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Abstract In computer vision system, it is a challeng-

ing task to robustly reconstruct complex 3D geometries

of automobile castings. However, 3D scanning data is

usually interfered by noises, the scanning resolution is

low, these effects normally lead to incompletematching

and drift phenomenon. In order to solve these problems,

a data-driven local geometric learning model is

proposed to achieve robust reconstruction of automo-

bile casting. In order to relieve the interference of

sensor noise and to be compatible with incomplete

scanning data, a 3D convolution neural network is

established to match the local geometric features of

automobile casting. The proposed neural network

combines the geometric feature representation with

the correlation metric function to robustly match the

local correspondence. We use the truncated distance

field(TDF) around the key point to represent the 3D

surface of casting geometry, so that the model can be

directly embedded into the 3D space to learn the

geometric feature representation; Finally, the training

labels is automatically generated for depth learning

based on the existing RGB-D reconstruction algorithm,

which accesses to the same global key matching

descriptor. The experimental results show that the

matching accuracy of our network is 92.2% for

automobile castings, the closed loop rate is about

74.0% when the matching tolerance threshold s is 0.2.
The matching descriptors performed well and retained

81.6% matching accuracy at 95% closed loop. For the

sparse geometric castings with initial matching failure,

the 3D matching object can be reconstructed robustly

by training the key descriptors. Our method performs

3D reconstruction robustly for complex automobile

castings.

Keywords 3D reconstruction � 3D scanning �
Data-driven � Learning model � Neural network �
RGB-D

1 Introduction

In the field of computer vision and graphics, it is

important to study geometric matching for many

aspects including 3D reconstruction, object location

and tracking. Since the matching performance of local

fusion fragment directly affects the reconstruction

precision, most advanced 3D reconstruction methods

are focused on the improvement of the geometric

matching algorithm. However, due to the low-resolu-

tion characteristics of the depth data, it is necessary to
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establish local geometric feature matching from

incomplete 3D data, this is a challenging work for

modern 3D matching technology. A fine geometric

descriptor can be obtained through manual operation,

but this approach is based on a static geometric

histogram which is unstable during the real-time scan

[1–3], it also leads to inconsistent matching results.

In view of the above problems, we present a data

driven neural network model in this paper. We get a

robust local geometric feature descriptor by learning

of incomplete 3D scanning data. A 3D convolution

neural network model is established to match the local

geometric features. The model is build based on the

real scanning data of automobile casting, it combines

the geometric feature representation with the metric

function. In order to make the model being compatible

with the 3D casting geometry, the 3D geometric

features are encoded using the truncated distance

function (TDF). The structural feature of TDF allows

for the three-dimensional convolution and other kernel

operations used in the model. TDF also supports the

model to learn the geometric representation directly in

3D space. This geometric representation reduces the

cumulative error during the matching process, it

reduces the sensor noise while robustly aggregating

multiple depth data [4]. In this paper, we use the

existing RGB-D reconstruction algorithm to generate

the correspondence label, the matching descriptor is

trained on local geometry around the 3D Harris key. In

the process of sensor scanning, the world space

position of the feature points can be obtained from

different camera perspectives, which allows our

training model to automatically generate a large

number of correspondence in real-time without man-

ual operation. Because of the different occlusion

angles of each camera, our model supports local to

local ground matching, it allows for the robust

corresponding between key points.

In this paper, the 3D reconstruction quality is

neglected during the initial training process. The

training sequence contains only a small number of

matching features. However, once the reconstruction

is done successfully, more and more key points can be

generated even if the original feature matching fails

before. Our method is based on data-driven 3D key

descriptor, which is used to match local geometric

features. Our descriptor performs well for 3D match-

ing, it matches RGB-D scan data reliably and recon-

structs 3D geometric structure of automobile castings

accurately. For the incomplete sparse surface geom-

etry, it is still possible to obtain globally consistent 3D

reconstruction from the real automobile casting.

2 Related Work

Over the past decade, researchers have proposed a

variety of manual geometric descriptors, including

spin images, geometric histogram descriptor, etc.

These methods have been integrated into the Point

Cloud Library (PCL) framework [5]. The mainstream

method of PCL is point feature histograms (PFH), it

uses the surface normal and the curvature estimation to

obtain the descriptor [6, 7]. Aiger et al. [8] proposed

the use of four four-point congruent sets (4PCS) to

obtain fragment alignment. Then, Mellado et al.

extended the fragment alignment to super 4PCS [9].

While these methods perform well, it is still difficult to

handle the interference of noise, low resolution, and

incomplete scan data obtained from the depth sensor.

Since the manual geometric descriptors are based on

the descriptors derived from the static geometry

histogram, the matching results are unstable and

inconsistent during partial scanning. In order to

improve the low precision problem of these geometric

matching method, Choi et al. [10] delivered a robust

method for the reconstruction of indoor scene, a

special procedure is done for the optimization of

unmatched region.

Due to the widespread use of large-scale data, it is

possible to design a two-dimensional image descriptor

based on a data-driven approach. For example,

Zollhöfer learns a non-linear mapping from intensity

segments to image feature descriptor in a predeter-

mined metric range, typically using euclidean distance

(ED) or mahalanobis distance (MD) Distance mapping

[11]. Jain et al. [12] demonstrated that feature learning

can be achieved by extending the learning feature

descriptor to the feature comparison metrics.

Recently, a deep convolution neutral network method

has been used for learning of descriptors and related

metrics for local 2D RGB blocks [13]. Based on these

two-dimensional data-driven methods, this paper

designs a three-dimensional geometric network struc-

ture, it owns an unified measurement for feature

learning. It builds local geometric matching through

the operation of three-dimensional data, later the 3D

key points are corresponded. Based on the end-to-end
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matching of feature metric, the geometric correspon-

dence is robustly established between the incomplete,

noise interfered 3D scan data.

In recent years, the convolution neural networks has

been used for 3D depth data. For example, Wu et al.

[14] proposed a 3D volume representation by depth

date, he uses depth learning for 3D shape modeling, it

shows that the three-dimensional feature can be

learned from a large number of three-dimensional

CAD models. In addition, most of the recent methods

extract the depth learning features from the 3D data,

these method are used for CAD modeling as well as

object detection and classification [15, 16]. These

methods extract the global features from the complete

CAD model, on the other hand, we extract the local

geometric features of automobile casting from its

RGB-D scanning data, it allows for robust 3D

reconstruction of incomplete automobile-casting

geometries with noises.

3 System Overvies

A front-to-back reconstruction system framework is

constructed in this paper, as shown in Fig. 1. The

front-end involves the camera attitude estimation and

the local fusion surface reconstruction, the back-end

involves the attitude map optimization and the inten-

sive depth map optimization, which is combined with

the depth of the neural network model. It is trained to

rebuild the label to ensure the consistency of global

reconstruction. Based on GPU-accelerated fusion

surface reconstruction and processing RGB-D data at

30 Hz camera frame rate, 45 M of learning data is

processed per second. In this paper, the casting model

is reconstructed into a dense 3D grid-based training

framework, which does not depend on the original

point cloud, which makes reconstruction more effi-

cient. In this paper, the reconstructed labels are robust

and can capture fine-grained features in real time on

the surface of castings, and realize locally and globally

consistent surface-intensive reconstruction.

Firstly, the RGB-D stream input is obtained from

the depth sensor and a set of sparse corresponding term

features are used to obtain coarse global alignment,

and the alignment is corrected by optimizing the

density and geometric consistency to calculate the

paired scale of all input frames Feature transform. All

SIFT keys are detached to match the previous frame,

and the outliers is filtered out.

Secondly, in order to realize the global attitude

alignment, the systemuses the filtering frame to perform

local to global pose optimization hierarchically. At the

first level, consecutive n frames are localized to the local

level. At the second level, all blocks are correlated and

globally optimized. This algorithm generates blocks

based on the currently visible frustum region (TSDF).

And the posture alignment of the two stages is optimized

according to the sparse corresponding term and the

dense photometric geometric constraint. This hierarchi-

cal optimization strategy reduces the non-associated

characteristic of each optimization step, which makes

the algorithm suitable for casting structural reconstruc-

tion. The systemuses theGPUnonlinear iterative solver

to deal with the highly nonlinear optimization problem

at two levels.

Fig. 1 Our reconstruction pipeline
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Finally, the global representation is continuously

updated according to the continuously changing

global attitude (optimization), the RGB-D frames are

quickly re-fused, and the old pose RGB-D images are

removed using the anti-fade step, and the new gestures

are re-merged into RGB-D image. With more RGB-D

frames and sophisticated attitude estimation, the

volume model is continually improved to ensure the

quality of the reconstruction.

4 3D Geometric Representation

The core of 3D geometric matching is to establish a

robust correspondence between geometric ‘frag-

ments’. The input data source for our neural network

is the depth frame data captured from the depth sensor.

These depth data are usually not aligned with any

global coordinate system. Instead of using RGB color

information, only the geometric information obtained

from the depth sensor is used to complete the matching

process. The geometric matching is achieved by

comparing the sampling distance field around the

key points. In this section, we’ll show how to convert

the scanned data into geometric fragments, how these

fragments are represented as distance fields, and how

to extract key points from these distance fields.

At first, consecutive deep frames N are fused to a

distance field. When N = 1, each fragment contains

only a single frame. As N increases, each fragment can

integrate information from multiple depth frames. The

more geometric information can smooth sensor noise

and expand the fragment view. N should be main-

tained small enough so that local correspondence can

be used to generate high quality fragments without

accumulating excessive drift errors. In this paper, we

use the iterative closest points (ICP) to align frames in

fragment, where N = (25,40). If a valid alignment can

not be found, it means the lack of geometric feature,

the fragment will be discarded. Our method is based

on the truncated symbolic distance field (TSDF), the

fragment fusion is obtained from the local alignment,

the depth data is fused to the first frame voxel of the

anchor fragment through the use of volume fusion

algorithm [17, 18].

For each spatial voxel on automobile casting, we

useDðvÞ to express the signed distance of voxel,WðvÞ
represents the voxel weight, diðvÞ represents the

projection distance (along z-axis) between each voxel

and the depth frame Di. The volume fusion is updated

for each voxel:

D0ðvÞ ¼ DðvÞWðvÞ þ wiðvÞdiðvÞ
WðvÞ þ wiðvÞ

;

W0ðvÞ ¼ WðvÞ þ wiðvÞ
ð1Þ

In this paper, the three-dimensional data is build

upon the uniform sampling distance field which

realize the kernel operation of the depth data, that is

3D convolution operation. Compared with coding for

the 2D depth block, the voxelized 3D representation

retains the spatial scale information of the real casting

object. The voxel owns invariant characteristic when

the projection and rotation are being done. By

detecting and calculating the characteristics of the

TSDF, we train the gradient-sensitive convolution

neural network, while we limit the highest gradient on

surface area to minimize the underlying kernel

confusion. TSDF symbol is ignored here, no matter

whether the free space is visible, and the highest

gradient of distance field is concentrated on large

surface area, rather than in the camera boundary of the

frustum.

Based on the generated fragments and their TDFs,

the key points in the fragments are then detected, their

local TDF regions are extracted. Here we need to focus

the descriptor in the geometric area of casting object.

The granularity of the critical area (radius&1.5 cm) is

suitable for typical automobile-casting reconstruction.

Its local adaptive feature guarantees a certain range of

context coverage, it also owns precise discrimination

characteristics to capture enough geometric details.

According to the 3D object retrieval method, the 3D

Harris corner is used here to determine the key

location. For each voxel adjacent to the mesh surface,

the covariance matrix C with neighborhood normal ni
is determined according to the TDF gradient function,

where the angular response: ri ¼ detðCiÞ�
0:04 � traceðCiÞ. For all of angular responses, non-

maximum suppression is performed to reduce the

number of samples,the iterations are applied to move

the remaining samples to their local stable positions.

The local area which is not observed by the frame of

the key points is filtered out from neutral network.

Then, we use the remaining key sparse collection and

its local TDF volume as the descriptor input. We use a

single thread on the INTEL Core i5/3.0 GHz CPU to

implement a complete Harris key detection and
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extraction process, the TDF volume geometry frag-

ment occupies 512 9 512 9 1024 storage space, it

only takes about a few seconds to complete the entire

detection process. Figure 1 shows the key points

detected on the fragment. The green point in Fig. 1

identifies the unobserved key points, these local areas

will be discarded, because they are not covered by

enough frames. The well-covered red keys and their

local regions are remained for training the 3D

matching descriptor. In Fig. 2, the fragment pairs of

the cast object are given from six different angles, their

feature correspondence keeps in match with neural

network. In this paper, we use these matching sparse

geometric features to obtain 3D casting reconstruc-

tion. In this paper, we use these matching sparse

geometric features to obtain 3D reconstruction.

5 Training Labels

The depth learning algorithm requires a large number

of training data with real ground tags. Although it is

easier to obtain data through a depth sensor, it is often

necessary to obtain a large number of manual oper-

ations to obtain interrelated labels. In order to learn the

correspondence between the key points, the local tag

will involve a key point correspondence between

millions of geometric fragments, which can not be

achieved by manual operation. The existing RGB-D

reconstruction algorithm can accurately align and fuse

the depth frame, we uses Lin’s reconstruction results

to generate large-scale point-to-point corresponding

labels [19]. Due to the use of RGB-D scanning, the

same casting is recorded several times to ensure a

different camera trajectory from different viewpoints.

First, in order to achieve a globally consistent

reconstruction, we use state-of-the-art sparse–dense

constraint adjustment taking into account both RGB

and depth data. The TDF voxel pair between the

different views is then sampled to generate the tagged

training data, which in turn traces the descriptor and

measures the network. The key of our approach is to

weaken the dependence of the geometric features

during the original reconstruction process. Only a few

sparse features can be used to reconstruct the training

sequence, and even if the original feature matching

fails, once the reconstruction is successful, more key

point correspondence can also be generated.

In this paper, the training labels are generated from

the following real car cast objects. (1) Real Data Set. It

contains RGB-D frames that are tracked on six

complex car cast surfaces. It performs ‘‘local live’’

tracking using ICP and frame-model alignment. The

training fragment uses the five sequences in these

scenarios, the test clip uses the 6th sequence. (2)

Synthetic data set: It contains 12 different casting data

from camera by tracking RGB-D frame data. The

training fragments in this paper use 10 sequences in

these objects, and the test clip contains two other

castings [20, 21].

These datasets are chosen because they provide

different perspectives of the same cast from a variety

of different perspectives. It provides a distributed real

sample of possible scans for any given key. Since the

Fig. 2 Fragment detected

by the matching key. The

green points represent the

unobserved key points, the

uncovered local areas with

green keyswill be discarded.

The well-covered red keys

and their local regions are

remained for training the 3D

matching descriptor. (Color

figure online)
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local key points are oriented according to the camera

frame, the training data from these data sets contains

the correspondence between the key points, and the

local volume covers attributes that reflect the change

and occlusion of the viewpoint. These complex

features are combined by training descriptor to

simulate local 3D data for automobile castings.

Wherein each fused fragment contains 30 frames,

the fragment dataset contains 1600 training fragments

and 500 test fragments. Typically each fragment

contains 200 to 500 Harris keys. We use the pseudo-

ground conditions provided from the training dataset

to correlate their world coordinates, while the ground

truth correspondence is established between the key

points of the same cast. A key point within 1.5 cm is

marked as ‘match’ and a key point of more than

1.5 cm is marked as ‘mismatched’. The 1.5 cm

threshold for search radius is set to handle small

alignment errors coming from outside ground condi-

tions without being affected by the small translation

differences between Harris key points.

6 3D Matching Neural Network

The 3D matching network model is a neural network

architecture with uniform depth. The matching

descriptor is composed of two core components: the

first is feature network, the local 3D TDF volume is

mapped to the high-density 3D feature representation

network. The second is a metric network that maps

feature pairs to similar values through a set of fully

connected inner layers. Figure 3 shows the structure of

network in this paper.

First, for each query key, the local TDF volume is

cut out from the geometry fragment. These volumes

are mapped entirely to feature descriptors containing

2048 elements through the feature network. Then,

these feature vectors are connected to the metric

network. The metric network divides the two points

into ‘match’ and ‘mismatch’.

The feature network of the 3D matching model

maps the 3D local area with key points to the feature

descriptor function. In this paper, the local radius of

the key point is set to 1.5 cm, the input structure of the

feature network is 31 9 31 9 31 voxel TDF (voxel

size is 0.1 cm, truncation distance is 1.5 cm). The

feature representation is a 2048 dimension eigenvec-

tor, feature network includes four non-linear

convolution layers. Since the size of the initial input

volume is small, our algorithm performs a single layer

merge. The size of the kernel and the number of filters

are shown in Fig. 2. The last concatenation layer of the

feature network is used to determine the dimensions of

the feature representation and to prevent excessive

breakdown at the network level. In this paper, the core

of the metric network is a nonlinear matching

function, which compares the two feature representa-

tion to determine the corresponding relationship

between the two key points. The input of the network

is two eigenvector, while the output is a single

confidence value between 0 and 1, which is used to

simulate the similarity between the keys, where 1 is

‘‘match’’ and 0 is ‘‘mismatch’’.

The metric network consists of several completely

connected layers, the last layer is estimated by the

probability of grid. Its two values represent the

probability matching of two features whether match-

ing or mismatching. In this paper, the stochastic

gradient descent (SGD) training set is used to define

the cross entropy error as:

E¼�1

n

Xn

i¼1

½yi logðŷiÞþ ð1� yiÞ logð1� logðŷiÞ� ð2Þ

in which, yi is a binary tag (‘match’ or ‘mismatch’) for

input data xi, ŷi is the value of the network output from

the estimated layer. In order to estimate the matching

performance of the metric network, the metric network

is replaced by a single contrast loss layer, and the

bottleneck feature is compared using the euclidean

2048 descriptor

conv network 16

3*3*3 conv net 32

GPU cache

4*4*4 conv net 

3*3*3 conv net 32

31*31*31 TDF
feature learning

feature match

feature match

feature match 1024

4096 descriptor

probability for SDG

feature match 2

matching score 0 9

metric network

feature  vector 

Fig. 3 3D matching network. Feature network includes four

non-linear convolution layers. The metric network is a nonlinear

matching function, which compares the two feature represen-

tation to determine the corresponding relationship between the

two key points
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distance (ED). This replacement reduces key point

matching performance, but it is superior to manual

descriptor methods.

In order to detect the types of information captured

by neural networks, we randomly extract 2000 key

volumes from the test casting, we find out their two-

dimensional embedding of 2048 eigenvectors. For

each key TDF volume, its grid is generated and

positioned in the embedded location. For each key

grid, it is colored using a normalized three-dimen-

sional embedding of the eigenvector. The overall

layout of the embedding indicates that the feature

network is able to aggregate different types of local

casting geometries, such as edges, planes, and

corners.

Due to the great changes in training data, a large

number of training iterations is needed to ensure

convergence. Our method supports the N-dimen-

sional convolution neural network depth learning

framework. In order to train the network, all the

layers (standard deviation is 0.01, initial deviation is

0) are randomly initialized according to the zero

Gaussian plotting weights. In order to adjust the

training bias, the number of matched volumes

corresponds with the number of unmatched volumes.

The basic learning rate is set to 0.01, the learning rate

is increased by 0.99 factors per iteration, each

iteration contains 2000 sub-iterations. SGD runs 1.3

million iterations with a momentum of 0.9, parameter

attenuation is 0.0005.

7 Experimental Results and Analysis

In this paper, both the real automobile casting scene

and synthetic data are used to test the neural network

model. The experimental parameters are set as

follows: operating system is Windows 8.1; Devel-

opment language is C?? by Microsoft Visual

Studio 2014; We use the Direct3D 11 as 3D graphics

programming interface; CPU type/frequency is

INTEL Core i5/3.0 GHz with 8G RAM; The type

of graphical processor is NVIDIA GTX 960; We

capture depth data through Asus Xtion Pro sensor,

its RGB-D streaming rate is 30 Hz wiht 640 9 480

depth resolution. In Sect. 7.1, several test results are

presented to evaluate the performance of our

method. In Sect. 7.2, our method is compared with

several geometric matching methods. A complex

casting reconstruction test is given in Sect. 7.3, and

the different training scenarios are reconstructed for

test.

7.1 Quantitative Analysis

For different scans of the same casting, the perfor-

mance of 3D geometric descriptor is evaluated by

testing whether the two points match in correspon-

dence. The ratio between matching and non-matching

is 1:1 for a local volume that contains 25,000 pairs of

points, a small number of key volumes is detected by

corresponding labels as ‘‘matched’’ or ‘‘unmatched’’.

Key correspondence is generated from different scans

of the same casting. We construct two test datasets:

Harris and random data sets. In the Harris data set, the

points are randomly selected from the set of Harris

keys containing at least one correspondence; in the

random data set, the points are randomly selected from

the fragments. Several matching algorithms are tested

on both data sets. For spin images and fast point

feature histograms, we use the adjustment parameters

provided in the point cloud library as a benchmark.

These methods operate directly on the point cloud of

the fragment, it does not include any additional

information from the signed distance field.

Figure 4 shows the accuracy and performance of

several geometric descriptors on the matching confi-

dence threshold (or distance threshold). Our descriptor

performs well by retaining 81.6% accuracy at 95%

closed loop. The matching threshold for each algo-

rithm is calculated bymatching the optimal ratio of the

volume, while the ratio is changed in the evaluation

data set by random sampling, and the accuracy of the

descriptor keeps relative to that ratio. The experiment

shows that manually produced descriptors are poor in

performance in the face of noise and data loss. Our

method in this condition can maintain a more consis-

tent accuracy. Table 1 gives the quantitative results of

the precision reconstruction. Our method owns a

higher precision compared with other manual geo-

metric matching methods.

Under the different scan in the same casting, we test

the matching ability of our neural network for 3D key

points. Fragments of two RGBD frame sequences

from the same casting are fused for reconstruction.

These two sequences are called query sequences and

sample sequences respectively. The two sequences are

related to each other in world space. In each of the two
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sequences, a set of Harris key points are calculated,

their local TDF volume is extracted. In the world

space, all the Harris key points within 1.5 cm are

considered to be true to the ground. For the scanned

camera frame, each key point and its local TDF

volume are anchored, the key volume here is oriented

according to a variety of different camera angles.

For each key in the query sequence, our model

checks whether the descriptor is able to find the true

ground value from the sample sequence including

n-level similarity score. When n = 1, the percentage

of key points of the highest similarity are returned by

comparison of the key points in query sequence.

Figure 5 shows the percentage of key points that have

been successfully found in the first n matches, where n

varies from 1 to 20. When n = 5, 20% of the key

points finds the right match, while Dai method can

only find 4%. Figure 6 shows the three-level key

points that match the two fragments under different

scans. The gray fusion graph represents the initial

sample, using 7 test fragments to detect the Harris key,

and the yellow segment represents the first three

matching Harris key points. Our method matches the

detection fragments from different camera angles, the

incremental fusion is performed in better effect for

initial samples, the matching result is well.

Fig. 4 Comparison of

several algorithms for the

matching accuracy. The

graph shows the

performance of several

state-of-art geometric

descriptors on the matching

confidence threshold

Fig. 5 Descriptor matching ratio for several algorithms. The

percentage of detected key points from the first n matches are

shown in graph, where n varies from 1 to 20

Table 1 Reconstruction accuracy percentage

Method Harris data set (%) Random data set (%)

Dai 60 55

Fang 78 70

Choi 75 68

Ours 81.6 75

Our method is compared with other methods for reconstruction

precision ratio
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7.2 Qualitative Analysis

The performance of our descriptor is tested in this

section, fragment fusion is performed after PCL, and

features are computed on a set of Harris key points,

as shown in Fig. 7. First, each Harris key is mapped

to the n correspondence with the matching network.

Then for each iteration, we randomly select the three

correspondence to estimate the rigid transformation.

The final transformation is internal correspondence

with highest number n, correspondence keeps

alignment within 1.5 cm, matching score is of at

least 0.5.

In Fig. 8, it shows the test results of our proposed

method compared with the geometric matching

method proposed by Choi et al. The alignment of

our method performs well, when s is small, our

method is more suitable for the matching of local

Fig. 6 The matching

process of our descriptors.

We select seven overlapping

fragments to detect the

Harris key. The gray fusion

graph represents the initial

sample, the purple fragment

represents the first three

matching Harris key points.

Our method matches the

detection fragments from

different camera angles.

(Color figure online)

Fig. 7 The matching

results of our method. The

gray part shows the initial

fusion result, the yellow

parts shows the fusion

fragments of our descriptor.

It performs well for 3D

geometric matching. (Color

figure online)
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details. When s = 0.15, Choi’s 3D matching accu-

racy is better, the maximum accuracy is 60.0%, the

average closed-loop rate is 60.6%. For the accuracy

and closed-loop results of the matching tolerance

threshold s in the real object, the comparison time for

each fragment is limited to 10 s. In this paper, when

s = 0.2, the matching result is better for complex

structured casting with 92.2% accuracy and 74.0%

closed loop rate.

7.3 Reconstruction Error Analysis

The difficulty of 3D casting reconstruction lies in the

closed loop, that is, we need to form a corresponding

relationship between the same position from different

perspectives. Both color and depth information provide

data channels that can be used to detect these corre-

spondences. However, color-based descriptor (such as

SIFT) often fails to find the correct correspondence

when there is a wide baseline view change or a violent

light difference. Figure 9 shows that in the complex

closed-loop scenario, our matching network uses geo-

metric information to align these loop closure fragments

more accurately. Our method is compatible with sparse

RGB features. When there are insufficient geometric

information in the fragment, the combination of SIFT

with our method can improve the alignment accuracy.

The automobile casting model M1 and M4 are

tested and analyzed to calculate the 3D deviation. The

results show that the average reconstruction error of

our method is 0.3943/0.4933, the maximum and

minimum critical value is ±1.5 mm. Standard devi-

ation is about 0.5772, the deviation is of less than

0.3000 for 40.2 percent 3D point. Our neural network

can be combined with sparse RGB features. When

there are incomplete geometric information in the

fragment, the combination of SIFT with our method

can improve the alignment accuracy.

8 Conclusion

Based on data-driven strategy, we construct a geo-

metric matching network, a 3D geometric matching

neural network model is proposed. In this paper, we

study the real data of automobile castings, training the

geometric descriptor, we testify its robustness in key

point matching, fragment alignment and scene recon-

struction. It is believed that the research on RGB-D

feature matching will continue be prosperous in many

aspects, for example, the mapping of correspondence

between different types of sensors ignoring time and

lighting conditions, and a more robust data-driven

strategy for 3D reconstruction.

Fig. 8 Comparison of the

matching accuracy between

several different algorithms.

Our method performs well

for feature matching, when s
is small, our method is more

suitable for the matching of

local details
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Fig. 9 Comparison of reconstruction results. The second line graphs show the fusion process of our matching network. When there are

no sufficient geometric information in the fragment, the combination of SIFT with our method can improve the alignment accuracy
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