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Abstract In order to improve the surface quality and dynamics
for 5-axis finish machining, new algorithms to construct smooth
tool orientation field function are proposed in this paper. Given
several surface points and corresponding key tool axes, two
methods are studied for open surfaces and half-open surfaces:
(a) radial basis function (RBF) interpolation algorithm and (b)
RBF-spline approximation algorithm. The two methods can en-
sure smoothness of all tool axes on the whole surface instead of a
single tool path. Finally, several cases are studied to verify algo-
rithms’ effectiveness.
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1 Introduction

5-axis machining technology has been widely used in machining
parts with complex shape. Due to high flexibility of 5-axis ma-
chine tool, tool path generation of 5-axis machining has higher
complexity than traditional 3-axis machining. In academic and

industrial community, several issues are still focused on, such as
gouge-free, collision-free, smooth tool path generation, singular
axis avoiding, and cutter selection [1–3].

The gouge problems in -axis machining are classified
into local gouge, rear gouge, and global gouge (collision)
problems. For solving local gouge and rear gouge prob-
lems, an effective method is to select an appropriate size
cutter and a suitable tool orientation [4–7] matching the
curvature of surfaces. Local gouge and rear gouge always
exist in a saddle point and concave point. For global col-
lision problems, Lee et al. [8] provide feasibility cone
checking method to confirm suitable cutter and tool orien-
tation. More researches [9–13] focus on how to calculate
feasible C-space of tool orientation. Based on two rotary
degrees of freedom, tilt angle φ, and yaw angle θ, C-space
of tool orientation means the space spanned by the two
variables [14]. To avoid collision, it is ensured that tool
orientation of each point lies in the respective feasible C-
space.

Singular problem is another important problem existing in
the inverse kinematical transformation (IKT) process [15]. In
the vicinity of a singular axis, a small change of the tool
orientation in workpiece coordinates system (WCS) would
lead to an abrupt change of kinematic axes in machine coor-
dinates system (MCS). This will lead to unsmooth tool orien-
tation changes. To solve this problem, Affouard et al. [15]
pointed out singular problem will cause positioning uncer-
tainties in 5-axis machine tools. They adopted a dual B-
spline format to describe tool path and proposed a method to
deform the tool path, so that the tool orientation does not
traverse the singular cone. Based on the domain of admissible
orientation (DAO) concept, Castagnetti et al. [16] proposed a
method to optimize tool path. The singularity can be detected
with DAO for AC-type or BC-type machine tools. Sørby [17]
presented a post-processing algorithm to avoid the singular
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problem. The algorithm modifies the exact inverse kinematics
to give robustness to singularities at the expense of a small
tool orientation deviation. Lin et al. [18, 19] look into the
irregular-machined surface textures in the process of avoiding
5-axis singularities. A PSOmethod is intergraded into the tool
orientation translation method. To avoid a singular problem, a
singular cone is built that tool path can be adjusted to avoid the
cone. After optimization, the singular problem is avoided, and
the surface textures are controlled.

Poor smoothness of tool path leads to discontinuous
move of machine tools, which may increase machining
time and destroy surface quality. Fleisig [20] adopted a
near arc-length parameterized quintic polynomial spline to
interpolate position spline and adopted a near arc-length
parameterized quintic spherical Bezier spline to interpo-
late orientation spline. Smooth motion is accomplished
with an orientation re-parameterization spline. The tool
path is C3 continuous and ensures constant feed and lim-
ited angular acceleration. Ho [21] described tool orienta-
tion by employing quaternion to smooth the tool orienta-
tion and reduce machining error. Masatoshi [22] and Jean
[23] used dual spline to describe tool path and interpolat-
ed the two spline curves using polynomial interpolation
algorithm and NURBS algorithm. Yuen [24] interpolate
the tool path by quintic spline to ensure C3 continuous.
The non-linear relationship between spline parameters and
locations along the tool path is approximated with ninth
order and seventh order feed correction splines for posi-
tion and orientation respectively.

Errors in 5-axis machining process cause deviations in
tool position and orientation from NC code, which will
consequently affect geometric accuracy of the machined
surface [25, 26]. Therefore, abrupt changes of tool orien-
tations between two adjacent tool paths will worsen sur-
face quality. As shown in Fig. 1a, the surface to be ma-
chined is divided into two regions with different tool ori-
entation fields. After machining, machining trace will be
left at the boundary between two regions. In a machining
environment, many error sources cause kinematic errors,
like assembly inaccuracies of machine tool servo axes,
cutter shape error, thermo-mechanical errors, loads, and
dynamic forces [27], and it is hard, even impossible to
remove or compensation such errors. To achieve the goal
of improving the surface quality, we hope that any adja-
cent tool postures have smooth transition to keep the
smooth variation of error of the machine tool. Therefore,
we provide a new methodology to construct smooth tool
orientation field for 5-axis machining in this paper, as
shown in Fig. 1b, especially for surface with gouge-free
constraints shown in Fig. 1c. In Section 2, algorithms of
constructing tool orientation field are illustrated. In
Section 3, case study and experimental study are conduct-
ed, and conclusion close this paper in Section 4.

2 The algorithms of constructing tool orientation
field

2.1 The basic idea of constructing tool orientation field

Many researches tried to generate gouge-free 5-axis tool
path automatically [8, 12, 28]. The main algorithm process
is shown as below. (1) Sample the surface into several
points. (2) Calculate feasible C-space (FC-space) of each
point. (3) Based on FC-space of each point, design an
algorithm to determine tool orientation of each point.
However, two disadvantages should be noticed. (1) The
expression of FC-space is discrete, which leads to high
storage space and long calculating time. (2) It is compli-
cated to design such an algorithm to calculate and

Surface to be machined

Tool-axis vector field A

Tool-axis vector field B

(a) Discontinuous tool orientation field

Surface to be machined

Smooth tool orientation field 

(b) Continuous tool orientation field

Constraints 

Surface to be machined

(c) Surface with constraints

Fig. 1 The description of the problem. a Discontinuous tool orientation
field. b Continuous tool orientation field. c Surface with constraints
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optimize tool orientations. Therefore, an interactive tool
path generation algorithm will be proposed in this section.

The entire tool path generation algorithm is shown as
Fig. 2. First, key surface points and key tool axes should be
selected. The basic principle is to restrict tool axis at some
positions with very high possibility of collision. To detect
these areas, Liu et al. [12] present a method of tool posture
global collision-free area generation for 5-axis machining
point clouds. For obtaining precise collision-free area effi-
ciently, discrete inclination angles and their collision-free ro-
tation angle ranges are calculated to construct the area in two
dimensional configuration space (C-space), which avoids
mapping obstacles to C-space or searching boundaries. And
to confirm such key points and axes, human–computer inter-
action can be conducted. Second, tool orientation field func-
tion (TOFF) is calculated. With the reason that TOFF calcu-
lation is to solve linear equation systems, failure may occur if
the matrix is ill-conditioned and singular. So checking wheth-
er the output value is available is necessary. If exceptions
occur in solving equation systems, the quantity or positions
of key points should be adjusted, or algorithm arguments
should be modified. Third, tool path can be generated based
on surface points and TOFF. Since we are not sure that the
calculated tool path is gouge free, so the gouge check process
is necessary. When gouge is detected, key surface points and
key tool axes should also be adjusted or added. Then TOFF
should be recalculated. Repeat the three steps until gouge is
not detected. With the quantity of key points increasing, the
risk that exceptions occur in TOFF calculation rises up. So
step d is necessary. If TOFF calculation fails and positions of

key points are all rational, the whole process is crashed. To
improve the calculation, two steps play key roles. One is how
to select key surface points and key tool axes, the other one is
to design a TOFF calculation algorithm.

In this study, the main goal is just to construct smooth and
gouge-free function T(u, v), which is step c in the flow chart.
We assume that key surface points and key tool axes have
been determined, so TOFF calculation can be conducted.
For a surface S(u, v), let CCm(m = 0… M) denote the key
surface points, Tm(m = 0… M) denote the key tool axes,
(um, vm)(m = 0…M) denote parameters at key surface points,
and T(u, v) denote TOFF.

2.2 The algorithm of constructing TOFF

Given scattered key tool axes on the surface, a fitting
algorithm based on multi-dimensional data points is to
be designed to calculate TOFF. Fitting problem can be
solved by two main algorithms based on whether TOFF
pass key tool axes exactly.

The first one is interpolation algorithm. The multi-dimensional
interpolation problem is encountered in computer graphic, re-
verse engineering, image processing, etc. [29]. Several algo-
rithms are proposed by previous researches. Franke R [30]
summarized them and classified into six types, that is, inverse
distance-weighted methods, rectangle-based blending methods,
triangle-based blending methods, finite element-based
methods, Foley’s methods, and global basis function type
methods. The second one is approximation algorithm. If the
output of interpolation algorithm cannot be accepted, an ap-
proximation function can be adopted. Giving a tolerance, the
distance between the given points and the function is required
to be smaller than the tolerance.

In this paper, radial basis function interpolation (RBF interpo-
lation) is adopted, which is one of global basis function type
methods. For methods mentioned in the previous paragraph,
rectangle-based blending requires that the input data should be
on the parametric grid. Other methods are with complex process-
es. RBF method belongs to inverse distance-weighted methods.
The advantage is that the process is simple and the interpolated
function is with enough continuity with the base function selec-
tion. And the disadvantage is when the quantity of input data is
large, long computational time will be consumed and solving
failure will occur. In our study, the quantity of key points is
usually not large, so the disadvantage is inhibited. On the other
hand, to approximate the input data, RBF-spline approximation
algorithm is proposed subsequently.

Two types of surfaces will be discussed with different TOFF
calculating algorithms, open surface and half-open surface. As
shown in Fig. 1a, the boundary of two parameters u and v are
both open, which is called open surface. For half-open surface,
one parameter direction is closed. Here, we assume that u direc-
tion is open and v direction is closed. The TOFF should be

b. Confirm key regions of surface, select a set of key CC points and 

key tool axes. 

c. Calculate tool orientation field function 

based on key CC points and key tool axes.

e. Tool path generation based on tool 

orientation field function.

f. No gouge No

j. Tool path generation finishes.

Yes

a. Tool path generation begins

d. Success?

Yes

No
g. Adjust key 

points or key 

tool axes and 

recalculate field 

function.

h. Useful tool path

i. Failed.

Fig. 2 Flow chart of interactively tool path generation
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smooth on the closed iso-v boundary line. It is necessary to
design a different TOFF calculation algorithm.

2.2.1 Construct TOFF for open surface

RBF interpolation algorithm As introduced in Section 2.1,
key tool axes are Tm, surface points are CCm,. The RBF inter-
polation formula is given as

T u; vð Þ ¼
XM
m¼0

cmϕ dmið Þ ¼
XM
m¼0

cmϕ CCm−CC ik kð Þ; ð1Þ

where CCi is the point with parameters (u, v) of the surface.
Dmi = ||CCm − CCi|| is distance between CCi and key surface
points CCm. ϕ(·) denotes a function of distance. For the defi-
nition of distance ||·||, it is not unique. In open surface, ||·|| is
suitable for defining geodesic distance, or linear distance for
simplification.

The coefficient cm has three components, the same as tool
axis, and the components are independent. To calculate cm,
Eq. (2) is built, which contains 3 linear equations.

XM
m¼0

cmϕ CCm−CC ik kð Þ ¼ T i; i ¼ 0:::Mð Þ: ð2Þ

The next step is to select radial basis function. To ensure the
systems of linear equations is solvable, the matrix Φ con-
structed by ϕ(·) should be invertible. The two typical radial
basis functions meet this condition.

(1) Exponential Gaussian distribution function:ϕ(t) = exp.(−(a·
t)2), a∈R+.

(2) Rational inverse multi-quadric distribution function:
ϕ(t) = (c2 + t2)-β, c∈R, β∈R+.

To confirm the type and coefficients selection, two different
basis functions with different coefficients are shown in Fig. 3.
The main characteristics of basis function are as follows. (a)
ϕ(0) = 1 and ϕ’(0) = 0. (b) ϕ(t) is attenuated, and when t tends
to positive infinite, ϕ(t) tends to 0. (c) ThematrixΦ is diagonally
dominant matrix. When the attenuation rate is large enough, the

matrixΦ is far from ill-conditioned and singular, which raises the
possibility to solve the system of linear equations. Gauss basis
function and IMQ basis function both satisfy with these charac-
teristics mentioned above. However, if the basis function attenu-
ates too fast, the smoothness of the function is declined.
Therefore, IMQ basis function is more suitable than Gauss basis
function. The coefficient a can be used for adjusting attenuation
rate. A fast attenuation rate declines smoothness of output func-
tion, while a small attenuation rate reduces stability of solving
process. For key points selection, when distance between two
nearest key points is too small, a will have to be small that
may worsen smoothness of the whole TOFF. Therefore, when
selecting key surface points, the density should be uniform if
possible on the surface.

RBF-spline approximation algorithm In some occasions,
RBF interpolation cannot get satisfactory smooth function. A
spline interpolation process following RBF interpolation will be
proposed in this section, which is called RBF-spline approxima-
tion algorithm, as shown in Fig. 4. The algorithm is shown as
follows. (1) Interpolate the original key points with RBF interpo-
lation algorithm to get RBF function. (2) Sample the interpolated
function by given constant parameter interval (Δu,Δv) to get grid
points of RBF function, called grid points. (3) Re-interpolate the
RBF grid points to get a new function. In steps 2 and 3, it is
obvious that the new function does not go through the original
key points accurately. For a given tolerance, this approximation
algorithm improves the smoothness of the function.

To calculate the grid points {Tij}, B-spline interpolation algo-
rithm is adopted [31]. Given number of sample points Nu and
Nv along u direction and v direction, so (Δu, Δv) can be
calculated as follows:

Δu;Δvð Þ ¼ umax−umin

Nu
;
vmax−vmin

Nv

� �
;

assuming degrees of B-spline function along u direction and v
direction are pu = pv = p ≤ 3. Since the RBF grid points are
uniformly sampled, the parameters ui and vi are equally
spaced, and the knot vector U and V are also equally spaced,
that is shown in Eq. (3) and (V is the same as U).

Parametric distance t

(t)Fig. 3 Different radial basis
function
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ui ¼ i
Nu

; i ¼ 0; 1; :::;Nu

U¼ u0; u1; :::; unþpþ1

n o
u0 ¼ ⋯ ¼ up ¼ 0; unþ1 ¼ ⋯ ¼ unþpþ1 ¼ 1

ujþp ¼ j
n−pþ 1

; j ¼ 1; 2; :::; n−p

8>>>>>>><
>>>>>>>:

: ð3Þ

The surface control points {psTij} can be calculated by solv-
ing systems of linear equations as Eq. (4).

X
j¼0

Nu

B j;p uið ÞpsTij ¼ plvTij; i ¼ 0:::Nu

X
i¼0

Nv

Bi;p við ÞplvTij ¼ Tij; j ¼ 0:::Nv

8>>>><
>>>>:

: ð4Þ

Confirmed {psTij}, the TOFF can be calculated by B-spline
surface calculating rules.

2.2.2 Construct TOFF for half-open surface

RBF interpolation algorithmOnemain exception of half-open
surface is that geometric space is continuous on some parametric
boundary while the parametric space is not-continuous. Without
loss of generality, let u is parameter of latitude and v is that of
longitude, so latitude curve of the earth is iso-v curve. The two v
direction boundaries are on the same longitude curve, so change of
the tool orientation should be smooth on the v direction bound-
aries. The TOFF calculation algorithmmentioned above has to be
improved to adjust this case.

Allowing for that (u, v) parameters in two directions are
with different metrologies, two weights are adopted. A cylin-
der that contains the surface with the smallest diameter and the
smallest height is constructed as shown in Fig. 5. The diameter
is D, and the height is H. The ratio between two weights can
be obtained, that is, mu:mv = H:πD.

For half-open surface TOFF calculation, the input is similar
to that of open surface calculation. Equations (1) and (2) are
still available. The parametric space is mapped to the smallest
containing cylinder. The distance ||·|| is defined as geodesic
distance on the cylinder.
The other question is how to select basis function. Two draw-
backs of two basis functions in open surface are obvious. First,
discontinuity occurs in v parameter boundary. Second, when a
certain CC1 point moves on the cylinder, distance between
CC1 and CC2 is abruptly changed that will cause first-order
discontinuity of TOFF. A new basis function is designed to
adapt to TOFF calculation for half-open surface.

Before basis function ϕ(t) is designed, firstly, we need to
normalize v parameter, and transform u parameter with the same
ratio. The ϕ(t) is required that when t > 0.5, ϕ(t) = 0. It is reason-
able because CC1 is totally not affected by CC2 when CC1 is far
enough from CC2. Therefore, ϕ(t) can be designed as Eq. (5).

g tð Þ ¼
XN
i¼0

citi

ϕ tð Þ ¼ 0:5 cos π⋅gð t=að Þð Þ þ 1
�

0

0 < t≤a
t > a

a < 0:5

(
8>>>><
>>>>:

:

ð5Þ

Let g(0) = 0, g(a) = 1, g(i)(a) = 0 (i = 1..N−1). When N = 2,
g(t) = 2 t−t2. It can be proved that ϕ(t) is with the third order at

Grid points {Tij}

v-direction line control points{
plvTij}

Surface control points {
psTij}

3. Calculate line control points of each set of iso-u points

4. Calculate surface control points from each set of iso-v line control points

T(u, v)

2. Sample

Key tool axes{Tm}

1. RBF interpolation

Fig. 4 RBF-spline approximation algorithm flow chart

Geodesic 

distance on 

parametric 

cylinder

H

D

Surface

CC2

CC1

v

u

Fig. 5 Distance definition on parametric cylinder of half-open surface
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0

0.2

0.4
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0.8

1

a=0.5

a=0.4

t

(t)

Fig. 6 Radial basis function in half-open surface tool orientation
interpolation
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point t = a. To achieve higher order continuity,N can be larger.
The functions with different coefficient a are shown in Fig. 6.
Attenuation rate is determined by a.

RBF-spline approximation algorithm The main process of
RBF-spline approximation is similar to the process in Fig. 4.
However, due to the closed V direction, step 3 is different.
Closed uniform spline interpolation algorithm is adopted in step 3.

The main difference between closed uniform spline interpo-
lation and traditional open spline interpolation is that we should
use a different method to confirm control points and knot vector
V. In closed uniform spline interpolation, the first p control points
are the same as the last p control points. So the quantity of v
direction control points is Nv + p and PNv = P0, PNv+1 = P1,…,
PNv+p-1 = Pp−1. Knot vector V is V = {−p/Nv, −(p−1)/Nv,…, −1/
Nv, 0, 1/Nv,…, (Nv−1)/Nv, 1, 1 + 1/Nv,…, 1 + p/Nv}. So {plvTij}
can be calculated by Eq. (6).

Xpþ1

j¼i

B j;p tið ÞplvTkj ¼ Tki; i ¼ 0:::Nv k ¼ 0:::Nu : ð6Þ

2.2.3 Evaluation indexes

To analyze the effectiveness of different algorithms, two indexes
are proposed. The first one is used for evaluating TOFF smooth-
ness, and the second one is for evaluating fitting precision.

For smoothness evaluation, first, let us see how to evaluate
smoothness of 1D function. For a 1D function, the smaller the
stretching energy is, the smoother the function is. The
stretching energy is the integral of square of the first differen-
tial, which is expressed as Eq. (7) [32].

SLC ¼
Z1
0

1

2
⋅
dA tð Þ
dt

⋅
dA tð Þ
dt

� �
dl ¼

Z1
0

1

2
⋅At

2

� �
dt: ð7Þ

For 2D function, a total differential operator is replaced
with the first differential in 1D function.

STC ¼
Z1
0

Z1
0

1

2
Tu u; vð Þduþ Tv u; vð Þdvð Þ2: ð8Þ

The integral cannot be calculated, STC is converted to STD.

STD ¼ 1

Nu−2
1

Nv−2

XNu−2

i¼1

XNv−2

j¼1

1

8
T iþ 1ð ÞΔu; jΔvð Þ−T i−1ð ÞΔu; jΔvð Þð ÞΔuþ
T iΔu; jþ 1ð ÞΔvð Þ−T iΔu; j−1ð ÞΔvð Þð ÞΔv

� �2

: ð9Þ

(a) The part model

(b) Key tool axes in (u, v)-space
u 

v 

Fig. 7 The model of case 1. a
The part model. b Key tool axes
in (u, v) space
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The smaller STD is, the smoother T(u, v) is.
For TOFF-fitting precision with key tool axes, fitting

precision accuracy index Ifa is calculated. Allowing for
the complexity in calculating angle between two vec-
tors, the inner product is calculated. The relationship

between inner product between two vectors and angle
is shown at Eq. (10).

T1⋅T2 ¼ cos T1;T2h i≈1− T1;T2h i2
2

: ð10Þ

(a) Tool axis field of Case 1

(b) RBF algorithm

(c) RBF-spline algorithm

Fig. 8 Interpolating results of case 1. a Tool axis field of case 1. b RBF algorithm. c RBF-spline algorithm
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Therefore, Ifa can be expressed at Eq. (11).

I fa ¼

Xq

i¼0

T cl iΔtð Þ⋅T si Pcl iΔtð Þð Þð Þ

qþ 1
: ð11Þ

The closer to 1 Ifa is, the higher fitting precision is.

Table 1 Condition of interpolating algorithm in case 1

Algorithm RBF RBF-spline

Parameters ϕ(t) = (a2 + t2)−1

a = 0.8
RBF calculation

parameters are the
same as RBF alg.
The grid interval:

Nu = 30, Nv = 10

Calculation result Figure 8b Figure 8c

STD (NuD = 900,
NvD = 300)

0.9227 0.9056

Ifa 1 0.999982

Machining surface  

Obstacle 

Key tool axes

Obstacle 

Fig. 9 Key tool axes of bowling

(a) Front view (b) Back view

Key 

tool 

axes 

Obstacle 

Fig. 10 Bowling TOFF calculation result. a Front view. b Back view

Table 2 Bowling TOFF calculating parameters

Algorithm Parameter STD (NuD = 60,
NvD = 100)

Icl_si

RBF alg. ϕ(t) is (5).
a = 0.4

19.9887 1

RBF-spline
Nu = 30,
Nv = 20

19.9079 0.999999999986

mu:mv = 0.646:1

(a) RBF-Spline Algorithm 

(b) RBF Algorithm

Fig. 11 Interpolating results of case 3. a RBF-spline algorithm. b RBF
algorithm
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3 Case study

To verify the algorithms, three cases are calculated below. The first
case represents open surface with obstacles, the second one repre-
sents half-open surface, and the third one is for machining
experiments.

Case 1: The part is shown in Fig. 7a. The surface is
expressed as Eq. (12). Three different-oriented oblique cyl-
inders are obstacles to be avoided. Three rotary axes are
parallel to (2, 1, 2), (2, 0, 2), and (2, −1, 2); passing points
(9.93390, 10.00000, 1.57440), (30.00000, 10.00000,
2.83766), and (50.06610, 10.00000, 1.57440). Key points
contains two parts. One is sampled from the boundary of the
cylinders, while the other part is four corners. For key
tool axes, the first part is parallel to rotary axes, and the
second part is (0 1 4), (1 1 1), (1 1 4), and (1 0 1) on
parameter points (0, 0), (1, 0), (0, 1), and (1, 1), shown
in Fig. 7b.

x u; vð Þ ¼ 160sin 2u−1ð Þθð Þ þ 160sin θð Þ
y u; vð Þ ¼ 20v

z u; vð Þ ¼ 160cos 2u−1ð Þθð Þ−160cos θð Þ

8<
: ; ð12Þ

where θ= arcsin (30/160).
TOFF calculating results with different algorithms are

shown in Fig. 8. From Fig. 8b, c, the two tool orientation fields
look very similar, so the indexes are calculated in Table 1. It is
obvious that using RBF algorithm, Ifa is 1, but STD is smaller

than that of RBF-spline. To analyze different densities of RBF
grid points using RBF-spline, another sample density is that
Nx = 45, Ny = 15. The calculated indexes show that with RBF
grid data increasing, STD is declining, and Ifa is closer to 1.

Case 2: As shown in Fig. 9, a bowling surface traversed
with a cylinder obstacle is one example for half-open surface
TOFF calculation. The bowling surface is processed, and
the cylinder is obstacle. The red lines are key tool axes. Due
to the similar calculating result byRBF andRBF-spline, just
the result calculated by RBF-spline is shown in Fig. 10. The
conditions and TOFF calculated parameters are shown in
Table 2.

Case 3: To machine revolution surfaces or quasi-
revolution surfaces, spiral machining is adopted.
Usually, parameters of surfaces are similar to lati-
tude and longitude of earth. A half-sphere is select-
ed for both calculating and machining. Key points
are distributed uniformly on latitude and longitude
curves. Quantities of key tool axes on latitude and
longitude are signed as NuKey and NvKey. And to
select key tool axes, the tilt angles are 10° larger
than latitude of points location, and the yaw angles
are the same as longitude as Fig. 11. The reason
that tilt angles are 10° larger than latitude is that
the singular axis and the tool tip are ought to be
kept away. The TOFF calculating results using
RBF and RBF-spline are shown in Fig. 11a, b.
The green arrows are the normal of surface, and
the blue ones are TOFF. The condition and TOFF
calculated parameter are shown in Table 3.

The half-sphere machining is conducted. The material is alu-
minum alloy. The sphere is ϕ20, and the ϕ4 ball-end milling tool
is used for finish milling. To generate tool path, CC points are
calculated first.

u ¼ t
v ¼ mod 200*tð Þ t∈ 0; 1½ Þ

�
:

Table 3 Condition of interpolating algorithm in case 3

Algorithm RBF RBF-spline

Parameters ϕ(t) is (5).
a = 0.4

RBF calculation parameters
are the same as RBF alg.
The grid interval:

Nu = 8, Nv = 32

STD (NuD = 80,
NvD = 480)

9.35568 9.30947

Ifa 1 0.9999972

(a) Region division strategy (b) Our paper’s strategy

Machining 

trace 

Fig. 12 Region division strategy
VS smooth tool orientation field
strategy. a Region division
strategy. b Our paper’s strategy

Int J Adv Manuf Technol (2017) 91:1369–1379 1377



x ¼ R*sin πu tð Þ=2ð Þ*cos 2πv tð Þð Þ
y ¼ R*sin πu tð Þ=2ð Þ*sin 2πv tð Þð Þ
z ¼ R*cos πu tð Þ=2ð Þ
N uKey ¼ 11;NvKey ¼ 41

8>><
>>: :

CL points are calculated by Eq. (13).

CL ¼ CC þ R⋅Ns CCð Þ−R⋅T toolAxis: ð13Þ

The algorithm is used RBF algorithm.
As shown in Fig. 12, the machining trace is cleared up.
Depth of cut is 2 mm, feed rate is 0.05 mm/r, spindle speed

is 20,000 r/min.

4 Conclusion

In order to improve surface finish quality, we developed an al-
gorithm system of constructing smooth tool orientation field
function for 5-axis machining. For given key tool axes and key
surface points, TOFF calculating algorithm is proposed.
Allowing for diversity in surface parameterization, algorithms
for open surface and half-open surface was studied separately.
Usually, RBF-spline approximation algorithm is adopted widely
because it can obtain a smoother TOFF. When a TOFF calcula-
tion is with high risk of gouge and collision due to high-
orientation accuracy requirement, RBF interpolation can be
adopted. These algorithms can help us obtain a smooth tool
orientation planning in tool path generation. With suitable tool
location planning strategies, the tool path can generate surface
with qualified surface finish. Finally, a machining experiment is
conducted to verify algorithms’ effectiveness.
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