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Vehicle PlatformVibration Signal (VPVS) denoising is essential to achieve highmeasurement accuracy of precise opticalmeasuring
instrument (POMI). Amethod to denoise theVPVS is proposed based on thewavelet coefficients thresholding and threshold neural
network (TNN). According to the characteristics of VPVS, a novel thresholding function is constructed, and then its optimized
threshold is selected through unsupervised learning of TNN. The original VPVS mixed in trend and random noise is constructed
as VPVS model. A VPVS denoising flow is proposed based on the power spectral and energy distribution of the VPVS model.
The simulation shows that the proposed denoising method achieves better results, compared to the previous denoising methods
using the indexes of SNR and RMSE.The experiment demonstrates that it is efficient for denoising VPVS polluted by the trend and
random noise.

1. Introduction

VPVS denoising is essential to guarantee the measurement
accuracy of POMI. In project, POMI is installed on the
vehicle platform to ensure its mobility. However, its mea-
suring basis is easily influenced by the engine and generator
vibration, and the solution is to compensate itsmeasured data
with VPVS. During the VPVS collection, the actual VPVS
is polluted by complex noise, especially trend and random
noise. Thus, it is necessary to remove the trend and random
noise from the polluted VPVS.

Wavelet threshold denoisingmethod is efficient for VPVS
denoising on account of its good localization property in the
domain of time and frequency. The basic wavelet threshold
denoising method is Donoho’s hard and soft thresholding
method [1], which is the most common VPVS denoising
method. The estimated wavelet coefficients processed by
hard thresholding function have a bad continuity, causing
the oscillation and poor smoothness of the reconstructed
signal.Meanwhile, there are deviations between the estimated
wavelet coefficients processed by soft thresholding function
and the actual wavelet coefficients, which brings out the
distortion of the reconstructed signal [2]. So far, the improved

algorithms of soft and hard thresholding method are rarely
aimed at VPVS denoising, but it is valuable to refer to the
improved wavelet threshold denoising algorithms in other
fields.

So far, the improved algorithms mainly focus on two
aspects: the establishment of the thresholding function and
the selection of the wavelet threshold. For the latter, some
machine learning methods can be referred to obtain the
wavelet threshold. Gu et al. proposed some improved classi-
fication methods to get the better effectiveness, such as struc-
tural minimax probability machine, incremental support
vector ordinal regression, and V-support vector classification
[3–5]. Xia and Wen applied the improved classification
methods to the field of image [6, 7]. For the cluster methods,
Deng et al. proposed an improved ant colony optimization
algorithm to get strong flexibility, adaptability, and robustness
[8, 9]. Zheng et al. improved the Fuzzy 𝐶-means algorithm
to achieve better robustness and effectiveness [10]. These
methods can be improved to obtain the optimal threshold.

Considering the characteristics of the VPVS signal, TNN
is a more suitable method to select the wavelet threshold.
TNN is different from the traditional neural networks; the
input and output weights are fixed to one; in other words,
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the wavelet threshold denoising of each decomposition level
is independent. Zhang’s TNN is an improved adaptivewavelet
threshold denoising algorithm, which is used to seek the
optimal wavelet threshold [11]. Nasri and Nezamabadi-pour
proposed a new thresholding function adaptive to TNN,
which performs better than Zhang’s TNN in image denoising
field [12]. Wang et al. proposed a new thresholding function,
which avoids the shortcomings of the soft and hard thresh-
olding function [13]. All of these wavelet threshold denoising
methods can be applied to VPVS denoising.

In this paper, a VPVS denoising method with specific
denoising flow is proposed based on TNN. The study of
the VPVS denoising method includes two parts: establishing
a thresholding function as the activation function of TNN
and selecting the threshold through unsupervised learning of
TNN. According to the characteristics of VPVS, two VPVS
models are constructed to ensure the simulation rigor. As
for VPVS denoising flow, VPVS is filtered into the high-
frequency part and the low-frequency part based on the
power spectral distribution and energy distribution of the
VPVS models; each part is decomposed and reconstructed,
respectively; the detail coefficients of both parts are processed
by TNN; the approximate coefficients of high-frequency part
are reserved and the low-frequency ones are set to zero; the
denoised signal is obtained through the superposition of the
two denoised parts. Both simulative and actual experiments
demonstrate that it is efficient for denoising VPVS polluted
by the trend and random noise.

This paper is organized as follows. Section 2 presents
the theoretical background of wavelet threshold denoising
method and the evaluation criterion of noise reduction. In
Section 3, the new thresholding function and the threshold
selection through unsupervised learning of TNN are pre-
sented. The establishment of VPVS models and their power
spectral and energy distribution are explained in Section 4.
The VPVS denoising flow and simulation are discussed in
Section 5. Section 6 presents the experimental results. The
conclusion is presented in Section 7.

2. Wavelet Threshold Denoising Method and
Evaluation Criterion

2.1. Wavelet Threshold Denoising Method. The theoretical
basis of wavelet threshold denoisingmethod is based onMal-
lat’s theory; the theory considers that a signal can be com-
pletely reconstructed by its low-frequency approximation
part and high-frequency detail part [14]. According to Mal-
lat’s theory, suppose an original discrete signal 𝑠(𝑛) given by

𝑠 (𝑛) = ∑
𝑘∈𝑧

𝑐𝑗,𝑘𝜑𝑗,𝑘 (𝑛) + 𝑗∑
𝑖=1

∑
𝑘∈𝑧

𝑑𝑖,𝑘Ψ𝑖,𝑘 (𝑛) , (1)

where 𝑧 is an integer, 𝑐𝑗,𝑘 is the approximate coefficient, 𝑗 is
the decomposition level, 𝜑𝑗,𝑘(𝑛) is the scaling function, 𝑑𝑖,𝑘 is
the detail coefficient, andΨ𝑖,𝑘(𝑛) is the wavelet basis function.𝑐𝑗,𝑘 contains the low-frequency information of the origi-
nal discrete signal 𝑠(𝑛), which is defined as follows:

𝑐𝑗,𝑘 = ⟨𝑠 (𝑛) , 𝜑𝑗,𝑘 (𝑛)⟩ . (2)

Wavelet
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Figure 1: Wavelet threshold denoising process, where 𝑠(𝑛) is the
original noisy signal, 𝑡𝑗,𝑘 is the wavelet coefficient obtained from
the wavelet decomposition of 𝑠(𝑛), 𝑡𝑗,𝑘 includes the approximate
coefficient 𝑐𝑗,𝑘 and the detail coefficient 𝑑𝑖,𝑘, V𝑗,𝑘 is the estimated
wavelet coefficient after wavelet threshold denoising, and 𝑓(𝑛) is the
estimated 𝑠(𝑛) obtained from the wavelet reconstruction of V𝑗,𝑘.

⟨𝑠(𝑛), 𝜑𝑗,𝑘(𝑛)⟩means the orthogonal relationship between𝑠(𝑛) and 𝜑𝑗,𝑘(𝑛).𝑑𝑖,𝑘 contains the high-frequency information of the orig-
inal discrete signal 𝑠(𝑛), which is defined as follows:

𝑑𝑖,𝑘 = ⟨𝑠 (𝑛) , Ψ𝑖,𝑘 (𝑛)⟩ (3)

⟨𝑠(𝑛), Ψ𝑖,𝑘(𝑛)⟩means the orthogonal relationship between𝑠(𝑛) and Ψ𝑖,𝑘(𝑛).
Wavelet threshold denoising method considers that the

low-frequency part of the signal represents its major profile,
and the high-frequency part represents its details. Further-
more, its details of each level contain the noise information
after wavelet decomposition. The detail coefficients 𝑑𝑖,𝑘 of
each level are tuned by thresholding function and recon-
structed with the approximate coefficients 𝑐𝑗,𝑘 of the last level.
The wavelet threshold denoising process is shown in Figure 1.

2.2. Key Factors of Wavelet Threshold Denoising Method. The
wavelet decomposition and reconstruction process includes
two factors: the selection of wavelet basis function Ψ𝑖,𝑘(𝑛)
and decomposition level 𝑗. The wavelet threshold denoising
process includes two factors: the selection of the threshold
and thresholding function.These four factors are analyzed as
follows.

(1) Wavelet Basis Function. There are some properties to be
considered when selecting wavelet basis function, such as
support length, symmetry, vanishing moment, and regular-
ity [15]. Considering these properties, the suitable wavelet
basis function is Daubechies (db𝑁), which is an orthogonal
wavelet basis function with compact support widely used in
discrete wavelet transform. Its vanishing moment is 𝑁, and
the increasing 𝑁 leads to the increasing regularity. db14 is
used as the wavelet basis function in this paper.

(2)MaximumDecomposition Level.Themethod to determine
the maximum decomposition level is referred to in publi-
cation [16]. It proposed that the maximum decomposition
level can be determined according to theminimum frequency
of the desired signal. In the experiment, the main vibration
frequency range of the vehicle platform is 6Hz∼65Hz; the
maximum decomposition level is selected as 3 according to
publication [16].

(3) Threshold Selection Rule. The multiresolution threshold
method is used as the threshold selection rule, it considers
that the wavelet coefficients of signal increase with the
increasing decomposition level, while the wavelet coefficients
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of noise are opposite during the wavelet decomposition
process [17].

(4) Thresholding Function. The basis thresholding functions
are soft and hard thresholding functions [18]; the soft thresh-
olding function is as follows:

𝜂𝑠 (𝑡𝑗,𝑘, 𝜆𝑗) = {{{
𝑡𝑗,𝑘 − 𝜆𝑗 sgn (𝑡𝑗,𝑘) , 𝑡𝑗,𝑘 ≥ 𝜆𝑗0, 𝑡𝑗,𝑘 < 𝜆𝑗, (4)

where 𝜆𝑗 is threshold and sgn is sign function. The hard
thresholding function is as follows:

𝜂ℎ (𝑡𝑗,𝑘, 𝜆𝑗) = {{{
𝑡𝑗,𝑘, 𝑡𝑗,𝑘 ≥ 𝜆𝑗0, 𝑡𝑗,𝑘 < 𝜆𝑗. (5)

Zhang proposed a new thresholding function to be the
activation function of TNN [11]; the improved thresholding
function is as follows:

𝜂𝑧 (𝑡𝑗,𝑘, 𝜆𝑗)
= 𝑡𝑗,𝑘
+ 12 (√(𝑡𝑗,𝑘 − 𝜆𝑗)2 + 𝑚 − √(𝑡𝑗,𝑘 + 𝜆𝑗)2 + 𝑚) ,

(6)

where𝑚 is selected as 0.5.
Nasri and Nezamabadi-pour proposed a new thresh-

olding function to adapt to the TNN [12]; the improved
thresholding function is as follows:

𝜂𝑛 (𝑡𝑗,𝑘, 𝜆𝑗) =
{{{{{{{{{{{
𝑡𝑗,𝑘 − 0.5𝜆𝑗2𝑡𝑗,𝑘 , 𝑡𝑗,𝑘 ≥ 𝜆𝑗0.5𝑡𝑗,𝑘3𝜆𝑗2 , 𝑡𝑗,𝑘 < 𝜆𝑗.

(7)

Wang et al. proposed a new thresholding function to
avoid the shortcomings of the soft and hard thresholding
functions [13]; the improved thresholding function is as
follows:

𝜂𝑤 (𝑡𝑗,𝑘, 𝜆𝑗)

=
{{{{{{{{{{{{{{{{{

𝑡𝑗,𝑘 − 𝜆𝑗 sin(𝜋2

𝜆𝑗𝑡𝑗,𝑘

𝑛) , 𝑡𝑗,𝑘 ≥ 𝜆𝑗

0, 𝑡𝑗,𝑘 < 𝜆𝑗
𝑡𝑗,𝑘 + 𝜆𝑗 sin(𝜋2


𝜆𝑗𝑡𝑗,𝑘

𝑛) , 𝑡𝑗,𝑘 ≤ −𝜆𝑗,

(8)

where 𝑛 is selected as 0.02.

2.3. Evaluation Criterion. The wavelet denoising evaluation
criterion includes two indexes: Signal Noise Ratio (SNR) and

Root Mean Squared Error (RMSE) [19]. Their equations are
as follows:

SNR = 10 log10 (𝑝𝑠𝑝𝑛) ,
RMSE = √ 1𝑁

𝑁∑
𝑛=1

[𝑠 (𝑛) − 𝑓 (𝑛)]2,
(9)

where𝑁 is the signal data length, 𝑝𝑠 is desired signal power,
and 𝑝𝑛 is noise power, The equations of 𝑝𝑠 and 𝑝𝑛 are as
follows:

𝑝𝑠 = 1𝑁
𝑁∑
𝑛=1

𝑠 (𝑛)2 ,
𝑝𝑛 = 1𝑁

𝑁∑
𝑛=1

[𝑠 (𝑛) − 𝑓 (𝑛)]2 .
(10)

According to the definitions of SNR and RMSE, the larger
the SNR, the smaller the RMSE and the better the noise
reduction effect.

3. Proposed Thresholding Function and
Threshold Selection

3.1. The Establishment of Thresholding Function. The im-
proved thresholding function is based on the characteristics
of VPVS and the activation function of TNN. VPVS has a
main vibration frequency range; it ismixed in twomain kinds
of noises: trend and random noise. In addition, trend dis-
tributes in the low frequency, random noise distributes in the
high frequency.The activation function of TNN is continuous
andderivable. According to the above characteristics ofVPVS
and TNN, the proposed thresholding function is as follows:

𝜂 (𝑡𝑗,𝑘, 𝜆𝑗) =
{{{{{{{{{{{{{{{

𝑡𝑗,𝑘 − 0.5𝜆𝑗 − 0.2𝜆𝑗𝑒𝑡𝑗,𝑘/𝜆𝑗−1 , 𝑡𝑗,𝑘 ≥ 𝜆𝑗
0.3𝜆𝑗−3 𝑡𝑗,𝑘4 sgn (𝑡𝑗,𝑘) , 𝑡𝑗,𝑘 < 𝜆𝑗
𝑡𝑗,𝑘 + 0.5𝜆𝑗 + 0.2𝜆𝑗𝑒−𝑡𝑗,𝑘/𝜆𝑗−1 , 𝑡𝑗,𝑘 ≤ −𝜆𝑗.

(11)

Our proposed thresholding function is shown in Figure 2,
compared with the basic thresholding functions: soft thresh-
olding function (4) and hard thresholding function (5). The
coefficients below the threshold of our proposed thresholding
function are tuned by a power function rather than set to zero,
in order to prevent the useful information loss. Furthermore,
its thresholding function and derivative function are contin-
uous to prevent the oscillation and poor smoothness of the
reconstructed signal.

The comparison with Zhang’s thresholding function (6)
and Nasri’s thresholding function (7) is shown in Figure 3.
Power function is used to tune the coefficients below the
threshold, and exponential function is used to tune the
coefficients above the threshold; the quantification weight
of our proposed thresholding function is more suitable for
threshold adjustment with our engineering verification test.
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Figure 2: Comparison with hard and soft thresholding functions.
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Figure 3: Comparison with Zhang’s and Nasri’s thresholding func-
tions.

Compared with Wang’s thresholding function (8) shown
in Figure 4, the coefficients below the threshold of our pro-
posed thresholding function are tuned by a power function to
prevent the useful information loss, and the derivative of our
proposed thresholding function is continuous to prevent the
oscillation and poor smoothness of the reconstructed signal.

3.2. TheThreshold Selection through Unsupervised Learning of
TNN. TNN is based on the neural networks concept and
wavelet coefficients thresholding [11, 12]. Different from the
traditional neural networks, the input and output of TNN
are the wavelet coefficients of each decomposition level, and
the input and output weights are fixed to one; in other
words, the wavelet threshold denoising of each decomposi-
tion level is independent. The activation function of TNN
is the thresholding function, and the incentive factor is the
threshold.During the threshold selection process, thewavelet
coefficients of each decomposition level are tuned by the
thresholding function, and the optimum threshold of each
decomposition level is obtained after the learning process.
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Figure 4: Comparison with Wang’s thresholding function.

There are two adaptive learning algorithms of TNN
toward the optimal threshold: supervised learning and unsu-
pervised learning. Supervised learning is applied to the
condition that the original signal or a reference noisy signal
is available. In project, it is hard to obtain any available
reference signal, so supervised learning cannot be widely
used. Unsupervised learning is applied to the condition that
only the received noisy signal is known, which is practical in
project.

Unsupervised learning is based on the Stein’s Unbiased
Risk Estimate (SURE) [20]. Suppose the original noisy signal
is 𝑠(𝑛), the wavelet coefficient of 𝑠(𝑛) after the signal recon-
struction is V(𝑥), and the wavelet coefficient before the signal
reconstruction is 𝑡𝑗,𝑘; define 𝑔(𝑡𝑗,𝑘) and SURE as follows:

𝑔 (𝑡𝑗,𝑘) = V (𝑡𝑗,𝑘) − 𝑡𝑗,𝑘,
𝐽SURE = 𝑍 + 𝑔 (𝑡𝑗,𝑘)2 + 2∇𝑡𝑗,𝑘 ⋅ 𝑔 (𝑡𝑗,𝑘)

= 2𝐸 {‖𝑛‖2} + 𝑔 (𝑡𝑗,𝑘)2 + 2𝑀−1∑
𝑘=0

𝜕𝑔𝑘𝜕𝑡𝑗 (𝑘) ,
(12)

where 𝐸{‖𝑛‖2} is the noise variance,𝑀 is the subband length.
The threshold value 𝜆 in step 𝑁 for subband 𝑝 is

calculated as follows:𝜆𝑝 (𝑁 + 1) = 𝜆𝑝 (𝑁) + Δ𝜆𝑝 (𝑁) ,
Δ𝜆𝑝 (𝑁) = −𝛼𝜕𝐽SURE𝜕𝜆
= −𝛼 𝜕𝜕𝜆 (𝑍 + 𝑔 (𝑡𝑗,𝑘)2 + 2∇𝑡𝑗,𝑘 ⋅ 𝑔 (𝑡𝑗,𝑘))
= −2𝛼𝑀−1∑

𝑘=0

𝑔𝑘 𝜕𝑔𝑘𝜕𝜆 (𝑁) − 2𝛼
𝑀−1∑
𝑘=0

𝜕2𝑔𝑘𝜕𝑡𝑗 (𝑘) 𝜕𝜆 (𝑁) ,
(13)

where 𝛼 is the learning rate.
In the unsupervised learning process, the wavelet coef-

ficients of the original noisy signal 𝑠(𝑛) are obtained after
wavelet decomposition, and the wavelet coefficients are nor-
malized. Then, the normalized wavelet coefficients are tuned
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Figure 5: TNN structure of unsupervised learning, where 𝑡1,𝑘, 𝑡2,𝑘, . . . , 𝑡𝑗,𝑘 are the wavelet coefficients obtained from the wavelet
decomposition of signal 𝑠(𝑛), 𝑡𝑖1,𝑘, 𝑡𝑖2,𝑘, . . . , 𝑡𝑖𝑗,𝑘 are the normalized wavelet coefficients, V𝑖1,𝑘, V𝑖2,𝑘, . . . , V𝑖𝑗,𝑘 are the new normalized wavelet
coefficients tuned by thresholding function (11), and the optimal thresholds of thresholding function (11) are selected by (12) and (13), and
V1,𝑘, V2,𝑘, . . . , V𝑗,𝑘 are the antinormalized wavelet coefficients, which is used for the wavelet reconstruction of signal 𝑓(𝑛).

by thresholding function (11), and the optimal thresholds
of thresholding function (11) are selected by (12) and (13).
After the optimal thresholds are obtained, the new wavelet
coefficients are obtained and antinormalized. Finally, the
antinormalizedwavelet coefficients are reconstructed to build
the denoised signal 𝑓(𝑛). The process is depicted in Figure 5.

4. VPVS Models and Analysis of Power
Spectral and Energy Distribution

4.1. The Establishment of VPVS Models. The establishment of
VPVS models is based on the VPVS characteristics, which
include two aspects: the characteristics of original VPVS
and noise. The original VPVS can be speculated from the
vibration sources of vehicle platform. The vibration sources
of vehicle platform include crew-induced vibration and
the vibration transmitted from engine and generator. The
frequency range of crew-induced vibration is approximately
1∼3Hz, and the frequency range of engine and generator
vibration is approximately 6∼65Hz [21]. Furthermore, the
main vibration source of vehicle platform is the vibration
transmitted from engine and generator, and its vibration
frequency range is 6∼65Hz in project.

As for the noise characteristics, there are two main com-
ponents of noises: trend and random noise.Themain sources
of trend include three parts: zero drift caused by temperature
change of test equipment, instability of low-frequency per-
formance outside the frequency range of accelerometer, and
environmental interference around the accelerometer, which
makes original VPVS deviate from the baseline. The main
source of random noise is the random interference during
the sampling process of data collector, which superimposes
a wideband random noise on the original VPVS [22].

According to the above theoretical analysis of VPVS
characteristics, the VPVS models consist of three parts: the
original VPVS, trend, and random noise. The original VPVS
has two main features: the dominant frequency and the main
frequency range. According to the two main features, two
original VPVS models are established; one is a sine signal
with dominant frequency, and the other is sweep signal
with the main frequency range. The denoising method can

be proved, if the two original VPVS models are retained
relatively complete after the denoising method. The trend
is associated with the inherent test conditions, which can
be collected in the condition that the engine and generator
are inoperative. The random noise has similar characteristics
with Gaussian white noise and can be expressed by Gaussian
white noise. Suppose the VPVS model 𝑠(𝑛) given by

𝑠 (𝑛) = 𝑥 (𝑛) + 𝑒1 (𝑛) + 𝑒2 (𝑛) , (14)

where 𝑥(𝑛) is the original VPVS model, 𝑒1(𝑛) is the trend
collected in the test, and 𝑒2(𝑛) is the Gaussian white noise; its
variance is selected as 0.3, according to the estimated noise
levels in the test.

In the practical vehicle platform vibration test, the sam-
pling frequency is set to 1 kHz. In order to clarify the signal
details clearly, the number of sampling points is selected as
3000. The dominant vibration frequency is 25Hz, and the
main vibration frequency range is 6∼65Hz.The original sine
VPVS model 𝑥1(𝑛) is defined as follows:

𝑥1 (𝑛) = 𝐴1 sin 2𝜋𝑓1𝑛, (15)

where 𝑓1 is the dominant vibration frequency and 𝐴1 is the
amplitude of the original sine VPVS model, which is selected
as 1.5, according to the estimated signal magnitude in the test.

The original sine VPVS model 𝑥1(𝑛) and the sine VPVS
model 𝑠1(𝑛) are shown in Figure 6. The SNR is 4.96 dB, and
RMSE is 0.08m/s2.

The original sweep VPVS model 𝑥2(𝑛) is defined as
follows:

𝑥2 (𝑛) = 𝐴2 cos (2𝜋𝑓𝑖 (𝑛) 𝑛) , (16)

where𝐴2 is the amplitude of the original sweep VPVSmodel,
which is selected as 1.5. The main vibration frequency range𝑓𝑖(𝑛) is as follows:

𝑓𝑖 (𝑛) = 𝑓0 + 𝑓1 − 𝑓0𝑡𝑠 𝑛, (17)

where 𝑓0 is the initial frequency, 𝑓1 is the target frequency. 𝑡𝑠
is calculated as 3, according to the sampling frequency and
sampling points.
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Figure 6: The original sine VPVS model and sine VPVS model.

0 500 1000 1500 2000 2500 3000

0

2

Sampling points

The original sweep VPVS model

0 500 1000 1500 2000 2500 3000

0

2

Sampling points

The sweep VPVS model

−2

−2

Ac
ce

le
ra

tio
n 

(m
/s

2
)

Ac
ce

le
ra

tio
n 

(m
/s

2
)

Figure 7: The original sweep VPVS model and sine VPVS model.

The original sweep VPVS model 𝑥2(𝑛) and the sweep
VPVSmodel 𝑠2(𝑛) are shown in Figure 7.The SNR is 4.96 dB,
and RMSE is 0.08m/s2.

4.2. Power Spectral and Energy Distribution of VPVS Models.
The analysis of power spectral and energy distribution is
essential to design the wavelet denoising algorithm flow.
The power spectral distribution of Gaussian white noise is
uniform distribution [23]. The power spectral distribution of
trend collected in the test is shown in Figure 8, which mainly
distributes in the low-frequency range lower than 6Hz.

The models of energy distribution analysis include six
parts: trend, Gaussian white noise, the original sine VPVS
model 𝑥1(𝑛), the sine VPVS model 𝑠1(𝑛), the original sweep
VPVS model 𝑥2(𝑛), and the sweep VPVS model 𝑠2(𝑛). The
energy of each part is calculated as follows [24]:

𝐸 (𝑗) = ∑
𝑘∈𝑧

𝑡𝑗,𝑘2, (18)

where 𝐸(𝑗) is the energy of the wavelet coefficients 𝑡𝑗,𝑘 in
the decomposition level 𝑗 and 𝑡𝑗,𝑘 includes the approximate
coefficients 𝑐3 and the detail coefficients 𝑑1, 𝑑2, and 𝑑3.

The energy distribution of each parts is shown in Figure 9.
It shows that the energy of the original VPVS models mainly

0 500 1000 1500 2000 2500 3000

0

1

Sampling points

Trend

0 50 100 150 200 250 300 350 400 450 500

0

Frequency (Hz)

Po
w

er
 sp

ec
tr

al
de

ns
ity

 (d
B/

H
z) The power spectral distribution of trend

−1

−50

−100

Ac
ce

le
ra

tio
n

(m
/s

2
)

Figure 8: The power spectral distribution of trend.
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Figure 9: The energy distribution of VPVS model.

distributes in the approximate coefficients 𝑐3 and the detail
coefficients 𝑑3. However, the energy of the VPVS models
distributes in all the wavelet coefficients, which is influenced
by the trend and Gaussian white noise. The energy of
trend mainly distributes in the approximate coefficients 𝑐3.
The energy of Gaussian white noise distributes in the all
the wavelet coefficients and decreases with the increasing
decomposition level.

In conclusion, the wavelet denoising algorithm flow can
be divided into two parts: eliminating the influence of trend
on the approximate coefficients and eliminating the influence
of Gaussian white noise on the detail coefficients.

5. Wavelet Denoising of VPVS Models

5.1. VPVS Denoising Flow. The VPVS denoising flow is pro-
posed to denoise VPVS polluted by the trend and Gaussian
white noise, which is depicted in Figure 10.

Firstly, the VPVS 𝑠(𝑛) is filtered into two parts: the high-
frequency VPVS 𝑠ℎ(𝑛) and the low-frequency VPVS 𝑠𝑙(𝑛).
Each part is decomposed and reconstructed, respectively, the
detail coefficients of both parts are processed by unsupervised
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Figure 10: Flow chart of proposed VPVS denoising method.

learning of TNN, the approximate coefficients of 𝑠ℎ(𝑛) are
reserved, and the approximate coefficients of 𝑠𝑙(𝑛) are set
to zero; the denoised signal 𝑓(𝑛) is obtained through the
superposition of denoised 𝑠ℎ(𝑛) and 𝑠𝑙(𝑛).
5.2. Simulation of VPVS Denoising Method. Six denoising
approaches are used for VPVS denoising.These are Donoho’s
soft and hard thresholding method, the denoising methods
mentioned in the publications [11–13], and the VPVS denois-
ing method proposed in this paper.

According to the theoretical background mentioned in
Section 2.1, the wavelet basis function is db14; the maximum
decomposition level is 3. According to the multiresolution
threshold method [25], the initial threshold 𝜆𝑗 of unsuper-
vised learning is set as follows:

𝜆𝑗 = 𝜎√2 ln (length (𝑑𝑖,𝑘))ln (𝑗 + 1) , (19)

where the noise variance estimation 𝜎 is calculated as follows:
𝜎 = median (𝑑𝑖,𝑘)0.6754 . (20)

In this paper, the thresholds of soft thresholding method
and hard thresholding method are set as functions (19) and
(20). The initial threshold of TNNmethod is set as functions
(19) and (20), and the threshold is selected by functions (12)
and (13). In addition, the VPVS denoising flow is applied in
proposed thresholding method.

Table 1: The optimal threshold in proposed thresholding method.

Decomposition level Optimal threshold

Low-frequency sine
VPVS

1 1.51
2 1.30
3 1.21

High-frequency sine
VPVS

1 2.57
2 2.17
3 1.75

Low-frequency sweep
VPVS

1 1.78
2 1.75
3 1.58

High-frequency
sweep VPVS

1 2.71
2 2.19
3 1.90

Table 1 shows the optimal threshold selected by the
unsupervised learning of TNN in proposed thresholding
method, and the learning termination condition is that the
ratio of Δ𝜆(𝑁) and 𝜆(𝑁) is less than 10−6.

For sine VPVS model, the SNR and RMSE are shown
in Table 2, which is calculated by functions (9) and (10).
In Table 2, compared with other denoising methods, the
proposed thresholding method brings improvement to the
indexes of SNR and RMSE.The SNR increases by about 30%,
and the RMSE decreases by about 17%.



8 Shock and Vibration

0 100 200 300 400 500

Frequency (Hz)

0 100 200 300 400 500

Frequency (Hz)
0 100 200 300 400 500

Frequency (Hz)
0 100 200 300 400 500

Frequency (Hz)

The power spectral distribution

0 100 200 300 400 500

Frequency (Hz)

The power spectral distribution

0 100 200 300 400 500

0

Frequency (Hz)

The power spectral distribution

Po
w

er
 sp

ec
tr

al
 d

en
sit

y 
(d

B/
H

z)

Nasri thresholding [12] Wang thresholding [13] Proposed thresholding

The power spectral distribution The power spectral distribution The power spectral distribution

0 1000 2000 3000

0

1

2

3

Sampling points

Soft thresholding

−1

−2

−3

Ac
ce

le
ra

tio
n

(m
/s

2
)

0 1000 2000 3000

Sampling points

Hard thresholding

0

1

2

3

−1

−2

−3
0 1000 2000 3000

Sampling points

0 1000 2000 3000

Sampling points
0 1000 2000 3000

Sampling points
0 1000 2000 3000

Sampling points

Zhang thresholding [11]

0

1

2

3

−1

−2

−3

−20

−40

−60

−80

−100

0

Po
w

er
 sp

ec
tr

al
 d

en
sit

y 
(d

B/
H

z)

0

1

2

3

−1

−2

−3

0

1

2

3

−1

−2

−3

0

1

2

3

−1

−2

−3

Ac
ce

le
ra

tio
n

(m
/s

2
)

−20

−40

−60

−80

−100

0

−20

−40

−60

−80

−100

0

−20

−40

−60

−80

−100

0

−20

−40

−60

−80

−100

0

−20

−40

−60

−80

−100

Figure 11: The denoising results of sine VPVS model.

The denoising results of sine VPVS model are shown in
Figure 11. According to Figure 11, for time-domain analysis,
the profile of the sine VPVS model denoised by the proposed
thresholding method is closer to the profile of original
sine VPVS model. For frequency-domain analysis, the main
frequency reserves better at 25Hz; the low-frequency noise
lower than 25Hz and the high-frequency noise higher than
25Hz are attenuated more adequately. The proposed denois-
ing method is efficient for denoising sine VPVS polluted by
the trend and Gaussian white noise.

For sweep VPVSmodel, the SNR and RMSE are shown in
Table 3, which is calculated by functions (9) and (10).

In Table 3, compared with other denoising methods, the
proposed thresholding method brings improvement to the
indexes of SNR and RMSE. The SNR increases by about 20%
and the RMSE decreases by about 17%.

The denoising results of sweep VPVSmodel are shown in
Figure 12. According to Figure 12, for time-domain analysis,
the profile of the sweep VPVS model denoised by the
proposed thresholding method is closer to the profile of
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Figure 12: The denoising results of sweep VPVS model.

original sweep VPVSmodel. For frequency-domain analysis,
the main frequency range reserves better from 6 to 65Hz; the
low-frequency noise lower than 6Hz and the high-frequency
noise higher than 65Hz are attenuated more adequately.
The proposed denoising method is efficient for denoising
sweep VPVS polluted by the trend and Gaussian white
noise.

In conclusion, the proposed denoisingmethod is efficient
for denoising both sine and sweep VPVS model polluted by
the trend and Gaussian white noise and performs better in
the smoothness and integrity of both sine and sweep VPVS
model.

6. Vehicle Platform Vibration Test and
Results Analysis

The apparatus of vehicle platform vibration test is shown in
Figure 13. It consists of three main parts: signal measurement
section, signal collection section, and vehicle equipment.The
signalmeasurement section is the piezoelectric accelerometer
ofmodel 356A26PCB.The signal collection section includes a
data collector and a laptop. The vehicle equipment includes a
precise optical measuring instrument and a vehicle platform.

In the vehicle platform vibration test, the accelerometer
is placed in the sensitive vibration position, and the sensitive
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Figure 13: The apparatus of vehicle platform vibration test.

Table 2: The SNR and RMSE results of denoising methods.

Sine VPVS model
SNR (dB) RMSE (m/s2)

Soft thresholding 7.50 0.06
Hard thresholding 7.40 0.06
Zhang’s
thresholding [11] 7.51 0.06

Nasri’s
thresholding [12] 7.52 0.06

Wang’s
thresholding [13] 7.46 0.06

Proposed
thresholding 9.76 0.05

Table 3: The SNR and RMSE results of denoising methods.

Sweep VPVS model
SNR (dB) RMSE (m/s2)

Soft thresholding 6.51 0.07
Hard thresholding 6.99 0.06
Zhang’s
thresholding [11] 7.00 0.06

Nasri’s
thresholding [12] 7.09 0.06

Wang’s
thresholding [13] 7.06 0.06

Proposed
thresholding 8.39 0.05

axis of the accelerometer is perpendicular to the measuring
plane. The sampling frequency is set to 1 kHz. In order to
clarify the signal details clearly, the number of sampling
points is selected as 3000. The power spectral analysis of the
measured signal is shown in Figure 14.

The main frequency range of measured signal is from 10
to 60Hz, which is included in the theoretical range 6∼65Hz.
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Figure 14: The power spectral analysis of VPVS.

Thepower spectral distribution of low-frequency signal lower
than 6Hz is from −10 to −50 dB, and the high-frequency
signal higher than 65Hz is from −20 to −60 dB. All denoising
methodsmentioned above are applied to themeasured signal;
the result is shown in Figure 15.

The components of the measured signal are unknown,
so the SNR and RMSE of the measured signal cannot be
calculated. However, the frequency component can be the
evaluation criterion instead according to the characteristics of
the VPVS. Compared with the measured signal in Figure 15,
the signal denoised by the proposed thresholdingmethod has
some superior characteristics.

For one thing, the main frequency range reserves from
10 to 60Hz, the low-frequency signal lower than 6Hz
attenuates from −10∼−50 dB to −40∼−60 dB in our proposed
thresholdingmethod, but the attenuation at these frequencies
is not obvious from the enlarged view in other thresholding
methods. For another, the high-frequency signal higher than
65Hz attenuates from −20∼−60 dB to less than −60 dB in
our proposed thresholding method, which attenuates more
thoroughly from the power spectral distribution, compared
with other thresholding methods.
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Figure 15: The denoised results of VPVS.

In conclusion, compared with other thresholding meth-
ods, the proposed thresholding method performs better
in both low-frequency part and high-frequency part and
reserves the VPVS more completely. The results show that
the proposed thresholding method is efficient for denoising
VPVS polluted by the trend and random noise.

7. Conclusion

In this paper, a VPVS denoising method is presented. A
thresholding function adaptive to VPVS and TNN is estab-
lished, and the threshold is selected by TNN. According to
the characteristics of VPVS, two signalmodelsmixed in trend
and random noise are constructed as VPVS models. A VPVS
denoising flow is proposed based on the power spectral and
energy distribution of the VPVS models.

This paper mainly focuses on three points: the threshold-
ing function adaptive to VPVS and TNN, the application of
TNN in VPVS denoising field, and the two signal models
mixed in trend and random noise. The simulation results
show that it brings improvement to the indexes of SNR
and RMSE. The experiment demonstrates that it is efficient
for denoising VPVS polluted by the trend and random
noise.

In the future, the rapidness of the proposedVPVS denois-
ing method should be considered, so that the method can be
portable to hardware platform to achieve real-time denoising
and larger applications.
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