlength

i¼1
aiðxÞ � tiÞ þ t ð4Þ

in which, length is the number of points, aiðxÞ is the tri-
linear interpolation weight. P is the current deformed

surface, P ¼ sðP̂Þ.
We get P̂ from the volumetric block, the deforma-

tion is applied to the grid point. First, a thread for each

Fig. 2 Space deformation with temperature property. The four nodes of the voxel (e) are defined by the direction of the

counterclockwise and right-hand helix, the temperature properties of point are saved as a tuple in data structure
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grid cell is used for extracting the final set of triangles.

The resulting vertex is deformed immediately accord-

ing to the current deformation field, and the P is

obtained. The deformed grid is used for matching

correspondence. The algorithm steps are as follows:

5 Matching Correspondence

The deformation field is updated by matching

correspondence between the current shape P and

the new frame. The new frame consists of depth data

and color data. The dense depth-correspondence is

obtained through data-parallel projection (see

Sect. 5.1); The sparse color-correspondence is

obtained through RGB data (see Sect. 5.2). Since the

sparse color descriptors do not change with space

deformation, it is used as a global anchor for dynamic

and robust tracking of deformation targets. The

matching process with temperature feature is shown

in Fig. 3.

5.1 Dense Depth Correspondence

Depth correspondence is established by fast projection

association steps. Different from the traditional

method, we extract a mesh-based isosurface (S) and

rasterize it, then, the sample points (Sc) of the current

isosurface is obtained. Each Sc is projected into the

current depth map (Dt), the sample points are read at

the projection position to generate a correspondence

between Sc and Sac . In order to measure the similarity,

we calculate their world spatial distance ( Sc � Sac
�
�

�
�
2
)

and the normality of the normals (Sc � Sac).
In order to ensure the accuracy of reconstruction,

we set three thresholds: distance (ed), normal offset

(en) and camera angle (ev). The correspondence is

filtered by setting the confidence of the correspon-

dence to zero (wc ¼ 0). The confidence of the

correspondence is computed by formula (5):

Step1. )(Slengthm =
if 0=m then
//initialize the deformation field according to the initial camera attitude

0
1

0

=
+=

=
mm
tS g

m

iPP =
Step2. for i to )(Plength //add a new node to the deformation field

if ktt lasti >− 2 then

ilast

i
g
m

PP
mm
tS

=
+=

=
1

Step3. end

input. P //deformed camera attitude map represented by R and t
i //latest added point
k //pouring rate

output. S //deformation field with grid points

wcðxÞ ¼ 1�
ð
P

c2S
wcðð1� ed=xÞSacðx� SgcÞ þ ð1� en=xÞSgc þ ð1� ev=xÞStcÞÞ � Sgc

�
�
�
�

�
�
�
�
2

d

0

B
B
@

1

C
C
A

2

ð5Þ
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in which, d is the Euclidean distance to the nearest

point x.

5.2 Sparse Color Correspondence

In this paper, dense and sparse correspondence are

combined to improve tracking stability and reduce

drift. To this end, we use GPU to compute SIFT to

match all previous input frames. When a new frame is

captured, all feature points are projected to the

previous frame through deformation field. Assuming

that a rigid transformation is used for the matching

between the previous frame and the current frame, the

reconstruction pipeline consists of four aspects: key

detection, feature extraction, correspondence match-

ing and correspondence filtering. The correspondence

matching algorithm is as follows:

Fig. 3 Correspondence matching process with temperature

feature. The deformation field is updated by matching corre-

spondence between the current frame and the next frame. After

incremented fusion, the frame with temperature properties is

incrementally updated to match the new frame

input. L //the control points of frame
Dmax //the maximum change of the depth of point
[In-1, Mn-1] //the depth correspondence of the previous frame
[In, Mn] //the depth correspondence of the current frame
RI //rotation angle of camera
tI //displacement of camera

. C //correspondence list
Kc //global corresponding points

Step1. threadblocki ×+××= γγα
//initialized points
if 0=thread then

0=κ
syncthreads() //synchronize all points within a thread
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Step2. for 0=ι to γ //all pixels within a thread

ι+= iLp
)( pMz n=

if z then
//if the depth data is valid then transform coordinate

ITIT tpRzzyx +=′′′ ))1,((),,(

T

z
y

z
xp ),(

′
′

′
′

=′ //project to previous frame

if isInImage( p′ ) 
)(1 pMd n ′= − ,

))()(,,( 1 pIpIpp nni ′−′= −ι , ++cK
//added correspondence

Step3. syncthreads()//synchronize thread
threadb ×= γ

aiC ι=
Step4. end

In this paper, data parallel strategy is used for

searching key position in RGB-D image, the searching

result is set as the maximum value of zooming field. It

contains 4 octaves, each with 3 levels. Where only the

extremes with valid depth are used, then the key points

are integrated into three-dimensional space. All key

points of the same scale are stored in an array and

managed by an atomic counter. The maximum number

of key points is 150 per image. Our algorithm

associates each key point with up to two gradient

directions.

A 128-dimensional SIFT descriptor is calculated

for each valid key. Each key consists of its three-

dimensional position, scale, orientation, and SIFT

descriptors. Key points and descriptors are extracted in

resolution of 640 9 480, and the required GPU

processing time is 8 ms.

In this paper, all extracted features are stored for

matching correspondence in subsequent frames. The

feature distance from the current to all previous frames

is calculated, and vice versa. The best matching

correspondence in both directions is determined by the

minimum value of the shared memory. There are 128

correspondence between two frames. The correspon-

dences are stored in order by sorting the feature

distance. The algorithm preserves 64 best correspon-

dence between frames.

6 Space Deformation

In order to reconstruct the non-rigid surface in real

time, the space deformation is updated at the frame

rate, and the robust reconstruction of the casting

process is realized. The algorithm uses the dense

projection ICP to estimate the global pose parameters

of the correspondence. In this paper, objective func-

tion is defined on the deformation field to optimize the

non-rigid transformation. The deformation process is

shown in Fig. 4.

In order to guarantee the robustness of deformation,

the optimal parameter is defined as a nonlinear

variational optimization problem. The following

objective functions are defined:

EtotalðXÞ ¼ wrEregðXÞ þ wsEsparseðXÞ þ wdEdenseðXÞ
þ wcoEconðXÞ

ð6Þ

in which, Ereg represents that the object is regularized

by local rigid deformation in the previous frame.

Esparse represents the sparse color correspondence,

Edense represents the dense depth correspondence.

Confidence weights refer to wr, ws, wd and wco, it

controls the relative impact of different object, it

remain constant during the reconstruction process.
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Our method is build upon non-rigid fusion strategy,

the depth data of each RGB-D frame is incrementally

integrated into the TSDF. Our non-rigid fusion method

defines a deformation field through the whole recon-

struction. We only integrate to the voxel M (a ring of

the current isosurface). It contains at least three

optimization step (Kmin ¼ 3) to ensure that the data

is fused into the specific region of deformation,

avoiding the overlap of the geometric details. The

isosurface is expanded to handle previously invisible

geometric features. This extension needs to add new

points to the grid, because the new point has not yet

been included in the optimization process, the location

of these grid points and rotation properties does not

match the current deformation. We initialize the

position and rotation of each new grid point by

extrapolating the current deformation field.

7 Experimental Results

7.1 Qualitative Analysis

The core of our method is to integrate the temperature

feature into TSDF and use the sparse RGB feature as a

global anchor for robust tracking. Figure 5 shows the

Fig. 4 Casting deformation and temperature gradient. Illumi-

nation curves of casting are presented under 3-level deforma-

tion. The albedo of the first level is higher than that of the

adjacent area, the illumination curve of the first layer changes

drastically. Compared with other level, the lighting mutation

occurs continuously in first layer of 1-level. While the shading

optimization is done level by level, the illumination curves tend

to be smooth, the mutation is reduced
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reconstruction result of our method. In the absence of

geometric feature, dense depth correspondence will

cause drift, especially for tangential motion. We

successfully track and reconstruct scene by including

color feature. For low-resolution deformed grids, the

deformation field is not soft enough to handle fine-

scale deformations. Using only depth data results in

inaccurate tracking and local drift. When the target is

violent and the geometry is not obvious, it will cause

failure tracking. In this paper, we combine the RGB-D

map with the color feature to reduce the drift, the

reconstruction result matches the deformation grid

with high resolution.

We compare our method with method proposed by

Li et al. In Li’s method, the pre-scanned template is

reconstructed from the static sequence. In our method,

we do not need the pre-scanned template, the perfor-

mance of our method can be quantitatively evaluated

by calculating the geometric distance of the template

which is fused into the first frame at last. In Fig. 6, the

fusion result of our method is shown in yellow one, the

blue one is the fusion result of Li’s method. Compared

with the template-based method, the reconstruction

error of our method is less than that of Li’s method, our

method obtains a higher quality without the need for

an initial template.

Our method reconstruct casting in better way

compared with other method. The local deviation of

our method is less than 1 ms, the RGB feature is

extracted as the anchor of correspondence, this anchor

reduces the drift, it guarantees the robustness of

tracking. In addition, our method reconstruct casting

in higher resolution compared with DF method, our

method keeps the geometric details of reconstruction

in large scale.

In Fig. 7, the tracking stability of our method is

shown, and each surface is fused according to the

position of the point in the canonical grid. In the case

of non-rigid tracking, the surface features remain

constant and the surface will change its structure over

time in the event of tracking failure or drift. Our

method robustly tracks the surface points throughout

the sequence, and all points remain stable in their

undeformed position without drift. Table 1 presents

the noise intensity, the external point ratio, the

reconstructed projection error (RPD), and the 3D

Fig. 5 Non-rigid reconstruction with temperature feature (casting C1). In the absence of geometric feature, dense depth

correspondence will cause drift, especially for tangential motion.We successfully track and reconstruct scene by including color feature
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point estimation error (3PEE) in the dynamic fusion

process. 3PEE refers to the Euclidean distance

between 3D point and the estimated value. It can be

seen from the table that the average error of recon-

struction of C2 casting is between 0:025� 10�7 and

4:374� 10�11. It can be seen from the experimental

results that the reconstruction accuracy decreases

smoothly with the increase of noise, and no mutation

occurs.

7.2 Quantitative Analysis

In this set of experiment, our algorithm is quantita-

tively tested by synthetic depth and RGB data. A grid

is generated from 10 virtual observation points with a

given camera track. By radiometric projection, a

quantitative depth map is obtained from the real

model, Gaussian noise is added to simulate the true

depth sensor characteristics. In order to generate color

data, we set the surface reflectivity to a uniform value

and use a spherical harmonic function to illuminate the

model. Our method is compared with the micro-

scanning method (WMSM) proposed by Wang et al.

[33]. Table 2 shows comparison result of two meth-

ods. The results of WMSM include W_a, W_b and

W_c. The results of our method are named S_a, S_b

and S_c. The geometrical model of casting is cut by

virtual plane, and the cross section is projected into

horizontal coordinate system. The casting before

optimization is then projected onto the horizontal

plane using the same method. The two projection

curves are fitted to calculate the error distance between

the two surface geometries, several key points are

extracted from the projection and the error results are

displayed at these critical points. The maximum

threshold is set to 2, the maximum nominal value is

set to 0.2, the minimum threshold is set to-2, and the

minimum nominal value is set to -0.2. Table 2

includes the maximum positive deviation (Mpd), the

maximum negative deviation (Mnd) and the standard

deviation (sd). The excess of the maximum threshold

(emc) is calculated as a percentage, and the excess

minimum threshold (emt) is also expressed as a

percentage. When the tangent plane is projected to the

vertical direction, the deviation results are shown as

W_a and S_a. The mean standard deviation of W_a is

2.3921 mm and S_a is only 0.6102 mm. Compared

with WMSM, the matching accuracy of our method is

improved by 18%.

Since WMSM needs to enter the initial mesh, we

extract the initial mesh from the implicit surface. Our

method takes about 11 s to reconstruct C1 and C2

casting. Because WMSM needs to minimize the

objective function, the computational complexity is

higher. WMSM reduces the artifacts by assuming a set

of albedo clustering, but the texture error is still large.

In this paper, the sparse RGB feature is used for

optimizing the geometric and albedo changes in the

hierarchical structure, the texture distortion is effec-

tively reduced for the geometric details. The

Fig. 6 Comparison between our method and Li’s method

(casting C2). The fusion result of our method is shown in yellow

model, the blue one is result from Li’s method. Compared with

the template-based method, the average error of reconstruction

of our method is less than that of Li’s method, our algorithm

obtains a higher quality without the need for an initial template
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reconstruction accuracy is higher than that of WMSM,

as shown in Fig. 8. Our reconstruction is optimized

after the fusion step, and WMSM is optimized before

fusion. WMSM’s optimization strategy smoothes the

local details of the geometry. The total run time of the

two methods is basically the same, however, our

method can achieve better reconstruction quality.

For different scans of the same casting, the

reconstruction performance is evaluated by testing

whether the two points match in correspondence.

Figure 9 shows accuracy and performance of several

methods [15–17] on matching confidence threshold.

Table 1 Reconstruction error of C2

r % RPD 3PEE Time (ms)

2.0 30 0:377� 10�7 0:120� 10�9 0.12

1.9 20 5:784� 10�9 4:374� 10�11 0.16

1.8 10 2:287� 10�8 2:477� 10�10 0.25

1.7 5 5:284� 10�8 4:452� 10�10 0.31

1.6 2.5 0:936� 10�7 0:518� 10�9 0.35

1.5 0 0:204� 10�7 0:236� 10�9 0.36

Table 2 Comparison of

our method and WMSM for

two-dimensional deviation

(unit: mm)

Point Mpd Mnd sd emc (%) emt (%)

W_a 6280 4.9732 -3.8561 1.0404 10.5573 0.0478

W_b 8015 3.0446 -1.9560 0.3948 0.4991 0.1540

W_c 3327 6.4600 -6.1895 0.9569 5.4707 0.4809

S_a 6302 3.9822 -2.0966 0.6500 9.2250 0.0354

S_b 8083 2.5055 -1.6550 0.3060 0.3547 0.0866

S_c 3274 5.3866 -5.4020 0.8746 4.6506 0.2636

Fig. 7 Dynamic reconstruction of C2 casting. Each frame is

fused according to the position of the point in the canonical grid.

Our method robustly tracks the surface points throughout the

sequence, and all points remain stable in their undeformed

position without drift
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Our method performs well by retaining 92% accuracy

at 95% closed loop. The matching threshold for each

method is calculated by matching the optimal ratio of

volumes, while the ratio is changed when correction is

involved continuously during TSDF optimization

step, and reconstruction accuracy keeps relative to

that ratio. The experimental results show that manu-

ally produced correspondences are poor in

performance when noise and data loss are involved

in initial RGB-D input. Our method can maintain a

more robust reconstruction in this condition. Our

method owns a higher precision compared with other

manual geometric matching methods.

In this paper, Asus Xtion Pro sensor is used to

capture scenes of automobile castings under natural

lighting conditions. Testing scenes are named as C1,

Fig. 8 Comparison of our method and WMSM for three-dimensional deviation. The sparse RGB feature is used for optimizing the

geometric and albedo changes in the hierarchical structure, the texture distortion is effectively reduced for the geometric details

Fig. 9 Comparison of several methods for matching accuracy. This graph shows the performance of several state-of-art geometric

methods on matching confidence threshold
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C2, C3 and C4, as shown in Fig. 10. Depth sensor

operates in two modes: the first is to capture

640 9 480 resolution depth data and RGB images at

30fps frame rate, the second is to capture 640 9 480

depth data and 1024 9 1024 RGB images at 12fps

frame rate. The sensor uses a structured lighting

template to obtain independent depth values only at

points with visible projection IR. The effective depth

resolution is lower than flow resolution. For these test

scenes, weight parameters are set as follow:

wg ¼ 0:2; wr ¼ 20; ws ¼ 10� 100; wa ¼ 0:1 . The

weight value increases from 10 to 100 during recon-

struction. For a target scene with a uniform albedo,

wa ! 1 is used to indicate that albedo is a constant

parameter.

First, depth data with noise is fused into initial

geometries represented by TSDF. Noises are regular-

ized by fusion, but it will cause surfaces to be too

smooth, resulting in the lack of high-frequency details

of geometric reconstruction and drift. Figure 10 shows

deformation of castings before and after, red points

refer to matching keys before optimization, green

casting refers to fusion result after optimization from

three different stereo. The geometric details of auto-

mobile casting can be robustly tracked in real time.

Table 3 shows fusion time, optimization time, and

GPU memory exhausted by our method. Following

parameters are used for estimating running-time: (1)

There are three levels, up to 9 outer Gauss–Newton

iterations and 10 PCG iterations; (2) We measure

fusion input data (F) and optimize TSDF (O) at 3

levels; (3) It includes GPU memories occupied by

variables (#V), hierarchy number of Gauss–Newton

iteration (#I), and total time (time). Our method

corrects implicit functions with 31 M dynamic vari-

ables in seconds. For C1 casting, highest resolution is

achieved by 130 M variable on 3-level hierarchy,

which takes about 3 min to calculate. Reconstruction

result of C1 shows that optimized voxels own

resolution of 1 mm and other scenes have a resolution

of 1.5 mm. The optimized TSDF achieves high-

resolution reconstruction of automobile castings.

Fig. 10 Before and after result of our method for automobile castings. Red points refer to matching keys before optimization. Green

casting refers to fusion result after optimization from three different stereo
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8 Conclusion

In this paper, an on-line volumetric reconstruction

method based on optimization of non-rigid deforma-

tion field is proposed to achieve real-time tracking of

geometric shapes and motion characteristics of non-

rigid deformation scenes. An uniform volumetric

representation is presented to achieve parametric

representation of geometric and kinematic character-

istics. In our method, GPU fast parallel optimization

strategy is combined with sparse color and dense depth

constraints to achieve motion tracking. The experi-

mental results show that the whole casting process is

reconstructed in fast frame rate, the temperature field

is generated dynamically to predict the defects of

casting robustly.
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